
Artificiel Neural Networks 2

Morten Nielsen
Department of Health Technology,

DTU

Outline

• Optimization procedures
– Gradient decent (this you already know)

• Network training
– back propagation
– cross-validation
– Over-fitting
– Examples
– Deeplearning

Neural network. Error estimate

I1 I2

w1 w2

Linear function

€

o = I1 ⋅ w1 + I2 ⋅ w2

€

E = 1
2 ⋅ (o − t)

2

o

Neural networks

Gradient decent (from wekipedia)

Gradient descent is based on the observation that
if the real-valued function F(x) is defined and
differentiable in a neighborhood of a point a, then
F(x) decreases fastest if one goes from a in the
direction of the negative gradient of F at a.
It follows that, if

for e > 0 a small enough number,
then F(b)<F(a)

€

b = a −ε ⋅ ∇F(a)

Gradient decent (example)

€

F(x) = x 2

a = 2
F(a) = 4

Gradient decent (example)

€

F(x) = x 2

a = 2
F(a) = 4
∂F
∂x

= 2⋅ x = 4

b = a −ε⋅ ∇F(a) = 2 − 0.1⋅ 4 =1.6

Gradient decent. Example

Weights are changed in the opposite direction of the
gradient of the error

wi
' = wi +Δwi

E = 1
2 ⋅ (O− t)

2

O = wi
i
∑ ⋅ Ii

Δwi = −ε ⋅
∂E
∂wi

= −ε ⋅
∂E
∂O

⋅
∂O
∂wi

= −ε ⋅ (O− t) ⋅ Ii

I1 I2

w1 w2

Linear function

€

O = I1 ⋅ w1 + I2 ⋅ w2

o

Network architecture

Input layer

Hidden layer

Output layer

Ik

hj

Hj

o
O

vjk

wj

What about the hidden layer?

Δwi = −ε ⋅
∂E
∂wi

o = wj
j
∑ ⋅H j

hj = vjk
k
∑ ⋅ Ik

€

E = 1
2 ⋅ (O− t)

2

O = g(o),H = g(h)

g(x) =
1

1+ e−x

Hidden to output layer

∂E
∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

∂E(O(o(wj)))
∂wj

=

Hidden to output layer

€

O = g(o)

g(x) =
1

1+ e−x

g'(x) =
−1

(1+ e−x)2
⋅ (−e−x)

= (1− g(x)) ⋅ g(x)

∂E
∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂O

= (O− t)

∂O
∂o

=
∂g
∂o

= ?

∂o
∂wj

=
1
∂wj

wl ⋅
l
∑ Hl = H j

Hidden to output layer

€

O = g(o)

g(x) =
1

1+ e−x

g'(x) =
−1

(1+ e−x)2
⋅ (−e−x)

= (1− g(x)) ⋅ g(x)

∂E
∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂O

= (O− t)

∂O
∂o

=
∂g
∂o

= ?

∂o
∂wj

=
1
∂wj

wl ⋅
l
∑ Hl = H j

Hidden to output layer

O = g(o)
g '(o) = (1− g(o)) ⋅ g(o)

= (1−O) ⋅O

∂E
∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

= (O− t) ⋅ (1−O) ⋅O ⋅H j

= (O− t) ⋅ g '(o) ⋅H j

Input to hidden layer

∂E
∂vjk

=
∂E(O(o(H j (hj (vjk))))

∂vjk

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂H j

⋅
∂H j

∂hj
⋅
∂hj
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj) ⋅ Ik

Summary

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj) ⋅ Ik

Or

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj) ⋅ Ik = δ ⋅wj ⋅ g '(hj) ⋅ Ik

δ = (O− t) ⋅ g '(o)

Or

∂E
∂wj

= δ ⋅H j = δ ⋅ x[1][j]

∂E
∂vjk

= δ ⋅wj ⋅ g '(hj) ⋅ Ik = δ ⋅wj ⋅ x[1][j]⋅ (1− x[1][j]) ⋅ Ik

δ = (O− t) ⋅ g '(o) = (x[2][i]− ti) ⋅ x[2][i]⋅ (1− x[2][i])

Ii=X[0][k]

Hj=X[1][j]

Oi=X[2][i]

Can you do it your self?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2
H2

h1
H1

o
O

I1=1 I2=1 Δwj = −ε ⋅
∂E
∂wj

;Δvjk = −ε ⋅
∂E
∂vjk

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj) ⋅ Ik

g '(x) = (1− g(x)) ⋅ g(x)
O = g(o)

What is the output (O) from the network?
What are the Dwij and Dvjk values if the
target value is 0 and e=0.5?

