CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Optimization methods

Morten Nielsen Department of Health Technology, DTU

Minimization

Minimization

Minimization

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

The path to the global minimum

Outline

- Optimization procedures
 - Gradient descent
 - Monte Carlo

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Linear function

$$o = I_1 \cdot w_1 + I_2 \cdot w_2$$

$$E = \frac{1}{2} \cdot (o - t)^2$$

Gradient descent is based on the observation that if the real-valued function F(x) is defined and differentiable in a neighborhood of a point a, then F(x) decreases fastest if one goes from a in the direction of the negative gradient of F at a. It follows that, if

$$b = a - \varepsilon \cdot \nabla F(a)$$

for $\varepsilon > 0$ a small enough number, then F(b)<F(a)

Gradient descent

 $w'_{i} = w_{i} + \Delta w_{i}$ $\Delta w_{i} = -\varepsilon \cdot \frac{\partial E}{\partial w_{i}}$ $E = \frac{1}{2} \cdot (O - t)^{2}$

 $\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial w_i}$ $\frac{\partial E}{\partial O} = (O - t)$ $\frac{\partial O}{\partial w_i} = ?$

$$E = \frac{1}{2} \cdot (O - t)^{2}$$

$$O = \sum_{i} I_{i} \cdot w_{i}$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial w_{i}}$$

$$\frac{\partial E}{\partial w_{i}} = (O - t) \cdot \frac{\partial O}{\partial w_{i}} = ?$$

Linear function

$$O = I_1 \cdot w_1 + I_2 \cdot w_2$$

OFNITEDEO

 $W_i = W_i + \Delta W_i$ $O = I_1 \cdot w_1 + I_2 \cdot w_2$ $E = \frac{1}{2} \cdot (O - t)^2$ *I*₂ W_2 $O = \sum w_i \cdot I_i$ $\Delta w_i = -\varepsilon \cdot \frac{\partial E}{\partial w_i} = -\varepsilon \cdot ??$

Linear function

What are the weights after 2 forward (calculate predictions) and backward (update weights) iterations with the given input, and has the error decrease (use ε =0.1, and t=1)?

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use ϵ =0.1, t=1)?

Fill out the table

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use ϵ =0.1, t=1)?

