
Artificiel Neural Networks 2

Morten Nielsen
Department of Health Technology,

DTU



Outline

• Optimization procedures 
– Gradient decent (this you already know)

• Network training
– back propagation
– cross-validation
– Over-fitting
– Examples
– Deeplearning



Neural network. Error estimate
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Neural networks



Gradient decent (from wekipedia)

Gradient descent is based on the observation that 
if the real-valued function  F(x) is defined and 
differentiable in a neighborhood of a point a, then 
F(x) decreases fastest if one goes from  a in the 
direction of the negative gradient of F at a. 
It follows that, if

for e > 0 a small enough number, 
then F(b)<F(a)

€ 

b = a −ε ⋅ ∇F(a)



Gradient decent (example)

€ 

F(x) = x 2

a = 2
F(a) = 4



Gradient decent (example)

€ 

F(x) = x 2

a = 2
F(a) = 4
∂F
∂x

= 2⋅ x = 4

b = a −ε⋅ ∇F(a) = 2 − 0.1⋅ 4 =1.6



Gradient decent. Example

Weights are changed in the opposite direction of the 
gradient of the error
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Network architecture

Input layer

Hidden layer

Output layer
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What about the hidden layer?

Δwi = −ε ⋅
∂E
∂wi

o = wj
j
∑ ⋅H j

hj = vjk
k
∑ ⋅ Ik
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E = 1
2 ⋅ (O− t)
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O = g(o),H = g(h)

g(x) =
1

1+ e−x



Hidden to output layer
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∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

∂E(O(o(wj )))
∂wj

=



Hidden to output layer
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O = g(o)

g(x) =
1

1+ e−x

g'(x) =
−1

(1+ e−x )2
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Hidden to output layer
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Hidden to output layer

O = g(o)
g '(o) = (1− g(o)) ⋅ g(o)

= (1−O) ⋅O

∂E
∂wj

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂wj

= (O− t) ⋅ (1−O) ⋅O ⋅H j

= (O− t) ⋅ g '(o) ⋅H j



Input to hidden layer

∂E
∂vjk

=
∂E(O(o(H j (hj (vjk ))))

∂vjk

=
∂E
∂O

⋅
∂O
∂o

⋅
∂o
∂H j

⋅
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∂hj
⋅
∂hj
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= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj ) ⋅ Ik



Summary

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj ) ⋅ Ik



Or

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj ) ⋅ Ik = δ ⋅wj ⋅ g '(hj ) ⋅ Ik

δ = (O− t) ⋅ g '(o)



Or

∂E
∂wj

= δ ⋅H j = δ ⋅ x[1][ j]

∂E
∂vjk

= δ ⋅wj ⋅ g '(hj ) ⋅ Ik = δ ⋅wj ⋅ x[1][ j]⋅ (1− x[1][ j]) ⋅ Ik

δ = (O− t) ⋅ g '(o) = (x[2][i]− ti ) ⋅ x[2][i]⋅ (1− x[2][i])

Ii=X[0][k]

Hj=X[1][j]

Oi=X[2][i]



Can you do it your self?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2
H2

h1
H1

o
O

I1=1 I2=1 Δwj = −ε ⋅
∂E
∂wj

;Δvjk = −ε ⋅
∂E
∂vjk

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j

∂E
∂vjk

= (O− t) ⋅ g '(o) ⋅wj ⋅ g '(hj ) ⋅ Ik

g '(x) = (1− g(x)) ⋅ g(x)
O = g(o)

What is the output (O) from the network?
What are the Dwij and Dvjk values if the 
target value is 0 and e=0.5?



Can you do it your self (e=0.5). 
Has the error decreased?

v22=1
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v21=-1

w1=-1 w2=1

h2=
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€ 

Δw1 = ??
Δw2 = ??

€ 
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Δv12 = ??
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Δv22 = ??

v22=.

v12=
V11=
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Before After



h1=2
H1=0.88

Can you do it your self (e=0.5). 
Has the error decreased?
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Can you do it your self?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=0
H2=0.5

h1=2
H1=0.88

o=-0.38
O=0.41

I1=1 I2=1

• What is the output (O) 
from the network?
• What are the Dwij and 
Dvjk values if the target 
value is 0?

Δwj = −ε ⋅
∂E
∂wj

;Δvjk = −ε ⋅
∂E
∂vjk

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

δ = (O− t) ⋅ g '(o) = 0.41⋅0.41⋅ (1− 0.41) = 0.099
Δw1 = −ε ⋅δ ⋅0.88 = −ε ⋅0.087
Δw2 = −ε ⋅δ ⋅0.5= −ε ⋅0.050

∂E
∂vjk

= g '(hj ) ⋅ Ik ⋅ (O− t) ⋅ g '(o) ⋅wj

Δv11 = −ε ⋅H1 ⋅ (1−H1) ⋅1⋅δ ⋅ (−1) = ε ⋅0.01
Δv12 = Δv11
Δv21 = −ε ⋅H2 ⋅ (1−H2 ) ⋅1⋅δ ⋅1= −ε ⋅0.02
Δv22 = Δv21



Can you do it your self (e=0.5). 
Has the error decreased?