Can you do it your self (e=0.5).
Has the error decreased?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=
H2=

h1=
H1=

o=
O=

I1=1 I2=1

€

Δw1 = ??
Δw2 = ??

€

Δv11 = ??
Δv12 = ??
Δv21 = ??
Δv22 = ??

v22=.

v12=
V11=

v21=

w1= w2=

h2=
H2=

h1=
H1=

o=
O=

I1=1 I2=1
Before After

h1=2
H1=0.88

Can you do it your self (e=0.5).
Has the error decreased?

€

Δw1 = ??
Δw2 = ??

€

Δv11 = ??
Δv12 = ??
Δv21 = ??
Δv22 = ??

v22=.

v12=
V11=

v21=

w1= w2=

h2=
H2=

h1=
H1=

o=
O=

I1=1 I2=1
Before After

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=0
H2=0.5

o=-0.38
O=0.41

I1=1 I2=1

Can you do it your self?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=0
H2=0.5

h1=2
H1=0.88

o=-0.38
O=0.41

I1=1 I2=1

• What is the output (O)
from the network?
• What are the Dwij and
Dvjk values if the target
value is 0?

Δwj = −ε ⋅
∂E
∂wj

;Δvjk = −ε ⋅
∂E
∂vjk

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

δ = (O− t) ⋅ g '(o) = 0.41⋅0.41⋅ (1− 0.41) = 0.099
Δw1 = −ε ⋅δ ⋅0.88 = −ε ⋅0.087
Δw2 = −ε ⋅δ ⋅0.5= −ε ⋅0.050

∂E
∂vjk

= g '(hj) ⋅ Ik ⋅ (O− t) ⋅ g '(o) ⋅wj

Δv11 = −ε ⋅H1 ⋅ (1−H1) ⋅1⋅δ ⋅ (−1) = ε ⋅0.01
Δv12 = Δv11
Δv21 = −ε ⋅H2 ⋅ (1−H2) ⋅1⋅δ ⋅1= −ε ⋅0.02
Δv22 = Δv21

Can you do it your self (e=0.5).
Has the error decreased?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=0
H2=0.5

h1=2
H1=0.88

o=-0.38
O=0.41

I1=1 I2=1

€

Δw1 = −ε ⋅δ ⋅ 0.88 = −ε ⋅ 0.087
Δw2 = −ε ⋅δ ⋅ 0.5 = −ε ⋅ 0.050

€

Δv11 = −ε ⋅H1 ⋅ (1−H1) ⋅1⋅ δ ⋅ (−1) = ε ⋅ 0.01
Δv12 = Δv11
Δv21 = −ε ⋅H2 ⋅ (1−H2) ⋅1⋅ δ ⋅1= −ε ⋅ 0.02
Δv22 = Δv21

v22=.0.99
v12=1.005

v11=1.005
v21=-1.01

w1=-1.043 w2=0.975

h2=-0.02
H2=0.495

h1=2.01
H1=0.882

o=-0.44
O=0.39

I1=1 I2=1

Sequence encoding

∂E
∂vjk

= δ ⋅wj ⋅ g '(hj) ⋅ Ik = δ ⋅wj ⋅ x[1][j]⋅ (1− x[1][j]) ⋅ Ik

• Change in weight is linearly dependent on
input value

• “True” sparse encoding (i.e 1/0) is
therefore highly inefficient

• Sparse is most often encoded as
– +1/-1 or 0.9/0.05

Sequence encoding - rescaling

• Rescaling the input values

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

∂E
∂vjk

= g '(hj) ⋅ Ik ⋅ (O− t) ⋅ g '(o) ⋅wj = g '(hj) ⋅ Ik ⋅δ ⋅wj

δ = (O− t) ⋅ g '(o)

If the input (o or h) is too
large or too small, g´ is
zero and the weights are
not changed. Optimal
performance is when o,h
are close to 0.5

Training and error reduction

e

Training and error reduction

e

Training and error reduction

e
Size matters

Demo

• http://playground.tensorflow.org/

http://playground.tensorflow.org/

Do hidden neurons matter?

• The environment
matters

NetMHCpan

Context matters
FMIDWILDA YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.89 A0201
FMIDWILDA YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.08 A0101
DSDGSFFLY YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.08 A0201
DSDGSFFLY YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.85 A0101

Summary

• Gradient decent is used to determine the
updates for the synapses in the neural network

• Some relatively simple math defines the
gradients
– Networks without hidden layers can be solved on the

back of an envelope (SMM exercise)
– Hidden layers are a bit more complex, but still ok

• Always train networks using a test set to stop
training
– Be careful when reporting predictive performance

• Use “nested” cross-validation for small data sets
• And hidden neurons do matter (sometimes)

And some more stuff for the long
cold and rainy summer nights
• Can it maybe be made differently?

