
Immunological Bioinformatics

Ole Lund
Morten Nielsen
Claus Lundegaard
Can Keşmir
Søren Brunak

The MIT Press
Cambridge, Massachusetts
London, England

c©2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from the
publisher.

MIT press books may be purchased at special quantity discounts for
business or sales promotional use. For information please email spe-
cial_sales@mitpress.mit.edu or write to Special Sales Department, The MIT
press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Lucida by the authors and was printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Immunological bioinformatics / Ole Lund .. [et al.].
p. cm. — (Computational molecular biology)

Includes bibliographical references and index.
ISBN 0-262-12280-4 (alk. paper)
1. Immunoinformatics. I. Lund, Ole. II. Series.
QR182.2.I46I465 2005
571.9’6’0285-dc22

2005042806

Contents

Preface ix

1 Immune Systems and Systems Biology 1
1.1 Innate and Adaptive Immunity in Vertebrates 10
1.2 Antigen Processing and Presentation 11
1.3 Individualized Immune Reactivity 14

2 Contemporary Challenges to the Immune System 17
2.1 Infectious Diseases in the New Millennium 17
2.2 Major Killers in the World 17
2.3 Childhood Diseases 20
2.4 Clustering of Infectious Disease Organisms 22
2.5 Biodefense Targets 28
2.6 Cancer 30
2.7 Allergy 30
2.8 Autoimmune Diseases 31

3 Sequence Analysis in Immunology 33
3.1 Sequence Analysis 33
3.2 Alignments 34
3.3 Multiple Alignments 50
3.4 DNA Alignments 52
3.5 Molecular Evolution and Phylogeny 53
3.6 Viral Evolution and Escape: Sequence Variation 55
3.7 Prediction of Functional Features of Biological Sequences 59

4 Methods Applied in Immunological Bioinformatics 67
4.1 Simple Motifs, Motifs and Matrices 67
4.2 Information Carried by Immunogenic Sequences 70
4.3 Sequence Weighting Methods 73
4.4 Pseudocount Correction Methods 75

v

vi Contents

4.5 Weight on Pseudocount Correction 77
4.6 Position Specific Weighting 77
4.7 Gibbs Sampling 78
4.8 Hidden Markov Models 82
4.9 Artificial Neural Networks 89
4.10 Performance Measures for Prediction Methods 97
4.11 Clustering and Generation of Representative Sets 100

5 DNA Microarrays in Immunology 101
5.1 DNA Microarray Analysis 101
5.2 Clustering 104
5.3 Immunological Applications 106

6 Prediction of Cytotoxic T Cell (MHC Class I) Epitopes 109
6.1 Background and Historical Overview of Methods for Pep-

tide MHC Binding Prediction 110
6.2 MHC Class I Epitope Binding Prediction Trained on Small

Data Sets 112
6.3 Prediction of CTL Epitopes by Neural Network Methods 118
6.4 Summary of the Prediction Approach 131

7 Antigen Processing in the MHC Class I Pathway 133
7.1 The Proteasome 133
7.2 Evolution of the Immunosubunits 135
7.3 Specificity of the (Immuno)Proteasome 137
7.4 Predicting Proteasome Specificity 141
7.5 Comparison of Proteasomal Prediction Performance 145
7.6 Escape from Proteasomal Cleavage 147
7.7 Post-Proteasomal Processing of Epitopes 148
7.8 Predicting the Specificity of TAP 151
7.9 Proteasome and TAP Evolution 152

8 Prediction of Helper T Cell (MHC Class II) Epitopes 155
8.1 Prediction Methods 156
8.2 The Gibbs Sampler Method 157
8.3 Further Improvements of the Approach 170

9 Processing of MHC Class II Epitopes 173
9.1 Enzymes Involved in Generating MHC Class II Ligands 174
9.2 Selective Loading of Peptides to MHC Class II Molecules 177
9.3 Phylogenetic Analysis of the Lysosomal Proteases 178
9.4 Signs of the Specificities of Lysosomal Proteases on MHC

Class II Epitopes 180

Contents vii

9.5 Predicting the Specificity of Lysosomal Enzymes 180

10 B Cell Epitopes 185
10.1 Affinity Maturation 186
10.2 Recognition of Antigen by B cells 189
10.3 Neutralizing Antibodies 199

11 Vaccine Design 201
11.1 Categories of Vaccines 202
11.2 Polytope Vaccine: Optimizing Plasmid Design 205
11.3 Therapeutic Vaccines 207
11.4 Vaccine Market 211

12 Web-Based Tools for Vaccine Design 213
12.1 Databases of MHC Ligands 213
12.2 Prediction Servers 215

13 MHC Polymorphism 221
13.1 What Causes MHC Polymorphism? 221
13.2 MHC Supertypes 223

14 Predicting Immunogenicity: An Integrative Approach 241
14.1 Combination of MHC and Proteasome Predictions 242
14.2 Independent Contributions from TAP and Proteasome

Predictions 243
14.3 Combinations of MHC, TAP, and Proteasome Predictions 245
14.4 Validation on HIV Data Set 249
14.5 Perspectives on Data Integration 250

References 252

Chapter 3

Sequence Analysis in
Immunology

3.1 Sequence Analysis

The concept of protein families is based on the observation that, while there
are a huge number of different proteins, most of them can be grouped, on
the basis of similarities in their sequences, into a limited number of families.
Proteins or protein domains belonging to a particular family generally share
functional attributes and are derived from a common ancestor, and will most
often be the result of gene duplication events.

It is apparent, when studying protein sequence families, that some regions
have been more conserved than others during evolution. These regions are
generally important for the function of a protein and/or the maintenance of
its three-dimensional structure, or other features related to its localization or
modification. By analyzing constant and variable properties of such groups of
similar sequences, it is possible to derive a signature for a protein family or
domain, which distinguishes its members from other unrelated proteins. Here
we mention some examples of such domains that are essential to the immune
response.

The immunoglobulin-like (Ig-like) protein domain is a domain of approxi-
mately 100 residues with a fold which consists of seven to nine antiparallel β
strands. These β strands form a β-sandwich structure, consisting of three or
four antiparallel β strands on each side of the barrel, connected by a sulfide
bridge. The Ig-like domain is of special importance for the immune system. In
addition to immunoglobulin, T cell receptor and MHC molecules carry Ig-like
domains, i.e., the main players of the adaptive immune system have all Ig-like

33

34 Sequence analysis in immunology

domains. This is not a coincidence: the unique structure of this domain allows
for maximum flexibility to interact with other molecules. This property makes
the Ig-like domain one of the most widespread protein modules in the animal
kingdom. This module has been observed in a large group of related proteins
that function in cell-cell interactions or in the structural organization and reg-
ulation of muscles. The proteins in the Ig-like family consist of one or more of
these domains.