v22=1
v12=1

v11=1
v21=-1

w1=-1 w2=1

h2=0
H2=0.5

h1=2
H1=0.88

o=-0.38
O=0.41

I1=1 I2=1

€ 

Δw1 = −ε ⋅δ ⋅ 0.88 = −ε ⋅ 0.087
Δw2 = −ε ⋅δ ⋅ 0.5 = −ε ⋅ 0.050

€ 

Δv11 = −ε ⋅H1 ⋅ (1−H1) ⋅1⋅ δ ⋅ (−1) = ε ⋅ 0.01
Δv12 = Δv11
Δv21 = −ε ⋅H2 ⋅ (1−H2) ⋅1⋅ δ ⋅1= −ε ⋅ 0.02
Δv22 = Δv21

v22=.0.99
v12=1.005

v11=1.005
v21=-1.01

w1=-1.043 w2=0.975

h2=-0.02
H2=0.495

h1=2.01
H1=0.882

o=-0.44
O=0.39

I1=1 I2=1



Sequence encoding

∂E
∂vjk

= δ ⋅wj ⋅ g '(hj ) ⋅ Ik = δ ⋅wj ⋅ x[1][ j]⋅ (1− x[1][ j]) ⋅ Ik

• Change in weight is linearly dependent on 
input value

• “True” sparse encoding (i.e 1/0) is 
therefore highly inefficient

• Sparse is most often encoded as
– +1/-1 or 0.9/0.05



Sequence encoding - rescaling

• Rescaling the input values

∂E
∂wj

= (O− t) ⋅ g '(o) ⋅H j = δ ⋅H j

∂E
∂vjk

= g '(hj ) ⋅ Ik ⋅ (O− t) ⋅ g '(o) ⋅wj = g '(hj ) ⋅ Ik ⋅δ ⋅wj

δ = (O− t) ⋅ g '(o)

If the input (o or h) is too 
large or too small, g´ is 
zero and the weights are 
not changed. Optimal 
performance is when o,h
are close to 0.5



Training and error reduction

e



Training and error reduction

e



Training and error reduction

e
Size matters



Demo

• http://playground.tensorflow.org/

http://playground.tensorflow.org/


Do hidden neurons matter?

• The environment 
matters   

NetMHCpan



Context matters
FMIDWILDA YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.89 A0201
FMIDWILDA YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.08 A0101
DSDGSFFLY YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.08 A0201
DSDGSFFLY YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY 0.85 A0101



Summary

• Gradient decent is used to determine the 
updates for the synapses in the neural network

• Some relatively simple math defines the 
gradients
– Networks without hidden layers can be solved on the 

back of an envelope (SMM exercise)
– Hidden layers are a bit more complex, but still ok

• Always train networks using a test set to stop 
training
– Be careful when reporting predictive performance

• Use “nested” cross-validation for small data sets
• And hidden neurons do matter (sometimes)



And some more stuff for the long 
cold and rainy summer nights
• Can it maybe be made differently?

€ 

E =
1
α
⋅ (O− t)α



Predicting accuracy

• Can it be made differently?

€ 

E =
1
2
⋅ (O1 − t)

2 ⋅O2 + λ ⋅ (1−O2)

Reliability



• Identification of position specific 
receptor ligand interactions by use of 
artificial neural network decomposition. 
An investigation of interactions in the 
MHC:peptide system

Master thesis’ by Frederik Otzen Bagger 
and Piotr Chmura

Making sense of ANN weights



Making sense of ANN weights



Making sense of ANN weights



Making sense of ANN weights



Making sense of ANN weights



Making sense of ANN weights



Making sense of ANN weights



Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks



Deep(er) Network architecture
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Deeper Network architecture
Il Input layer, l

1. Hidden layer, k

Output layer

h1
k

H1
k

h3

H3

ukl

wj

2. Hidden layer, j

vjk
h2

j

H2
j

∂E
∂wj

=
∂E(H 3(h3(wj )))

∂wj

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅
∂h3

∂wj

= (H 3 − t) ⋅ g '(h3) ⋅H j
2



Network architecture (hidden to hidden)

∂E
∂vjk

=
∂E
∂H 3 ⋅

∂H 3

∂h3
⋅
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∂H
j
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∂H

j

2

∂h
j

2 ⋅
∂h

j

2

∂vjk
= (H 3 − t) ⋅ g '(h3) ⋅wj ⋅ g '(hj

2 ) ⋅Hk
1



Network architecture (input to hidden)
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Network architecture (input to hidden)
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Speed. Use delta’s

h
j

q = wji
i
∑ H

i

q−1

H
i

q−1 = g(h
i

q−1)

j

k

l

dj

vjk

ukl

dk

Bishop, Christopher (1995). Neural networks for pattern recognition. Oxford: 
Clarendon Press. ISBN 0-19-853864-2.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-853864-2


Use delta’s

∂E
∂w
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∂E
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q ⋅H
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∂h3

=
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∑ ⋅
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∑ ⋅ vjk
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Hi = g(hi )



Deep learning – time is not an issue

0

50

100

150

200

250

17000 17500 18000 18500 19000 19500 20000

CP
U

 (u
)

Number of weights

17000

17500

18000

18500

19000

19500

0 1 2 3 4 5 6

#
 w

ei
gh

ts

N layer



Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks



Deep learning

http://www.slideshare.net/hammawan/deep-neural-networks


