Artificial Neural Networks 1

Morten Nielsen
Department of Health Technology, DTU

Objectives

- Neural network:
- is a black box that no one can understand
- over-predicts performance
- Overfitting - many thousand parameters fitted on few data

HUMHN

NETtalk

(T. Sejnowski and C. Rosenberg, 1987)

Mary had a little lamb

Three of the a's must be pronounced differently! Reading aloud is a context sensitive cognitive skill.

Weight matrices (PSSM)

- A weight matrix is given as

$$
W_{i j}=\log \left(p_{i j} / q_{j}\right)
$$

- where i is a position in the motif, and j an amino acid. q_{j} is the background frequency for amino acid j.

| | \boldsymbol{A} | \boldsymbol{R} | \boldsymbol{N} | \boldsymbol{D} | \boldsymbol{C} | \boldsymbol{Q} | \boldsymbol{E} | \boldsymbol{G} | \boldsymbol{H} | \boldsymbol{I} | \boldsymbol{L} | \boldsymbol{K} | \boldsymbol{M} | \boldsymbol{F} | \boldsymbol{P} | \boldsymbol{S} | \boldsymbol{T} | \boldsymbol{W} | \boldsymbol{Y} | \boldsymbol{V} |
| ---: |
| 1 | 0.6 | 0.4 | -3.5 | -2.4 | -0.4 | -1.9 | -2.7 | 0.3 | -1.1 | 1.0 | 0.3 | 0.0 | 1.4 | 1.2 | -2.7 | 1.4 | -1.2 | -2.0 | 1.1 | 0.7 |
| 2 | -1.6 | -6.6 | -6.5 | -5.4 | -2.5 | -4.0 | -4.7 | -3.7 | -6.3 | 1.0 | 5.1 | -3.7 | 3.1 | -4.2 | -4.3 | -4.2 | -0.2 | -5.9 | -3.8 | 0.4 |
| 3 | 0.2 | -1.3 | 0.1 | 1.5 | 0.0 | -1.8 | -3.3 | 0.4 | 0.5 | -1.0 | 0.3 | -2.5 | 1.2 | 1.0 | -0.1 | -0.3 | -0.5 | 3.4 | 1.6 | 0.0 |
| 4 | -0.1 | -0.1 | -2.0 | 2.0 | -1.6 | 0.5 | 0.8 | 2.0 | -3.3 | 0.1 | -1.7 | -1.0 | -2.2 | -1.6 | 1.7 | -0.6 | -0.2 | 1.3 | -6.8 | -0.7 |
| 5 | -1.6 | -0.1 | 0.1 | -2.2 | -1.2 | 0.4 | -0.5 | 1.9 | 1.2 | -2.2 | -0.5 | -1.3 | -2.2 | 1.7 | 1.2 | -2.5 | -0.1 | 1.7 | 1.5 | 1.0 |
| 6 | -0.7 | -1.4 | -1.0 | -2.3 | 1.1 | -1.3 | -1.4 | -0.2 | -1.0 | 1.8 | 0.8 | -1.9 | 0.2 | 1.0 | -0.4 | -0.6 | 0.4 | -0.5 | -0.0 | 2.1 |
| 7 | 1.1 | -3.8 | -0.2 | -1.3 | 1.3 | -0.3 | -1.3 | -1.4 | 2.1 | 0.6 | 0.7 | -5.0 | 1.1 | 0.9 | 1.3 | -0.5 | -0.9 | 2.9 | -0.4 | 0.5 |
| 8 | -2.2 | 1.0 | -0.8 | -2.9 | -1.4 | 0.4 | 0.1 | -0.4 | 0.2 | -0.0 | 1.1 | -0.5 | -0.5 | 0.7 | -0.3 | 0.8 | 0.8 | -0.7 | 1.3 | -1.1 |
| 9 | -0.2 | -3.5 | -6.1 | -4.5 | 0.7 | -0.8 | -2.5 | -4.0 | -2.6 | 0.9 | 2.8 | -3.0 | -1.8 | -1.4 | -6.2 | -1.9 | -1.6 | -4.9 | -1.6 | 4.5 |

- W is a $L \times 20$ matrix, L is motif length

SLLPAIVEL
YLIPAIVHI
TLWVDPYEV

Biological Neural network

Biological neuron structure

Artificial neuron

Input signals
Synaptic weights

Threshold

Output signal

Transfer of biological principles to artificial neural network algorithms

- Non-linear relation between input and output
- Massively parallel information processing
- Data-driven construction of algorithms
- Ability to generalize to new data items

Linear separation by simple neural network

Two input features and one output.

$$
O= \begin{cases}1 & \text { for } w_{1} I_{1}+w_{2} I_{2}>t \\ 0 & \text { otherwise }\end{cases}
$$

Similar to SMM, except for step function!