Toll-like receptors (TLRs) are a family of pattern recognition receptors that
are activated by specific components of microbes and certain host molecules.
They constitute the first line of defense against many pathogens and play a
crucial role in the function of the innate immune system.

That the field of immunology is almost as big, dispersed, and complicated
as all the rest of the biology put together is exemplified by the fact that all
the different fields of bioinformatics and sequence analysis are applied to im-
munological problems. Sequence alignment, structural biology, machine learn-
ing and predictive systems, pattern recognition, DNA microarray analysis, and
integrative systems biology are all important tools in the research of the dif-
ferent aspects of the immune system and its interaction with pathogens.

3.2 Alignments

Sequence alignment is the oldest but probably the single most important tool
in bioinformatics. Being one of the basic techniques within sequence analysis,
alignment is, though, far from simple, and the analytic tools (i.e., the computer
programs) are still not perfect. Furthermore, the question of which method
is optimal in a given situation strongly depends on which question we want
the answer to. The most common questions are: How similar (different) are
this group of sequences, and which sequences in a database are similar to a
specific query sequence. The reasoning behind the questions might, however,
be important for the choice of algorithmic solution. Why do we want to know
this? Are we searching for the function of a protein/gene, or do we want to
obtain an estimate of the evolutionary history of the protein family? Issues like
the size of database to search, and available computational resources might
also influence our selection of a tool.

3.2.1 Ungapped Pairwise Alignments

From the early days of protein and DNA sequencing it was clear that sequences
from highly related species were highly similar, but not necessarily identical.
Aligning very closely related sequences is a trivial task and can be done manu-
ally (figure 3.1 A). In cases where genes are of different sizes and the similarity

Alignments 35

A

10 20 30 40 50 60 70
humanD MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

::::::.::::::::::::::::::::.::
gi|457 MSEKKQTVDLGLLEEDDEFEEFPAEDWTGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

10 20 30 40 50 60 70

B

10 20 30 40 50 60 70
humanD ----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

....:...:::::::::::::::::::::..:::..........::....:..::..........
Anophe MSDKENKDKPKLDLGLLEEDDEFEEFPAEDWAGNKEDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK-----

10 20 30 40 50 60 70

Figure 3.1: A) The human proteasomal DSS1 subunit aligned against the zebra fish homolog
using the identity matrix. B) The human proteasomal DSS1 subunit aligned to the mosquito
homolog.

is less, alignments become more difficult to construct. In such cases it is also
of great value to have a graduation of how related sequences are, i.e., a scoring
scheme. The simplest scoring is the relative amount of identical entities, also
called % identity, or %ID. This simple approach is actually too simple as ,e.g.,
amino acids share many physical-chemical properties, which means that they
can more easily be exchanged than very unrelated amino acids. This means
that a scoring system that scores different substitutions differently, a substi-
tution matrix, is a much better approach. The most useful concept has been
to estimate how often a given amino acid is exchanged for another in already
aligned similar sequences. The most used are the percentage accepted mu-
tations (PAM) matrix [Dayhoff et al., 1978] and the blocks substitution matrix
(BLOSUM) [Henikoff and Henikoff, 1992].Mutations between different types of
nucleotides or amino acids is not the only changes that appears in sequences
during the evolution. The sequences can also loose or gain sequence entities
(deletions or insertions, respectively). This also must affect a similarity score,
but for simplicity these complications are left to later sections. The simplest
way to calculate an alignment score is to make all the possible overlaps be-
tween two sequences, and sum the number of identical amino acids in the two
sequences (ungapped alignment, figure 3.1 B).

Sequence alignment is essential to the comparative immunology field. The
main research line in this field (so far) is to discover origins of the adaptive
immune system. Thanks to the homology assessments using sequence align-
ments with mammalian equivalents of T cell receptors, MHC genes, cytokines,
and antibodies, we now know that the adaptive immune system is well devel-
oped in the oldest jawed vertebrates, the sharks [Pasquier and Flajnik, 1999].
However, whether or not jawless invertebrates were in possession of such

36 Sequence analysis in immunology

adaptive immunity remains unresolved. The lamprey, which along with its
cousin, the hagfish, is the only surviving jawless vertebrate, give immunolo-
gists a chance to pinpoint crucial aspects of the origin of the adaptive immune
system. So far the search for antibodies, T cell receptors, and genes coding
for MHC molecules has failed in these organisms. Recently, however, Pancer
et al. [2004] have identified a set of uniquely diverse proteins that are only
expressed by lamprey lymphocytes and named them variable lymphocyte re-
ceptors (VLRs). The sequence analysis of these proteins has revealed that the
VLRs consist of multiple leucine-rich repeat (LRR) modules and an invariant
stalk region that is attached to the lymphocyte plasma membrane. The re-
markable VLR diversity derives from the variation in sequence and number
of the LRR modules. The mature VLRs are thus generated through a process
of somatic DNA rearrangement in lymphocytes. These results suggest a novel
mechanism that does not involve recombinant-activating genes to generate the
large diversity that an adaptive immune system is based upon.

3.2.2 Scoring Matrices

Dayhoff et al. [1978] calculated the original PAM matrices using a database of
changes in groups of closely related proteins. From these changes they derived
the accepted types of mutations. Each change was entered into a matrix listing
all the possible amino acid changes. The relative mutability of different amino
acids was also calculated, i.e., how often a given amino acid is changed to any
other. The information about the individual kinds of mutations, and about the
relative mutability of the amino acids were then combined into one “mutation
probability matrix.”

