Artificiel Neural Networks 2

Morten Nielsen
Department of Health Technology, DTU

- Optimization procedures
- Gradient decent (this you already know)
- Network training
- back propagation
- cross-validation
- Over-fitting
- Examples
- Deeplearning

Neural network. Error estimate

Linear function

$$
o=I_{1} \cdot w_{1}+I_{2} \cdot w_{2}
$$

$$
E=\frac{1}{2} \cdot(o-t)^{2}
$$

Neural networks

Gradient decent (from wekipedia)

Gradient descent is based on the observation that if the real-valued function $F(x)$ is defined and differentiable in a neighborhood of a point a, then $F(x)$ decreases fastest if one goes from a in the direction of the negative gradient of F at a.
It follows that, if

$$
b=a-\varepsilon \cdot \nabla F(a)
$$

for $\varepsilon>0$ a small enough number, then $F(b)<F(a)$

Gradient decent (example)

$$
\begin{aligned}
& F(x)=x^{2} \\
& a=2 \\
& F(a)=4
\end{aligned}
$$

Gradient decent (example)

$$
\begin{aligned}
& F(x)=x^{2} \\
& a=2 \\
& F(a)=4 \\
& \frac{\partial F}{\partial x}=2 \cdot x=4
\end{aligned}
$$

$$
b=a-\varepsilon \cdot \nabla F(a)=2-0.1 \cdot 4=1.6
$$

Gradient decent. Example

Weights are changed in the opposite direction of the gradient of the error

$$
\begin{aligned}
& w_{i}^{\prime}=w_{i}+\Delta w_{i} \\
& E=\frac{1}{2} \cdot(O-t)^{2} \\
& O=\sum_{i} w_{i} \cdot I_{i} \\
& \Delta w_{i}=-\varepsilon \cdot \frac{\partial E}{\partial w_{i}}=-\varepsilon \cdot \frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial w_{i}}=-\varepsilon \cdot(O-t) \cdot I_{i} \cdot w_{1}+I_{2} \cdot w_{2}
\end{aligned}
$$

Network architecture

What about the hidden layer?

$$
\begin{array}{ll}
\Delta w_{i}=-\varepsilon \cdot \frac{\partial E}{\partial w_{i}} & E=\frac{1}{2} \cdot(O-t)^{2} \\
o=\sum_{j} w_{j} \cdot H_{j} & O=g(o), H=g(h) \\
h_{j}=\sum_{j} v_{j k} \cdot I_{k} & g(x)=\frac{1}{1+e^{-x}}
\end{array}
$$

Hidden to output layer

$$
\frac{\partial E}{\partial w_{j}}=\frac{\partial E\left(O\left(o\left(w_{j}\right)\right)\right)}{\partial w_{j}}=\frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial o} \cdot \frac{\partial o}{\partial w_{j}}
$$

Hidden to output layer

$$
\frac{\partial E}{\partial w_{j}}=\frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial o} \cdot \frac{\partial o}{\partial w_{j}}=
$$

$$
\begin{aligned}
& \frac{\partial E}{\partial O}=(O-t) \\
& \frac{\partial O}{\partial o}=\frac{\partial g}{\partial o}=? \\
& \frac{\partial o}{\partial w_{j}}=
\end{aligned}
$$

$$
\begin{aligned}
& O=g(o) \\
& g(x)=\frac{1}{1+e^{-x}} \\
& g^{\prime}(x)=\frac{-1}{\left(1+e^{-x}\right)^{2}} \cdot\left(-e^{-x}\right) \\
& \quad=(1-g(x)) \cdot g(x)
\end{aligned}
$$

Hidden to output layer

$$
\frac{\partial E}{\partial w_{j}}=\frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial o} \cdot \frac{\partial o}{\partial w_{j}}=
$$

$$
\begin{aligned}
& \frac{\partial E}{\partial O}=(O-t) \\
& \frac{\partial O}{\partial o}=\frac{\partial g}{\partial o}=? \\
& \frac{\partial o}{\partial w_{j}}=\frac{1}{\partial w_{j}} \sum_{l} w_{l} \cdot H_{l}=H_{j}
\end{aligned}
$$

$$
\begin{aligned}
& O=g(o) \\
& g(x)=\frac{1}{1+e^{-x}} \\
& g^{\prime}(x)=\frac{-1}{\left(1+e^{-x}\right)^{2}} \cdot\left(-e^{-x}\right) \\
& \quad=(1-g(x)) \cdot g(x)
\end{aligned}
$$

Hidden to output layer

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j}} & =\frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial o} \cdot \frac{\partial o}{\partial w_{j}}=(O-t) \cdot g^{\prime}(o) \cdot H_{j} \\
& =(O-t) \cdot(1-O) \cdot O \cdot H_{j}
\end{aligned}
$$

$$
\begin{aligned}
O= & g(o) \\
g^{\prime}(o) & =(1-g(o)) \cdot g(o) \\
& =(1-O) \cdot O
\end{aligned}
$$

