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Outline

• Optimization procedures 
– Gradient descent
– Monte Carlo



Linear methods. Error estimate
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Gradient descent (from wekipedia)

Gradient descent is based on the observation that 
if the real-valued function  F(x) is defined and 
differentiable in a neighborhood of a point a, then 
F(x) decreases fastest if one goes from  a in the 
direction of the negative gradient of F at a. 
It follows that, if

for e > 0 a small enough number, 
then F(b)<F(a)

€ 

b = a −ε ⋅ ∇F(a)



Gradient descent (example)

€ 

F(x) = x 2

∂F
∂x

= 2 ⋅ x

a = 2
F(a) = 4
b = a −ε ⋅ ∇F(a) = 2 − 0.1⋅ 2 ⋅ 2 =1.6
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Gradient descent (Linear function)
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Gradient descent. Example
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Gradient descent. Doing it your self
Weights are changed in the opposite direction of the 
gradient of the error
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What are the weights after 2 forward (calculate predictions) 
and backward (update weights) iterations with the given 
input, and has the error decrease (use e=0.1, and t=1)?



Fill out the table

itr W1 W2 O

0 0.1 0.1
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What are the weights after 2 forward/backward 
iterations with the given input, and has the error decrease 
(use e=0.1, t=1)?
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Fill out the table

itr W1 W2 O

0 0.1 0.1 0.1

1 0.19 0.1 0.19

2 0.27 0.1 0.27
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