The rows and columns of this matrix represent amino acid substitution
pairs, i.e., the probability that the amino acid of the column will be replaced
by the amino acid of the row after a given evolutionary interval. A matrix with
an evolutionary distance of 0 PAMs would have only 1s on the main diagonal
and 0s elsewhere. A matrix with an evolutionary distance of 1 PAM would
have numbers very close to 1 in the main diagonal and small numbers off
the main diagonal. One PAM would correspond to roughly a 1% divergence in
a protein (one amino acid replacement per hundred). Assuming that proteins
diverge as a result of accumulated, uncorrelated, mutations a mutational prob-
ability matrix for a protein sequence that has undergone N percent accepted
mutations, a PAM-N matrix, can be derived by multiplying the PAM-1 matrix
by itself N times. The result is a whole family of scoring matrices. Dayhoff
et al. [1978], imperically, found that for weighting purposes a 250 PAM matrix
works well. This evolutionary distance corresponds to 250 substitutions per
hundred residues (each residue can change more than once). At this distance

Alignments 37

A

A R N D C Q E G H I L K M F P S T W Y V B Z X
A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0 0 0 0
R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2 -1 0 -1
N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 2 1 0
D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 3 3 -1
C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 -4 -5 -3
Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2 1 3 -1
E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 3 3 -1
G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1 0 0 -1
H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2 1 2 -1
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4 -2 -2 -1
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 -3 -3 -1
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2 1 0 -1
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2 -2 -2 -1
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1 -4 -5 -2
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 -1 0 -1
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1 0 0 0
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0 0 -1 0
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6 -5 -6 -4
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2 -3 -4 -2
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 -2 -2 -1
B 0 -1 2 3 -4 1 3 0 1 -2 -3 1 -2 -4 -1 0 0 -5 -3 -2 3 2 -1
Z 0 0 1 3 -5 3 3 0 2 -2 -3 0 -2 -5 0 0 -1 -6 -4 -2 2 3 -1
X 0 -1 0 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 0 0 -4 -2 -1 -1 -1 -1

B

A R N D C Q E G H I L K M F P S T W Y V B Z X
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1

Figure 3.2: Substitution matrices. A) PAM250. B) BLOSUM62.

only one amino acid in five remains unchanged so the percent divergence has
increased to roughly 80%. To avoid working with very small numbers the ma-
trices actually used in sequence comparisons is logodds matrices. The odds
matrix is constructed by taking the elements of the previous matrix and divide
each component by the frequency of the replacement residue. In this way each
component now gives the odds of replacing a given amino acid with another
specified amino acid. Finally the log of this matrix is used as the weights in
the matrix. In this it is now possible to sum up the scores for all positions to
obtain the final alignment score. The PAM250 matrix is shown in Figure 3.2.

38 Sequence analysis in immunology

A

10 20 30 40 50 60 70
humanD -----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

..: . : :.:. ::. :::::::::::::::..::::.::::
Anophe MSDKENKDKPKLDLGLLEEDDEFEEFPAEDWAGNKEDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK------

10 20 30 40 50 60

B

10 20 30 40 50 60 70
humanD ----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

....:...:::::::::::::::::::::..:::..........::....:..::..........
Anophe MSDKENKDKPKLDLGLLEEDDEFEEFPAEDWAGNKEDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK-----

10 20 30 40 50 60

Figure 3.3: (A) The human proteasomal subunit aligned to the mosquito homolog using the
BLOSUM50 matrix. (B) The human proteasomal subunit aligned to the mosquito homolog using
identity scores.

The BLOSUM matrix, described by Henikoff and Henikoff [1992], is another
widely used amino acid substitution matrix. To calculate this, only very related
blocks of amino acid sequences (conserved blocks) are considered. Originally
these were taken from the BLOCKS database of prealigned sequence families
[Henikoff and Henikoff, 1991]. Now the blocks are split up further in clusters,
each containing the parts of the alignments that are more than X% conserved.
The use of these clusters leads to a BLOSUMX matrix. That is, using clusters
of down to 50% identities gives a BLOSUM50 matrix, and so forth. For every
sequence in each cluster each position is compared to the corresponding po-
sition in each sequence in every other cluster. Since it is the pairwise number
of frequencies that is calculated, the sum of all the substitutions is divided by
the number of comparisons. In this way the result is the weighted probability
that a given amino acid is exchanged for every other amino acid. In the final
matrix, actually, the log ratio of the probability is further scaled so that the
BLOSUM50 matrix is in thirds of bits, and the BLOSUM62 matrix is given in
half-bits. The BLOSUM62 matrix is shown in figure 3.2.

Since the initial PAM1 matrix is made by very similar sequences, the evo-
lutionary distances between those are very short, and most changes captured
will be single base mutations leading to particular types of amino acid sub-
stitutions, while substitutions requiring more than one base mutation will be
very rare. Even the calculations made to expand this matrix to longer evolu-
tion time cannot compensate for this [Gonnet et al., 1992] and therefore the
BLOSUM matrices perform better when used for further distance alignment.
The matrices are in a format where you can sum up the scores for each match
to obtain a total alignment score, and the alignment resulting in the highest
score is then the optimal one.

Alignments 39

3.2.3 Gap Penalties

Using the BLOSUM50 matrix to align mosquito and human proteasomeal sub-
units (figure 3.3A) gives a slightly different alignment than just using amino
acid identities (figure 3.3B). These two different alignments also reveal that
there are two parts of the proteins with a high number of identical amino
acids, but without inserting or deleting letters in one of the sequences they
cannot be aligned simultaneously. This leads obviously to the necessity of
inserting gaps in the alignments.

A gap in one sequence represents an insertion in the other sequence. First,
to avoid having gaps all over the alignment these have to be penalized just
like unmatching amino acids. This penalty (i.e., the probability that a given
amino acid will be deleted in another related sequence) cannot be derived from
the database alignments used to create the PAM and BLOSUM matrices, since
these are ungapped alignments. Instead, a general gap insertion penalty is de-
termined, usually empirically, and is often lower than the lowest match score.
Having only one score for any gap inserted is called a linear gap cost, and
will lead to the same total penalty for three single gaps at three different po-
sitions in the alignment as having a single stretch of three gaps. This does
not make sense biologically, however, since insertions and deletions often in-
volve a longer stretch of DNA in a single event. For this reason two different
gap penalties are usually included in the alignment algorithms: one penalty
for having a gap at all (gap opening penalty), and another, smaller penalty,
for extending already opened gaps. This is called an affine gap penalty and is
actually a compromise between the assumption that the insertion, or deletion,
is created by one or more events. Furthermore, it is possible to let gaps ap-
pended at the ends of the sequences not to have a penalty, since insertions at
the ends will have a much greater chance of not disrupting the function of a
protein. For a more careful discussion of how to set gap penalties, see Vingron
and Waterman [1994].