Input to hidden layer

$$
\begin{aligned}
& \frac{\partial E}{\partial v_{j k}}=\frac{\partial E\left(O\left(o\left(H_{j}\left(h_{j}\left(v_{j k}\right)\right)\right)\right)\right.}{\partial v_{j k}} \\
& =\frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial o} \cdot \frac{\partial o}{\partial H_{j}} \cdot \frac{\partial H_{j}}{\partial h_{j}} \cdot \frac{\partial h_{j}}{\partial v_{j k}} \\
& =(O-t) \cdot g^{\prime}(o) \cdot w_{j} \cdot g^{\prime}\left(h_{j}\right) \cdot I_{k}
\end{aligned}
$$

Summary

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{j}}=\delta \cdot H_{j}=\delta \cdot x[1][j] \\
& \frac{\partial E}{\partial v_{j k}}=\delta \cdot w_{j} \cdot g^{\prime}\left(h_{j}\right) \cdot I_{k}=\delta \cdot w_{j} \cdot x[1][j] \cdot(1-x[1][j]) \cdot I_{k} \\
& \delta=(O-t) \cdot g^{\prime}(o)=\left(x[2][i]-t_{i}\right) \cdot x[2][i] \cdot(1-x[2][i])
\end{aligned}
$$

Can you do it your self?

$$
\begin{aligned}
& \Delta w_{j}=-\varepsilon \cdot \frac{\partial E}{\partial w_{j}} ; \Delta v_{j k}=-\varepsilon \cdot \frac{\partial E}{\partial v_{j k}} \\
& \frac{\partial E}{\partial w_{j}}=(O-t) \cdot g^{\prime}(o) \cdot H_{j} \\
& \frac{\partial E}{\partial v_{j k}}=(O-t) \cdot g^{\prime}(o) \cdot w_{j} \cdot g^{\prime}\left(h_{j}\right) \cdot I_{k} \\
& g^{\prime}(x)=(1-g(x)) \cdot g(x) \\
& O=g(o)
\end{aligned}
$$

What is the output (O) from the network? What are the $\Delta w_{i j}$ and $\Delta v_{j k}$ values if the target value is 0 and $\varepsilon=0.5$?

Can you do it your self $(\varepsilon=0.5)$.

Has the error decreased?

After

$$
\begin{array}{|l|}
\Delta w_{1}=? ? \\
\Delta w_{2}=? ?
\end{array}
$$

$$
\begin{array}{|l|}
\Delta v_{11}=? ? \\
\Delta v_{12}=? ? \\
\Delta v_{21}=? ? \\
\Delta v_{22}=? ?
\end{array}
$$

Can you do it your self $(\varepsilon=0.5)$.

 Has the error decreased?
Before

$$
\begin{aligned}
& \Delta w_{1}=? ? \\
& \Delta w_{2}=? ?
\end{aligned}
$$

After

$$
\begin{aligned}
& \Delta v_{11}=? ? \\
& \Delta v_{12}=? ? \\
& \Delta v_{21}=? ? \\
& \Delta v_{22}=? ?
\end{aligned}
$$

Can you do it your self?

Can you do it your self $(\varepsilon=0.5)$. Has the error decreased?

$$
\begin{aligned}
& \Delta w_{1}=-\varepsilon \cdot \delta \cdot 0.88=-\varepsilon \cdot 0.087 \\
& \Delta w_{2}=-\varepsilon \cdot \delta \cdot 0.5=-\varepsilon \cdot 0.050
\end{aligned}
$$

$$
\begin{aligned}
& \Delta v_{11}=-\varepsilon \cdot H_{1} \cdot\left(1-H_{1}\right) \cdot 1 \cdot \delta \cdot(-1)=\varepsilon \cdot 0.01 \\
& \Delta v_{12}=\Delta v_{11} \\
& \Delta v_{21}=-\varepsilon \cdot H_{2} \cdot\left(1-H_{2}\right) \cdot 1 \cdot \delta \cdot 1=-\varepsilon \cdot 0.02 \\
& \Delta v_{22}=\Delta v_{21}
\end{aligned}
$$

Sequence encoding

- Change in weight is linearly dependent on input value
- "True" sparse encoding (i.e $1 / 0$) is therefore highly inefficient
- Sparse is most often encoded as
- +1/-1 or 0.9/0.05

$$
\frac{\partial E}{\partial v_{j k}}=\delta \cdot w_{j} \cdot g^{\prime}\left(h_{j}\right) \cdot I_{k}=\delta \cdot w_{j} \cdot x[1][j] \cdot(1-x[1][j]) \cdot I_{k}
$$