Linear separation by simple neural network

Two input features and one output.

$$
O= \begin{cases}1 & \text { for } w_{1} I_{1}+w_{2} I_{2}>t \\ 0 & \text { otherwise }\end{cases}
$$

Equation $w_{1} I_{1}+w_{2} I_{2}=t$ is straight line in $I_{1} I_{2}$-plane:

Higher order correlations

- The effect on the binding affinity of having a given amino acid at one position can be influenced by the amino acids at other positions in the
 peptide (sequence correlations).
- Two adjacent amino acids may for example compete for the space in a pocket in the MHC molecule.
- Artificial neural networks (ANN) are ideally suited to take such correlations into account

MHC peptide binding

Abstract

SLLPAIVEL YLLPAIVHI TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAV LLDVPTAAV LLDVPTAAV LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSQV MLLSVPLLL SLLGLLVEV ALLPPINIL TLIKIQHTL HLIDYLVTS ILAPPVVKL ALFPQLVIL GILGFVFTL STNRQSGRQ GLDVLTAKV RILGAVAKV QVCERIPTI ILFGHENRV ILMEHIHKL ILDQKINEV SLAGGIIGV LLIENVASL FLLWATAEA SLPDFGISY KKREEAPSL LERPGGNEI ALSNLEVKL ALNELLQHV DLERKVESL FLGENISNF ALSDHHIYL GLSEFTEYL STAPPAHGV PLDGEYFTL GVLVGVALI RTLDKVLEV HLSTAFARV RLDSYVRSL YMNGTMSQV GILGFVFTL ILKEPVHGV ILGFVFTLT LLFGYPVYV GLSPTVWLS WLSLLVPFV FLPSDFFPS CLGGLLTMV FIAGNSAYE KLGEFYNQM KLVALGINA DLMGYIPLV RLVTLKDIV MLLAVLYCL AAGIGILTV YLEPGPVTA LLDGTATLR ITDQVPFSV KTWGQYWQV TITDQVPFS AFHHVAREL YLNKIQNSL MMRKLAILS AIMDKNIIL IMDKNIILK SMVGNWAKV SLLAPGAKQ KIFGSLAFL ELVSEFSRM KLTPLCVTL VLYRYGSFS YIGEVLVSV CINGVCWTV VMNILLQYV ILTVILGVL KVLEYVIKV FLWGPRALV GLSRYVARL FLLTRILTI HLGNVKYLV GIAGGLALL GLQDCTMLV TGAPVTYST VIYQYMDDL VLPDVFIRC VLPDVFIRC AVGIGIAVV LVVLGLLAV ALGLGLLPV GIGIGVLAA GAGIGVAVL IAGIGILAI LIVIGILIL LAGIGLIAA VDGIGILTI GAGIGVLTA AAGIGIIQI QAGIGILLA KARDPHSGH KACDPHSGH ACDPHSGHF SLYNTVATL RGPGRAFVT NLVPMVATV GLHCYEQLV PLKQHFQIV AVFDRKSDA LLDFVRFMG VLVKSPNHV GLAPPQHLI LLGRNSFEV PLTFGWCYK VLEWRFDSR TLNAWVKVV GLCTLVAML FIDSYICQV IISAVVGIL VMAGVGSPY LLWTLVVLL SVRDRLARL LLMDCSGSI CLTSTVQLV VLHDDLLEA LMWITQCFL SLLMWITQC QLSLLMWIT LLGATCMFV RLTRFLSRV YMDGTMSQV FLTPKKLQC ISNDVCAQV VKTDGNPPE SVYDFFVWL FLYGALLLA VLFSSDFRI LMWAKIGPV SLLLELEEV SLSRFSWGA YTAFTIPSI RLMKQDFSV RLPRIFCSC FLWGPRAYA RLLQETELV SLFEGIDFY SLDQSVVEL RLNMFTPYI NMFTPYIGV LMIIPLINV TLFIGSHVV SLVIVTTFV VLQWASLAV ILAKFLHWL STAPPHVNV LLLLTVLTV VVLGVVFGI ILHNGAYSL MIMVKCWMI MLGTHTMEV MLGTHTMEV SLADTNSLA LLWAARPRL GVALQTMKQ GLYDGMEHL KMVELVHFL YLQLVFGIE MLMAQEALA LMAQEALAF VYDGREHTV YLSGANLNL RMFPNAPYL EAAGIGILT TLDSQVMSL STPPPGTRV KVAELVHFL IMIGVLVGV ALCRWGLLL LLFAGVQCQ VLLCESTAV YLSTAFARV YLLEMLWRL SLDDYNHLV RTLDKVLEV GLPVEYLQV KLIANNTRV FIYAGSLSA KLVANNTRL FLDEFMEGV ALQPGTALL VLDGLDVLL SLYSFPEPE ALYVDSLFF SLLQHLIGL ELTLGEFLK MINAYLDKL AAGIGILTV FLPSDFFPS SVRDRLARL SLREWLLRI LLSAWILTA AAGIGILTV AVPDEIPPL FAYDGKDYI AAGIGILTV FLPSDFFPS AAGIGILTV FLPSDFFPS AAGIGILTV FLWGPRALV ETVSEQSNV ITLWQRPLV