3.2.4 Alignment by Dynamic Programming

Introducing gaps greatly increases the number of different comparisons be-
tween two sequences and in the general case it is impossible to do them all.
To compensate for that, several shortcut optimization schemes have been
invented. One of the earliest schemes was developed by Needleman and
Wunsch [1970] and works for global alignments, i.e., alignments covering all
residues in both sequences. As an example, it is here described how to align
two very short sequence stretches taken from our previous proteasome align-
ment. For simplicity, we will use the identity matrix (match=1, mismatch=-1)
and a linear gap penalty of −2. Using the Needleman-Wunsch approach

40 Sequence analysis in immunology

Score matrix

Trace Matrix

Figure 3.4: Dynamic programming, global alignment. Step 1.

Alignments 41

Score matrix

Trace Matrix

Figure 3.5: Dynamic programming, global alignment. Step 2.

42 Sequence analysis in immunology

Score matrix

Trace Matrix

Figure 3.6: Dynamic programming, global alignment. Step 3.

Alignments 43

Score matrix

Trace Matrix

Figure 3.7: Dynamic programming, global alignment, final matrices (Needleman-Wunsch).

44 Sequence analysis in immunology

[Needleman and Wunsch, 1970], we first define two identical matrices with
the same number of columns as residues in sequence 1 and as many rows
as residues in sequence 2 One matrix is used to keep track of the scores and
another to keep track of our route (see figures 3.4-3.7).

• Step 1 (figure 3.4): In the upper left field of the score matrix is written
the score 0. This is the score before having aligned anything. From this
field we can move in three directions: Down corresponds to inserting a
gap in sequence 1, left to inserting a gap in sequence 2 and diagonal to
making a match. Accordingly, a step to the right is −2, a step down is
−2, and a diagonal step is +1 if the residues are identical, otherwise −1.

• Step 2 (figure 3.5): With the limits of the steps, we can easily fill in the
first row and the first column of the matrix, since these fields can only be
reached from one direction. So in the score matrix we write −2 in field
0,1, since this step corresponds to inserting a gap. In the trace matrix
we then write up in field 0,1 since this was the direction we were coming
from. In field 1,0 we write −2 in the score matrix and left in the trace
matrix.

• Step 3 (figure 3.6): Now we would like to calculate the score of field
1,1. Coming from the left we had −2 in the previous field (0,1) and will
have to add −2 for making a move to the right, inserting a gap in the
other sequence, resulting in a score of −4. We do likewise if we would
come down from field 1,0. We can now also make a diagonal move which
means a match between the two first residues. In this example they are
not identical and the match will have the score −1. Since we came from
0,0 with the score 0 the match case will result in −1. So we have the
possibility to make three different moves resulting in a score of −4, −4,
or −1, respectively. We now select the move resulting in the highest score
(i.e., −1), and we write this score in field 1,1 in the score matrix. In the
trace matrix we write diagonal in field 1,1 since this was the type of move
made to reach this score.

• Final steps: Steps 2 and 3 are repeated until both matrices are filled out
(figure 3.7). In the case that two different moves to a field result in the
same score, we select the move coming from the highest previous score
to write in the trace matrix. At any field, we will finally have a score. This
score is then the maximal alignment score you can get coming from the
upper left diagonal and to the position in the sequences matching that
field.

When the matrices are all filled out, the final alignment score is in the lower
right corner of the score matrix. In the above example the final alignment score

Alignments 45

is then −1. The score matrix has now served its purpose and is discarded, and
the alignment is reconstructed using the trace matrix. To reconstruct the align-
ment start in the lower right corner of the final trace matrix (figure 3.7). Fol-
lowing the directions written in the fields, the alignment is now reconstructed
backward. Here diagonal means a match between the two last residues in each
sequence (W match W), and a move diagonal up-left. Next field: diagonal, i.e.,
V match V and a move diagonal up-left. The present field value is now up: This
means that we introduce a gap in the first sequence to match S in the second
sequence and then move one field up in the trace matrix. The rest of the trace
is all diagonal, which means no gaps, and the resulting alignment will be

DEDEDAH-VW
KEDEEELSVW

This way to produce an alignment is called dynamic programming, and is still
used in major alignment software packages (e.g., the ALIGN tool in the FASTA
package uses the Needleman-Wunsch algorithm for global alignments). To il-
lustrate that there are differences in the resulting alignments according to
which scoring scheme is used, the above alignment using the BLOSUM62 ma-
trix in figure 3.2 and a linear gap penalty of −9 results in the following align-
ment

DEDEDA-HVW
KEDEEELSVW

So the optimal alignment is only optimal using the chosen substitution scores
and gap penalties, and there is no exact way to tell in a particular example if
one set of scores gives a more “correct” alignment than another set of scores.

3.2.5 Local Alignments and Database Searches

The global alignment scheme described above is very good for comparing and
analyzing the relationship between two selected proteins. Proteins, however,
are often comprised of different domains, where each domain may be evo-
lutionarily related to a different set of sequences. Thus when it comes to
searching for sequences it is more beneficial to only look at the parts of the
sequences that actually are related. A search is actually to make pairwise align-
ment of your query sequence to all the sequences in the database, and order
the resulting alignments by the alignment score. For this purpose Smith and
Waterman [1981] further developed the dynamic programming approach. The
Smith-Waterman algorithm is like Needleman-Wunsch, except that the traces
only continue as long as the scores are positive, Whenever a score becomes
negative it is set to 0 and the corresponding trace is empty. Using the BLO-
SUM62 substitution matrix and a linear gap penalty of −9, the score and trace

46 Sequence analysis in immunology

Score matrix

Trace Matrix

Figure 3.8: Dynamic programming, local alignment, final matrices (Smith-Waterman).

Alignments 47

matrices will appear as in Figure 3.8. Now the backtrace of the optimal local
alignment starts in the field with the highest score. There might be several
equally good alignments, and there are several ways to deal with that, depend-
ing on what the goal is. If the two equally good alignments differ in length,
one might, e.g., chose the longer. In this example the highest score is 26. This
is accidentally again in the lower right corner so the backtrace will begin here.
The backtrace will reveal that the local alignment look like this:

DEDEDAHVW
EDEEELSVW

BLAST The dynamic programming algorithm has the strength that it ensures
that the optimal alignment, will always be found, given specific gap penalties
and substitution scores. However, even with present-day computerpower this
algorithm is far too slow to search the ever-increasing sequence databases
of today. For this reason several shortcuts have been made, and one of the
most successful is implemented in the widely-used alignment package, BLAST
[Altschul et al., 1990, 1997, Altschul and Gish, 1996].