Sequence encoding - rescaling

- Rescaling the input values

> If the input (o or h) is too large or too small, g^{\prime} is zero and the weights are not changed. Optimal performance is when o,h are close to 0.5

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{j}}=(O-t) \cdot g^{\prime}(o) \cdot H_{j}=\delta \cdot H_{j} \\
& \frac{\partial E}{\partial v_{j k}}=g^{\prime}\left(h_{j}\right) \cdot I_{k} \cdot(O-t) \cdot g^{\prime}(o) \cdot w_{j}=g^{\prime}\left(h_{j}\right) \cdot I_{k} \cdot \delta \cdot w_{j} \\
& \delta=(O-t) \cdot g^{\prime}(o)
\end{aligned}
$$

Training and error reduction

E

Training and error reduction

E

Training and error reduction

E

Demo

- http://playground.tensorflow.org/

Do hidden neurons matter?

- The environment matters

NetMHCpan

Figure 1. Prospective validation using hitherto uncharacterized HLA molecules.

Context matters

```
FMIDWILDA YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.89 A0201 FMIDWILDA YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.08 A0101 DSDGSFFLY YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.08 A0201 DSDGSFFLY YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.85 A0101
```


Summary

- Gradient decent is used to determine the updates for the synapses in the neural network
- Some relatively simple math defines the gradients
- Networks without hidden layers can be solved on the back of an envelope (SMM exercise)
- Hidden layers are a bit more complex, but still ok
- Always train networks using a test set to stop training
- Be careful when reporting predictive performance - Use "nested" cross-validation for small data sets
- And hidden neurons do matter (sometimes)

And some more stuff for the long cold and rainy summer nights

- Can it maybe be made differently?

$$
E=\frac{1}{\alpha} \cdot(O-t)^{\alpha}
$$

Predicting accuracy

- Can it be made differently?

$$
E=\frac{1}{2} \cdot\left(O_{1}-t\right)^{2} \cdot O_{2}+\lambda \cdot\left(1-O_{2}\right)
$$

Making sense of ANN weights

- Identification of position specific receptor ligand interactions by use of artificial neural network decomposition. An investigation of interactions in the MHC:peptide system

Master thesis' by Frederik Otzen Bagger and Piotr Chmura

Making sense of ANN weights

Figure 2.1. Two layer ANN with two amino acids as input, $p=\{1,2\}$, and one output neuron. The direction is downwards, and the graph is directed.

Making sense of ANN weights

Figure 2.1. Two layer ANN with two amino acids as input, $p=\{1,2\}$, and one output neuron. The direction is downwards, and the graph is directed.

Making sense of ANN weights

Making sense of ANN weights

Making sense of ANN weights

Deep learning

Back Propagation

Advantages

- Multi layer Perceptron network can be trained by the back propagation algorithm to perform any mapping between the input and the output.

What is wrong with back-propagation?
-It requires labeled training data.
Almost all data is unlabeled.
-The learning time does not scale well
It is very slow in networks with multiple hidden layers.
-It can get stuck in poor local optima.

A backpropagation network trains with a two-step procedure. The activity from the input pattern flows forward through the network, and the error signal flows backward to adjust the weights.

Deep(er) Network architecture

$$
\begin{array}{ll}
E=\frac{1}{2} \cdot(O-t)^{2} & o=\sum_{j} w_{j} \cdot H_{j}^{2} \\
O=g(o), H=g(h) & h_{j}^{2}=\sum_{k} v_{j k} \cdot H_{k}^{1} \\
g(x)=\frac{1}{1+e^{-x}} & h_{k}^{1}=\sum_{l} u_{k l} \cdot I_{l}
\end{array}
$$

$$
\Delta w_{i}=-\varepsilon \cdot \frac{\partial E}{\partial w_{i}}
$$

Deeper Network architecture

$$
\frac{\partial E}{\partial w_{j}}=\frac{\partial E\left(H^{3}\left(h^{3}\left(w_{j}\right)\right)\right)}{\partial w_{j}}=\frac{\partial E}{\partial H^{3}} \cdot \frac{\partial H^{3}}{\partial h^{3}} \cdot \frac{\partial h^{3}}{\partial w_{j}}=\left(H^{3}-t\right) \cdot g^{\prime}\left(h^{3}\right) \cdot H_{j}^{2}
$$

Network architecture (hidden to hidden)

Network architecture (input to hidden)