Mutual information

- How is mutual information calculated?
- Information content was calculated as
- Gives information in a single position

$$
I=\sum_{a} p_{a} \log \left(\frac{p_{a}}{q_{a}}\right)
$$

- Similar relation for mutual information

- Gives mutual information between two positions

$$
I=\sum_{a, b} p_{a b} \log \left(\frac{p_{a b}}{p_{a} \cdot p_{b}}\right)
$$

Mutual information. Example

Knowing that you have G at P_{1} allows you to make an educated guess on what you will find at P_{6}.
$P\left(V_{6}\right)=4 / 10 . P\left(V_{6} \mid G_{1}\right)=1.0!$

$$
\begin{aligned}
I= & \sum_{a, b} p_{a b} \log \left(\frac{p_{a b}}{p_{a} \cdot p_{b}}\right) \\
& P\left(G_{1}\right)=2 / 10=0.2, . . \\
& P\left(\vee_{6}\right)=4 / 10=0.4 \ldots . . \\
& P\left(G_{1}, V_{6}\right)=2 / 10=0.2 \\
& P\left(G_{1}\right) \star P\left(\vee_{6}\right)=8 / 100=0.0 .8
\end{aligned}
$$

$$
\log (0.2 / 0.08)>0
$$

ALWGFFPVA
ILKEP HGV
ILGFVFTLT
LLFGYPVYV
LSPT WLS
YMNGTMSQV
ILGF FTL
WLSLL PFV
FLPSDFFPS
WVPLELRDE

Mutual information

Higher order sequence correlations

- Neural networks can learn higher order correlations!
- What does this mean?

Say that the peptide needs one and only one large amino acid in the positions P3 and P4 to fill the binding cleft

How would you formulate this to test if a peptide can bind?

$$
\begin{aligned}
& \text { S } S=>0 \\
& L S=>1 \quad \Rightarrow \quad \text { xor function } \\
& S L=>1 \\
& L L=>0
\end{aligned}
$$

Neural networks

- Neural networks can learn higher order correlations XOR

XOR function:
$00=>0$
$10=>1$
$01 \Rightarrow 1$
$11 \Rightarrow 0$

No linear function can separate the points
OR

Error estimates

Mean error: $1 / 4$

Neural networks

Linear function
$y=x_{1} \cdot v_{1}+x_{2} \cdot v_{2}$

Neural networks with a hidden layer

Neural networks

How does it work?
Ex. Input is (00)

$$
\begin{aligned}
O & =\frac{1}{1+\exp (-o)} \\
o & =\sum x_{i} \cdot w_{i}
\end{aligned}
$$

Neural networks. How does it work?

Hand out

Neural networks (1 0 \&\& 0 1)

$$
\begin{aligned}
O & =\frac{1}{1+\exp (-o)} \\
o & =\sum x_{i} \cdot w_{i}
\end{aligned}
$$

Neural networks (11)

What is going on?

$$
f_{X O R}\left(x_{1}, x_{2}\right)=-2 \cdot x_{1} \cdot x_{2}+\left(x_{1}+x_{2}\right)=-y_{2}+y_{1}
$$

XOR function:
$00=>0$
$10=>1$
$01=>1$
$11=>0$

What is going on?

$$
\begin{aligned}
& \mathcal{V}_{1}=\mathcal{X}_{1}+\mathcal{X}_{2} \\
& \mathcal{V}_{2}=2 \cdot \mathcal{X}_{1} \cdot \mathcal{X}_{2}
\end{aligned}
$$