The basic BLAST algorithm consists of 3 steps:

1. Make a list of words: A list of neighbor words that have a score of at least
T (default 11 for proteins) is made for each n-mer in the query sequence.
Per default n=3 for proteins and n=11 for DNA. Any word in the query
sequence that scores positive with itself may also be included.

2. Search the database for the words on the list: The database is scanned
for hits to any of the N words on the list.

3. Extend hits: The first version of BLAST extended every hit it found. The
newer version requires two nonoverlapping hits within a distance A (de-
fault 40) of each other before it extends a hit. The extension is only
made until the score has dropped X (default 7) below the best score seen
so far. This corresponds to saying this route looks so bad that there is
no point in continuing in this direction. The locally optimal alignments
are called high-scoring segment pairs (HSPs). If the score of an HSP is
above a threshold Sg (default 22 bits) a gapped extension is attempted
using dynamic programming. To speed the calculations this phase is only
continued until the score falls Xg below the best score seen so far.

3.2.6 Expectation Values

When aligning two sequences it is not clear if a given score is really significant
(i.e., might occur by chance by a certain probability). Such a measure can be

48 Sequence analysis in immunology

Figure 3.9: Distributions of scores, when aligning a sequence to a database of unrelated se-
quences.

obtained by aligning a great number of random sequences to the original se-
quence and from the resulting score distribution calculate the probability that
a random sequence would result in a given score. This number is called the
expectation-value, or E-value. The random sequences is obtained by shuffling
the elements (nucleotides or amino acids) of the original sequence. In this way
the score distribution will not be biased by a skewed amino acid distribution
of the original sequence.

When searching through databases the question also arises whether a given
alignment score confers a relationship between the two aligned regions or not.
If we align a sequence to a database of all unrelated sequences and plot the
alignment score against how many alignments will have that score we will get
a curve like that in figure 3.9. This is called an extreme value distribution.
We can from this distribution find out how often a given alignment-score will
arise by chance. Thus the E-value is the theoretically expected number of false
hits per sequence query, and a lower E-value means a more significant hit.
Importantly, the E-value is dependent on the size of the database searched as
the chance of getting a false hit rises as the database grows.

Different alignment programs use different approaches to calculate the
E-value of a given database hit. FASTA actually makes all possible alignments,
and returns a real distribution curve (figure 3.10) and calculates the E-value

Alignments 49

opt E()
< 20 0 0:

22 0 0: one = represents 23 library sequences
24 0 0:
26 0 0:
28 0 3:*
30 0 16:*
32 7 64:= *
34 75 173:==== *
36 240 354:=========== *
38 569 586:=========================*
40 1127 817:===================================*=============
42 1379 999:===*================
44 1277 1102:===*========
46 1183 1122:==*===
48 914 1074:== *
50 733 980:================================ *
52 753 862:================================= *
54 661 736:============================= *
56 516 615:======================= *
58 536 505:=====================*==
60 365 409:================ *
62 335 328:==============*
64 273 261:===========*
66 188 206:========*
68 168 162:=======*
70 126 127:=====*
72 133 99:====*=
74 88 77:===*
76 68 60:==*
78 56 47:==*
80 41 36:=*
82 41 28:=*
84 34 22:*=
86 16 17:*
88 13 13:* inset = represents 1 library sequences
90 12 10:*
92 6 8:* :====== *
94 4 6:* :==== *
96 3 5:* :=== *
98 4 4:* :===*

100 2 3:* :==*
102 0 2:* : *
104 0 2:* : *
106 1 1:* :*
108 2 1:* :*=
110 0 1:* :*
112 2 1:* :*=
114 0 0: *
116 0 0: *
118 0 0: *

>120 0 0: *
4113207 residues in 11951 sequences
Expectation_n fit: rho(ln(x))= 5.3517+/-0.00135; mu= -2.1992+/- 0.077;
mean_var=60.8388+/-13.111, Z-trim: 5 B-trim: 3 in 1/55
Kolmogorov-Smirnov statistic: 0.0520 (N=29) at 46

Figure 3.10: Distributions of scores, from FASTA alignments of a given sequence to all sequences
in a specific database.

making a fit to this curve. BLAST, however, uses a premade empirical curve to
assign E-values to each alignment returned from a database search.

PSI-BLAST As described earlier, the scoring matrices used somehow rep-
resent the general evolutionary trends for mutations. However, in reality,
allowed mutations are very much dependent on, and constrained by their
physical context. As an example, it could be possible to insert, delete, or
exchange a number of different amino acids in a flexible loop on the surface of
a protein and still preserve the overall structure and function of the protein.

50 Sequence analysis in immunology

A R N D C Q E G H I L K M F P S T W Y V
1 I -2 -4 -5 -5 -2 -4 -4 -5 -5 6 0 -4 0 -2 -4 -4 -2 -4 -3 4
2 K -1 -1 -2 -2 -3 -1 3 -3 -2 -2 -3 4 -2 -4 -3 1 1 -4 -3 2
3 E 5 -3 -3 -3 -3 3 1 -2 -3 -3 -3 -2 -2 -4 -3 -1 -2 -4 -3 1
4 E -4 -3 2 5 -6 1 5 -4 -3 -6 -6 -2 -5 -6 -4 -2 -3 -6 -5 -5
5 H -4 2 1 1 -5 1 -2 -4 9 -5 -2 -3 -4 -4 -5 -3 -4 -5 1 -5
6 V -3 0 -4 -5 -4 -4 -2 -3 -5 1 -2 1 0 1 -4 -3 3 -5 -3 5
7 I 0 -2 -4 1 -4 -2 -4 -4 -5 1 0 -2 0 2 -5 1 -1 -5 -3 4
8 I -3 0 -5 -5 -4 -2 -5 -6 1 2 4 -4 -1 0 -5 -2 0 -3 5 -1
9 Q -2 -3 -2 -3 -5 4 -1 3 5 -5 -3 -3 -4 -2 -4 2 -1 -4 2 -2

