What is a Project

Purpose

- Use a method introduced in the course to describe some biological problem

How

- Construct a data set describing the problem
- Define which method to use
- (Develop method)
- Train and evaluate method
- (Compare performance to other methods)

Documentation

- Make a poster describing project
- Groups of 3-4 people

- 1. Peptide MHC binding predictions using <u>position specific</u> <u>scoring matrices</u> including pseudo counts and sequences weighting clustering (Hobohm) techniques
- 2. Peptide MHC binding predictions using <u>artificial neural</u> <u>networks</u> with different sequence encoding schemes
- 3. <u>Gibbs sampler</u> approach to the prediction of MHC class II binding motifs including pseudo counts and sequences weighting clustering (Hobohm) techniques
- 4. Implementation of HMM Baum-Welsh algorithm
- 5. Comparative study of <u>PSSM</u>, <u>ANN</u>, <u>SMM</u> for peptide MHC binding
- 6. Comparison of "fake" versus "true" cross-validation
- 7. Using Theano to optimize ANN learning deep learning, training methods, regularization, momentum, etc
- 8. ...

- Peptide MHC binding predictions using position specific scoring matrices including pseudo counts and sequences weighting techniques
 - Compare methods for sequence weighting
 - Clustering vs heuristics
 - Benchmark (Peters et al 2006) covering some 20 MHC molecules, compare to best other methods
 - Raw data (SMM) are available at
 - http://tools.iedb.org/main/data/predictions_ smm.zip

NN

- Peptide MHC binding predictions using artificial neural networks with different sequence encoding schemes
 - Benchmark (Peters et al 2006) covering some 20 MHC molecules, compare to best other methods
 - Compare sequence encoding schemes
 - Sparse, Blosum, composition, charge, amino acids size,...

Gibbs sampler

- Gibbs sampler approach to the prediction of MHC class II binding motifs
 - Develop Gibbs sampler to prediction of MHC class II binding motifs including cluster-based sequence weighting
 - Benchmark Nielsen et al 2007 covering 14 HLA-DR alleles
 - Compare heuristic versus cluster-based sequence weighting

Comparative study

- Compare methods for MHC peptide binding
 - PSSM
 - ANN
 - SMM
- Data: Benchmark by Peters et al 2006 covering some 20 MHC molecules

Method evaluation using crossvalidation

- Compare performance of data-driven prediction methods when evaluated using cross-validation
- What is the difference between the "fake" and "true" cross-validated performance as a function of
 - Model complexity (ANN versus SMM)
 - Data set size

- ..

 Data: Benchmark by Peters et al 2006 covering some 20 MHC molecules

HMM

- Implement Baum-Welsh HMM training
 - Based on code from Tapas Kanungo HMM toolkit
 - Hidden Markov Model (HMM) Software: Implementation of Forward-Backward, Viterbi, and Baum-Welch algorithms.
 - Some links
 - http://www.kanungo.com/software/umdhmm-v1.02.tar
 - http://www.kanungo.com/software/umdhmm-v1.02.zip
 - http://www.kanungo.com/software/umdhmm-v1.02.README
 - http://www.kanungo.com/software/hmmtut.pdf
 - Maybe include an MC modelling fitting for comparison
- Test code on un-fair casino example

Tools for ANN training

- Use ANN library tools (Tensor-flow, PyTorch, Keras, ..) to optimize ANN learning/training
 - Number of hidden layers (deep learning),
 - Training methods,
 - regularization,
 - · momentum,
 - · etc.
- Data
 - Benchmark (Peters et al 2006) covering some 20 MHC molecules