Network with more inputs and hidden units

Background

Pattern Association

Pattern association.
Input is associated with output.
Classification, categorization, discrimination.
Goal: Find weights and thresholds.
Method: Training, not programming.
Training examples: $I_{j}^{\alpha}(\alpha=1,2, \ldots ; j=1,2, \ldots, N)$.
Desired targets: $T_{i}^{\alpha}(\alpha=1,2, \ldots ; i=1,2, \ldots, M)$.
Actual output: $O_{i}^{\alpha}(\alpha=1,2, \ldots ; i=1,2, \ldots, M)$.
Define quadratic error

$$
E=\frac{1}{2} \sum_{\alpha, i}\left(O_{i}^{\alpha}-T_{i}^{\alpha}\right)^{2}
$$

Measures least square deviation between desired result and actual output.

Minimize error by varying weights and thresholds.

$$
\delta w=-\epsilon \frac{\partial E}{\partial w}
$$

Gradient descent method.

Training and error reduction

Training and error reduction

E

$$
\delta w=-\epsilon \frac{\partial E}{\partial w}
$$

local minimum
global minimum

W

Training and error reduction

E

$$
\delta w=-\epsilon \frac{\partial E}{\partial w}
$$

Size matters
local minimum
global minimum
W

Neural network training

- A Network contains a very large set of parameters
- A network with 5 hidden neurons predicting binding for 9 meric peptides has $9 \times 20 \times 5=900$ weights
- 5 times as many weights as a matrix-based method
- Over fitting is a problem
- Stop training when test performance is optimal (use early stopping)

Neural network training. Cross validation

Cross validation
Train on 4/5 of data Test on $1 / 5$

二)
Produce 5 different neural networks each with a different prediction focus

20\%

Neural network training curve

Demo

Network training

- Encoding of sequence data
- Sparse encoding
- Blosum encoding
- Sequence profile encoding

Sparse encoding

$\begin{array}{lllllllllllllllllllll}\text { Inp Neuron } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ AAcid

A

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

BLOSUM encoding (Blosum50 matrix)

| | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
| :--- | ---: |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | 11 | 2 | -3 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |

Sequence encoding (continued)

- Sparse encoding
- v:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
- L:0 0000000100000000000
- V.L=0 (unrelated)
- Blosum encoding
- v: 0 $\mathbf{0}$ -

- $V \cdot L=0.88$ (highly related)
- $V \cdot R=-0.08$ (close to unrelated)

The Wisdom of the Crowds

- The Wisdom of Crowds. Why the Many are Smarter than the Few. James Surowiecki

One day in the fall of 1906, the British scientist Fracis Galton left his home and headed for a country fair... He believed that only a very few people had the characteristics necessary to keep societies healthy. He

Wisdom or Crowds James Surowieci
 had devoted much of his career to measuring those characteristics, in fact, in order to prove that the vast majority of people did not have them. ... Galton came across a weight-judging competition...Eight hundred people tried their luck. They were a diverse lot, butchers, farmers, clerks and many other no-experts... The crowd had guessed ... 1.197 pounds, the ox weighted 1.198

- No one single network with a particular architecture and sequence encoding scheme, will constantly perform the best
- Also for Neural network predictions will enlightened despotism fail
- For some peptides, BLOSUM encoding with a four neuron hidden layer can best predict the peptide/MHC binding, for other peptides a sparse encoded network with zero hidden neurons performs the best
- Wisdom of the Crowd
- Never use just one neural network
- Use Network ensembles

Evaluation of prediction accuracy

ENS: Ensemble of neural networks trained using sparse, Blosum, and weight matrix sequence encoding

Applications of artificial neural networks

- Talk recognition
- Prediction of protein secondary structure
- Prediction of Signal peptides
- Post translation modifications
- Glycosylation
- Phosphorylation
- Proteasomal cleavage
- MHC:peptide binding

NETtalk

(T. Sejnowski and C. Rosenberg, 1987)

Mary had a little lamb

Three of the a's must be pronounced differently! Reading aloud is a context sensitive cognitive skill.

Prediction of protein secondary

 structure

Bend

Sparse encoding of amino acid sequence windows

Why use network ensembles?

Why not select the best?

What have we learned?

- Neural networks are not so bad as their reputation
- Neural networks can deal with higher order correlations
- Be careful when training a neural network
- Over-fitting is an important issue
- Always use cross validated training