10 A 2 -4 -4 -3 2 -3 -1 -4 -2 1 -1 -4 -3 -4 1 2 3 -5 -1 1
11 E -1 3 1 1 -1 0 1 -4 -3 -1 -3 0 3 -5 4 -1 -3 -6 -3 -1
12 F -3 -5 -5 -5 -4 -4 -4 -1 -1 1 1 -5 2 5 -1 -4 -4 -3 5 2
13 Y 3 -5 -5 -6 3 -4 -5 -2 -1 0 -4 -5 -3 3 -5 -2 -2 -2 7 1
14 L -1 -3 -4 -2 1 5 1 -1 -1 -1 1 -3 -3 1 -5 -1 -1 -2 3 -2
15 N -1 -4 4 1 5 -3 -4 2 -4 -4 -4 -3 -2 -4 -5 2 0 -5 0 0
16 P -2 4 -4 -4 -5 0 -3 3 2 -5 -4 0 -4 -3 0 1 -2 -1 5 -3
17 D -3 -2 1 5 -6 -2 2 2 -1 -2 -2 -3 -5 -4 -5 -1 2 -6 -3 -4

Figure 3.11: Example of a PSSM.

The corresponding number of allowed substitutions would very probably be
much more limited in the core — or in a secondary structure, rich — region
of the protein. So if a general substitution matrix works well, a matrix repre-
senting the specific evolutionary trend for a given position in a given protein
should work even better. As described by Altschul et al. [1997], this is actually
the case.

In the PSI-BLAST approach, first an ordinary BLAST search on the basis of
the BLOSUM62 matrix is performed against the database. Second, a position-
specific scoring matrix (PSSM) is calculated as described in chapter 4. The ma-
trix is calculated by considering the substitutions observed in pairwise align-
ments made between the query sequence and the hits that have an expectation
value below a selected threshold. Now the calculated matrix (figure 3.11), as
a representation of the query sequence, is used to search the database again.
So when the alignment score matrix is filled out, we now look in the PSSM for
a given position to find the match score between the PSSM and that particular
amino acid in the database sequence. For example, if we want to match posi-
tion 3 in the search sequence, a glutamic acid, to an alanine, the match score is
5. However, if we want to match position 4, also a glutamic acid, to an alanine,
the match score is −4. This should illustrate the higher specificity of a PSSM
as compared to ordinary substitution matrices.

3.3 Multiple Alignments

When looking at several related sequences, it is often useful and informative
to look at all the sequences in one alignment (multiple alignment). The sim-
plest approach is to align all the sequences, one by one, with a single selected
“master sequence,” and this is what can be obtained by programs like BLAST.
However, these programs make only local alignments, and often gaps and in-

Multiple Alignments 51

A

Drosophila_melanogaster MSAPDKEKEKEKEETNNKSEDLGLLEEDDEFEEFPAEDFRVGDDEEELNVWEDNWDDDNVEDDFSQQLKAHLESKKMET
Anopheles_gambiae ----------DKENKDKPKLDLGLLEEDDEFEEFPAEDWAGneDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK---
Zebrafish -----------------QTVDLGLLEEDDEFEEFPAEDWTGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
HUMAN --------------------DLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
MOUSE --------------------DLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
Xenopus_laevis --------------------DLGLLEEDDEFEEFPTEDWTGFDEDEDTHVWEDNWDDDNVEDDFSNQLRAELE------
Saccharomyces_cerevisiae ------------------------LEEDDEFEDFPIDTWANGETIkqTNIWEENWDDVEVDDDFTNELKAELDRYKRE-
Neurospora_crassa. ----DAKSTEPKPEQPVTEKKTAVLEEDDEFEDFPVDDWEAEDTeeAKHLWEESWDDDDTSDDFSAQLKEELK------

B

Drosophila_melanogaster ----MSAPDKE----KEKEKEETNNKSEDLGLLEEDDEFEEFPAEDFRVG
Anopheles_gambiae ----MS--DKEN---KDKPK-------LDLGLLEEDDEFEEFPAEDWAGN
HUMAN ----MS----------EKKQ------PVDLGLLEEDDEFEEFPAEDWAGL
MOUSE ----MS----------EKKQ------PVDLGLLEEDDEFEEFPAEDWAGL
Zebrafish ----MS----------EKKQ------TVDLGLLEEDDEFEEFPAEDWTGL
Xenopus_laevis ---MSS----------DKKP------PVDLGLLEEDDEFEEFPTEDWTGF
Neurospora_crassa. ----MASTQPKNDAKSTEPKPEQPVTEKKTAVLEEDDEFEDFPVDDWEAE
Saccharomyces_cerevisiae MSTDVAAAQAQSKIDLTKKKNE----EINKKSLEEDDEFEDFPIDTWANG

: : . ********:** : :

Drosophila_melanogaster ------DDEEELNVWEDNWDDDNVEDDFSQQLKAHLESK--KMET-
Anopheles_gambiae K-----EDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKH--K----
HUMAN ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
MOUSE ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Zebrafish ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Xenopus_laevis ------DEDEDTHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Neurospora_crassa. DTEAAKGNNEAKHLWEESWDDDDTSDDFSAQLKEELKKVEAAKKR-
Saccharomyces_cerevisiae ETIKS-NAVTQTNIWEENWDDVEVDDDFTNELKAELDRY--KRENQ

:**:.*** :..***. :*: .*.

C

HUMAN 1 ---------- ---------- ------MSEK KQPVDLGLLE EDDEFEEFPA
MOUSE 1 ---------- ---------- ------MSEK KQPVDLGLLE EDDEFEEFPA
Zebrafish 1 ---------- ---------- ------MSEK KQTVDLGLLE EDDEFEEFPA
Drosophila_m 1 ----MSapDK Ek-------E KEKEET-NNK SE--DLGLLE EDDEFEEFPA
Neurospora_c 1 ----MA--ST QPKNDAKSTE PKPEQpVTEK KTAV----LE EDDEFEDFPV
Xenopus_laev 1 m--------- ---------- -----S-SDK KPPVDLGLLE EDDEFEEFPT
Saccharomyce 1 mstdVA--AA QAQSKIDLTK KKNEEI-NKK S-------LE EDDEFEDFPI
Anopheles_ga 1 ----MS--DK ENKD------ ---------- KPKLDLGLLE EDDEFEEFPA

HUMAN 25 EDWAGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
MOUSE 25 EDWAGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
Zebrafish 25 EDWTGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
Drosophila_m 37 EDFRVGDD-- ----EEE-LN VWEDNWDDDN VEDDFSQQLK AHLES----K
Neurospora_c 41 DDWEAEDtEA AKGNNEA-KH LWEESWDDDD TSDDFSAQLK EELKKveaaK
Xenopus_laev 26 EDWTGFDE-- ----DED-TH VWEDNWDDDN VEDDFSNQLR AELEK----H
Saccharomyce 41 DTWAng--ET IKSNavtqTN IWEENWDDVE VDDDFTNELK AELDR----Y
Anopheles_ga 29 EDWAGNKE-- ----DEEeLS VWEDNWDDDN VEDDFNQQLR AQLEK----H

HUMAN 64 GYKMETS
MOUSE 64 GYKMETS
Zebrafish 64 GYKMETS
Drosophila_m 76 --KMET-
Neurospora_c 90 --Kr---
Xenopus_laev 65 GYKMETS
Saccharomyce 85 --KRENQ
Anopheles_ga 69 --K----

Figure 3.12: Multiple alignments of the proteasome DSS1 subunit from different organisms
using A) PSI-BLAST, B) ClustalW, and C) DIALIGN. Lower case letters means a part of the sequence
that is not significantly aligned.

52 Sequence analysis in immunology

sertions will be placed differently in the master sequence depending on which
other sequence it is aligned with. Another approach is to align all sequences
pairwise with all other sequences and establish the difference between every
pair. Such a map is called a distance matrix, and from this it is possible to ob-
tain an estimate of which sequences are most related (a cluster), and aligning
those first, and then align all the prealigned clusters against each other. This is
basically what is implemented in the most used multiple alignment program,
ClustalW alias ClustalX [Thompson et al., 1994]. First is calculated a score for
the alignment between each pair of the sequences. These scores are then used
to calculate phylogenetic tree, or a dendrogram, using the clustering method
UPGMA (see Chapter 5). Having calculated the dendrogram, the sequences
are aligned in larger and larger groups. Each of these alignments consists of
aligning 2 alignments, using profile alignments, which are the alignment of 2
groups of already aligned sequences. The method is an extension of the profile
method of Gribskov et al. [1987] for aligning a single sequence with an aligned
group of sequences. With a sequence-to-sequence alignment, a weight matrix
such as BLOSUM62 is used to obtain a score for a particular substitution be-
tween the pairs of aligned residues. In profile alignments, however, each of
the two input alignments are treated as a single sequence, but you calculate
the score at aligned positions as the average substitution matrix score of all
the residues in one alignment vs. all those in the other, e.g., if you have 2
alignments with I and J sequences respectively the score at any position is the
average of all the I times J scores of the residues compared separately. Any
gaps that are introduced are placed in all of the sequences of an alignment at
the same position. However, all gaps in the ends of the sequences are free.
This might give some artifacts, especially when sequences of different length
are aligned. Newer multiple alignment algorithms implemented in programs
such as T-Coffee [Notredame et al., 2000] and DIALIGN [Morgenstern, 1999]
handle these problems much better, but the algorithms behind them will not
be described in this book. Figure 3.12 is an example of the differences in the
results, using different alignment algorithms/programs. Note that PSI-BLAST
will only return local alignments, and that the result is based on pairwise align-
ments to the query sequence, i.e., no clustering has been involved.

3.4 DNA Alignments

Untill now only protein alignments have been described. The basic algorithms
and programs used for DNA alignment, however, are the same as for proteins.
DNA alignments are much more difficult since at each position, we can have
one of only four different bases as opposed to one of twenty in peptide align-
ments. So we will not have a specific substitution matrix like BLOSUM or PAM

Molecular Evolution and Phylogeny 53

but rather take a step back and use a general substitution score for any match
or mismatch but still using affine gap penalties. This makes the probabil-
ity of any given substitution equally high, and so the significance of the final
alignment will be lower. Some nucleotide matrices, however, do have differ-
ent substitution scores for transitions (Dealing with DNA/RNA sequences from
coding regions, however, gives an opportunity to shortcut the alignment by ac-
tually aligning the translation products, rather than the actual DNA sequences.
This approach has been implemented in most alignment software packages, in-
cluding FASTA (tfasta [Pearson and Lipman, 1988, Pearson, 1996]) and BLAST
(tblast [Altschul et al., 1990, Altschul and Gish, 1996]). In this basic but strong
approach, gaps in the aligned DNA sequences will only occur in multiples of
triplets. This will, however, not catch examples correctly where frameshifts
have actually happened, leading to major changes of larger or smaller parts of
the translated protein. For such investigations the programs GenA1 [Hein and
Støvlbaek, 1994, 1996] and COMBAT [Pedersen et al., 1998] can be used, but
only for pairwise alignments. For multiple alignments an automatic method
exists that will translate DNA to peptide, do the multiple alignment using DI-
ALIGN [Morgenstern, 1999], and return the final alignment at the DNA level
[Wernersson and Pedersen, 2003]. Multiple DNA alignments are especially use-
ful for investigating the evolution on the molecular level (molecular evolution).
With such alignments it is possible to examine exactly which positions in the
DNA are more or less likely to undergo mutations that survive and are trans-
ferred to the progeny. We can also calculate the chance that a given codon will
only allow mutations that will not lead to an amino acid change (silent muta-
tions or synonymous mutations) and compare it to the chance that a substitu-
tion leads to an amino acid change (nonsynonymous mutations). This ratio is
called dN/dS and an example of such a calculation is given in chapter 7.

3.5 Molecular Evolution and Phylogeny

Phylogenies reveal evolutionary relationships between organisms and specific
sequences. In recent years molecular phylogenies have started to play a ma-
jor role in epidemiological studies of pathogens. These studies provide in-
formation about where and when a virulent strain can arise. Not only hu-
man pathogens but also viral and bacterial disease-causing agents of livestock
are of importance, as such outbreaks can cause great economic loss, as well
as increase the chance of a possible cross-species infection. Recent develop-
ments of new methods for isolating, amplifying, and sequencing RNA isolated
from small samples of blood or tissue have made the molecular phylogeny of
pathogens a rapidly expanding research field. Moreover, since many pathogens
can mutate at much higher rates than eukaryotes, it is possible to obtain the