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =\frac{\partial E}{\partial H^{3}} \cdot \frac{\partial H^{3}}{\partial h^{3}} \cdot \sum_{j} \frac{\partial h^{3}}{\partial H_{j}^{2}} \cdot \frac{\partial H_{j}^{2}}{\partial h_{j}^{2}} \cdot \frac{\partial h_{j}^{2}}{\partial H_{k}^{1}} \cdot \frac{\partial H_{k}^{1}}{\partial h_{k}^{1}} \cdot \frac{\partial h_{k}^{1}}{\partial u_{k l}} \\
& =\left(H^{3}-t\right) \cdot g^{\prime}\left(h^{3}\right) \cdot \sum_{j} w_{j} \cdot g^{\prime}\left(h_{j}^{2}\right) \cdot v_{j k} \cdot g^{\prime}\left(h_{k}^{1}\right) \cdot I_{l}
\end{aligned}
$$

Network architecture (input to hidden)

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =\frac{\partial E}{\partial H^{3}} \cdot \frac{\partial H^{3}}{\partial h^{3}} \cdot \sum_{j} \frac{\partial h^{3}}{\partial H_{j}^{2}} \cdot \frac{\partial H_{j}^{2}}{\partial h_{j}^{2}} \cdot \frac{\partial h_{j}^{2}}{\partial H_{k}^{1}} \cdot \frac{\partial H_{k}^{1}}{\partial h_{k}^{1}} \cdot \frac{\partial h_{k}^{1}}{\partial u_{k l}} \\
& =\left(H^{3}-t\right) \cdot g^{\prime}\left(h^{3}\right) \cdot \sum_{j} w_{j} \cdot g^{\prime}\left(h_{j}^{2}\right) \cdot v_{j k} \cdot g^{\prime}\left(h_{k}^{1}\right) \cdot I_{l}
\end{aligned}
$$

Speed. Use delta's

Bishop, Christopher (1995). Neural networks for pattern recognition. Oxford: Clarendon Press. ISBN 0-19-853864-2.

Use delta's

$\frac{\partial E}{\partial w_{j i}^{q}}=\frac{\partial E}{\partial h_{j}^{q}} \cdot \frac{\partial h_{j}^{q}}{\partial w_{j i}^{q}}=\delta_{j}^{q} \cdot H_{i}^{q-1}$
$\delta_{j}^{q}=\frac{\partial E}{\partial h_{j}^{q}}$
$\delta^{3}=\frac{\partial E}{\partial h^{3}}=\frac{\partial E}{\partial H^{3}} \cdot \frac{\partial H^{3}}{\partial h^{3}}=\left(H^{3}-t\right) \cdot g^{\prime}\left(h^{3}\right)$
$\delta_{j}^{2}=\frac{\partial E}{\partial h_{j}^{2}}=\frac{\partial E}{\partial h^{3}} \cdot \frac{\partial h^{3}}{\partial h_{j}^{2}}=\frac{\partial E}{\partial h^{3}} \cdot \frac{\partial h^{3}}{\partial H_{j}^{2}} \cdot \frac{\partial H_{j}^{2}}{\partial h_{j}^{2}}=g^{\prime}\left(h_{j}^{2}\right) \cdot \delta^{3} \cdot v_{j k}$
$\delta_{k}^{1}=\frac{\partial E}{\partial h_{k}^{1}}=\sum_{j} \frac{\partial E}{\partial h_{j}^{2}} \cdot \frac{\partial h_{j}^{2}}{\partial h_{k}^{1}}=\sum_{j} \frac{\partial E}{\partial h_{j}^{2}} \cdot \frac{\partial h_{j}^{2}}{\partial H_{k}^{1}} \cdot \frac{\partial H_{k}^{1}}{\partial h_{k}^{1}}=g^{\prime}\left(h_{k}^{1}\right) \cdot \sum_{j} \delta_{j}^{2} \cdot v_{j k}$

$$
H_{i}=g\left(h_{i}\right)
$$

$$
h_{j}=\sum_{i} w_{j i} H_{i}
$$

Deep learning - time is not an issue

Deep learning

Deep Neural Networks

- Standard learning strategy
- Randomly initializing the weights of the network
- Applying gradient descent using backpropagation
- But, backpropagation does not work well (if randomly initialized)
- Deep networks trained with back-propagation (without unsupervised pre-train) perform worse than shallow networks
- ANN have limited to one or two layers
http://www.slideshare.net/hammawan/deep-neural-networks

Deep learning

Recent Deep Learning Highlights

- Google Goggles uses Stacked Sparse Auto Encoders (Hartmut Neven @ ICML 2011)
- The monograph or review paper Learning Deep Architectures for AI (Foundations \& Trends in Machine Learning, 2009).
- Exploring Strategies for Training Deep Neural Networks, Hugo Larochelle, Yoshua Bengio, Jerome Louradour and Pascal Lamblin in: The Journal of Machine Learning Research, pages 1-40, 2009.
- The LISA publications database contains a deep architectures category. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ ReadingOnDeepNetworks
- Deep Machine Learning - A New Frontier in Artificial Intelligence Research - a survey paper by Itamar Arel, Derek C. Rose, and Thomas P. Karnowski.
http://www.slideshare.net/hammawan/deep-neural-networks

