Gradient decent. Doing it your self

Weights are changed in the opposite direction of the gradient of the error

$$
\begin{array}{ll}
w_{i}^{\prime}=w_{i}+\Delta w_{i} & \text { Linear function } \\
E=\frac{1}{2} \cdot(O-t)^{2} & O=I_{1} \cdot w_{1}+I_{2} \cdot w_{2} \\
O=\sum_{i} w_{i} \cdot I_{i} & \\
\Delta w_{i}=-\varepsilon \cdot \frac{\partial E}{\partial w_{i}}=-\varepsilon \cdot(O-t) \cdot I_{i} & 0
\end{array}
$$

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use $\varepsilon=0.1$, and $t=1$)?

Fill out the table

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use $\varepsilon=0.1, t=1$)?

Linear function
$O=I_{1} \cdot w_{1}+I_{2} \cdot w_{2}$

itr	W1	W2	0
0	0.1	0.1	
1			
2			