€

E =
1
α
⋅ (O− t)α

Predicting accuracy

• Can it be made differently?

€

E =
1
2
⋅ (O1 − t)

2 ⋅O2 + λ ⋅ (1−O2)

Reliability

• Identification of position specific
receptor ligand interactions by use of
artificial neural network decomposition.
An investigation of interactions in the
MHC:peptide system

Master thesis’ by Frederik Otzen Bagger
and Piotr Chmura

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks

Deep(er) Network architecture

€

E = 1
2 ⋅ (O− t)

2

O = g(o),H = g(h)

g(x) =
1

1+ e−x

o = wj
j
∑ ⋅H

j

2

h
j

2 = vjk
k
∑ ⋅H

k

1

h
k

1 = ukl
l
∑ ⋅ Il

Δwi = −ε ⋅
∂E
∂wi

Deeper Network architecture
Il Input layer, l

1. Hidden layer, k

Output layer

h1
k

H1
k

h3

H3

ukl

wj

2. Hidden layer, j

vjk
h2

j

H2
j

∂E
∂wj

=
∂E(H 3(h3(wj)))

∂wj

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅
∂h3

∂wj

= (H 3 − t) ⋅ g '(h3) ⋅H j
2

Network architecture (hidden to hidden)

∂E
∂vjk

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅
∂h3

∂H
j

2 ⋅
∂H

j

2

∂h
j

2 ⋅
∂h

j

2

∂vjk
= (H 3 − t) ⋅ g '(h3) ⋅wj ⋅ g '(hj

2) ⋅Hk
1

Network architecture (input to hidden)

∂E
∂ukl

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅

∂h3

∂H
j

2 ⋅
∂H

j

2

∂h
j

2 ⋅
∂h

j

2

∂Hk
1

j
∑ ⋅

∂Hk
1

∂hk
1 ⋅
∂h

k

1

∂ukl

= (H 3 − t) ⋅ g '(h3) ⋅ wj ⋅ g '(hj

2) ⋅ vjk
j
∑ ⋅ g '(h

k

1) ⋅ Il

Network architecture (input to hidden)

∂E
∂ukl

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅

∂h3

∂H
j

2 ⋅
∂H

j

2

∂h
j

2 ⋅
∂h

j

2

∂Hk
1

j
∑ ⋅

∂Hk
1

∂hk
1 ⋅
∂h

k

1

∂ukl

= (H 3 − t) ⋅ g '(h3) ⋅ wj ⋅ g '(hj

2) ⋅ vjk
j
∑ ⋅ g '(h

k

1) ⋅ Il

Speed. Use delta’s

h
j

q = wji
i
∑ H

i

q−1

H
i

q−1 = g(h
i

q−1)

j

k

l

dj

vjk

ukl

dk

Bishop, Christopher (1995). Neural networks for pattern recognition. Oxford:
Clarendon Press. ISBN 0-19-853864-2.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-853864-2

Use delta’s

∂E
∂w

ji

q =
∂E
∂h

j

q ⋅
∂hj

q

∂w
ji

q = δ j

q ⋅H
i

q−1

δ
j

q =
∂E
∂h

j

q

δ3 =
∂E
∂h3

=
∂E
∂H 3 ⋅

∂H 3

∂h3
= (H 3 − t) ⋅ g '(h3)

δ j
2 =

∂E
∂h

j

2 =
∂E
∂h3

⋅
∂h3

∂hj
2 =

∂E
∂h3

⋅
∂h3

∂H j
2 ⋅
∂H j

2

∂hj
2 = g '(hj

2) ⋅δ3 ⋅ vjk

δk
1 =

∂E
∂hk

1 =
∂E
∂hj

2
j
∑ ⋅

∂hj
2

∂hk
1 =

∂E
∂hj

2
j
∑ ⋅

∂hj
2

∂Hk
1 ⋅
∂Hk

1

∂hk
1 = g '(hk

1) ⋅ δ j
2

j
∑ ⋅ vjk

hj = wji
i
∑ Hi

Hi = g(hi)

Deep learning – time is not an issue

0

50

100

150

200

250

17000 17500 18000 18500 19000 19500 20000

CP
U

 (u
)

Number of weights

17000

17500

18000

18500

19000

19500

0 1 2 3 4 5 6

#
 w

ei
gh

ts

N layer

Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks

Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks

