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Clustering on features

* Function

e Color

e Width

* Height

* Weight

* Price

* Availability in local warehouse



Clustering:

Grouping things by how similar they are



How do we quantify “similarity”?



How do we quantify “similarity”?
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How many clusters?



How many clusters?

Depends on what you are trying to achieve
and whether your features carry that information



Selecting appropriate clustering algorithm

Here we went through hierarchical (agglomerative) clustering.

Other notable algorithms include
* k-means clustering

* Mean shift clustering
 DBSCAN

e Expectation—Maximization clustering



Selecting distance metrics

Here we used Euclidean distance, which will work for the vast
majority of (normally distributed) expression data.



Value distributions

Normal distribution
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Value distributions

Negative binomial distribution
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Value distributions

Value rank distribution
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Selecting distance metrics

Here we used Euclidean distance, which will work for the vast
majority of (normally distributed) expression data.

For data following a negative binomial distribution, Rao’s distance
is typically used.

For ranked data, the Kendall Tau distance is typically used.
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Steps in clustering

» Selecting appropriate algorithm (there are many algorithms out
there)

» Selecting appropriate distance metric (depending on the data
distribution)

* Feature selection (optional)