54 Sequence analysis in immunology

phylogeny of sequences that diverged only recently.
One interesting application of molecular phylogeny is represented by anal-

ysis of the origins of HIV epidemics. Exactly when simian immunodeficiency
virus (SIV) was transmitted from nonhuman primates to humans, giving rise
to the human immunodeficiency virus (HIV), is still under investigation. Ko-
rber et al. [2000] used a phylogenetic analysis of the viral sequences with a
known date of sampling to estimate the year of origin for the main group of
HIV viruses (HIV-1 M), the principal cause of acquired immunodeficiency syn-
drome (AIDS). AIDS is caused by two divergent viruses, HIV-1 and HIV-2. HIV-1
is responsible for the global pandemic, while HIV-2 has, until recently, been re-
stricted to West Africa and appears to be less virulent in its effects. SIV viruses
related to HIV have been found in many species of nonhuman primates. By an-
alyzing the molecular divergence of the envelope gene, and applying a model
which assumes constant mutation rates through time and across lineages, Kor-
ber et al. [2000] estimated that the last common ancestor of the HIV-1 M group
appeared in 1931 (with a confidence interval of 1916–1941). Using a different
molecular clock analysis, where the mutation rate is allowed to change at split-
ting events, and also when analyzing a different protein, the same estimates
were obtained. This approach only identifies when the common ancestor be-
gan to diversify; it does not identify the exact time of transmission. Still, given
this estimate, one is able to come up with more precise hypotheses about the
transmission event.

3.5.1 Phylogenetic Methods

The starting point of any phylogenetic work is a collection of sequences that
might be evolutionarily related. Such a set could be extracted from public
databases using some of the tools described previously, or it could be data
from one’s own work. These sequences must now be aligned by the use of
multiple alignment software, such as ClustalW. ClustalW also calculates a dis-
tance matrix of your sequences, i.e., the relation of each of your sequences to
the other sequences in your alignment. A way to visualize the distances in a
distance matrix is a tree-like drawing where the distances along the branches
correlates with the distances in the distance matrix. Such a drawing is called a
phylogenetic tree. One important point about trees is that they are only useful
if the described system has been under vertical evolution (i.e., no horizontal
gene transfers and recombination), otherwise a simple tree makes no sense.
To calculate the grouping and the branch lengths of such a tree, two major
approaches are applicable. One approach is optimization methods that will
find the tree that gives the optimal fit to the matrix, e.g., the minimal sum of
squared errors. Another approach is clustering methods that is related to the

Viral Evolution and Escape: Sequence Variation 55

optimization methods, but is much faster. The clustering methods, however,
do not guarantee the optimal solution.

Two major types of trees exist: rooted and unrooted trees. With rooted
trees a common ancestor point is used as the origin of the tree, no matter if
this is really scientific sane with the given data. In rooted trees the horizontal
distance from the leaves to the origin is directly proportional to the amount
of changes. Unrooted trees are used to show relations where no common an-
cestor is given, and only the evolutionary distance between the leaves can be
inferred. In both rooted and unrooted trees, the leaves are grouped in clusters.
This grouping depends heavily on the algorithm used. Some algorithms just
give one of potentially many, more or less equally probable, outputs. Other ap-
proaches actually calculate many different solutions and give the most proba-
ble outcome with some indication of how reliable a particular solution is.

As a simple example, we will investigate the phylogenetic relationship be-
tween HIV and SIV using a set consisting of 27 different gp120 protein se-
quences from isolates of HIV-1, HIV-2, chimpanzee SIV, and macaque monkey
SIV. The gp120 protein of HIV is crucial for binding of the virus particle to
target cells. It is the specific affinity of gp120 for the CD4 protein that targets
HIV to those cells of the immune system that express CD4 on their surface
(e.g., helper T lymphocytes, monocytes, and macrophages). ClustalW is used
to align the sequences (figure 3.13) and, as mentioned earlier, ClustalW also
clusters the most related sequences. The information from this clustering can
subsequently be used to produce a phylogenetic tree (figure 3.14).

The phylogenetic tree from the analysis (see figure 3.14) shows two sep-
arate clusters. One contains SIV from chimpanzee (SIVCZ) together with the
HIV-1 sequences, while the other contains SIV from macaque/sooty mangabey
together with HIV-2. This indicates that HIV-1 originated from one event where
the virus was transmitted from (presumably) chimpanzee to human, while HIV-
2 originated from a second, independent event where the virus was transmit-
ted from (presumably) macaque to human.

3.6 Viral Evolution and Escape: Sequence Variation

Coexistence of pathogens with their hosts imposes an evolutionary pressure
both for the host immune systems and the pathogens. The coexistence de-
pends on a delicate balance between the replication rate of the pathogen and
the clearance rate by the host immune response. Throughout the animal and
plant kingdoms we see several quite different strategies developed by the
host immune systems to defend themselves against intruders. Similarly, the
pathogens have developed an array of immune evasion mechanisms to escape
their elimination by the host’s immune system.

56 Sequence analysis in immunology

u08972 ILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSQNISDNAKIIIVHLNESVEINCTRPNNNTRKSINI
u08973 ILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSQNISDNAKIIIVHLNESVEINCTRPNNNTRKSINI
af042101 ILKCKDEKFNGKGLCTNVSTVQCTHGIRPVVSTQLLLNGSLAEGEVIIRSENITNNAKTIIVQLKDPVEINCTRPNNNTRKSIHI
u16372 ILKCRDTKFNGTGESMNVSTVQCTHGIRPVVSTQLLLNGSLAEEEAVIRSENFTNNIKPIIVLLKEAVAINCTRPSNNTRKSINM
u16374 ILKCRDTKFNGTGECMNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVMIRSENFTNNIKPIIVQLKESVEINCTRPSNNTRKSINM
u16375 ILKCRDTKFNGAGKCENVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKPIIVQLKKAVEINCTRPSNNTRKSINM
u16373 ILKCRDKRFNGTGPCRNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTDNVKAIIVQLNESVEINCTRPNNNTRRSIHI
af042100 ILKCRDKKFNGTGPCKGVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLNEAIAINCTRPSNSTGQSIRI
u16376 ILKCNNKTFSGKGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16382 ILKCNNKTFSGKGPCNNVSTVQCTHGIRPVVSTQLLLIGSLAEEEVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16381 ILKCNHKTFSGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16383 ILKCNNKTFSGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEEVAVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16385 ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16386 ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16377 ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNDAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16379 ILRCNNKTFNGKGPCNNISTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPSNNTRKSIPI
u16380 ILKCNNKTYNGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPSNNTRKSIPI
l22088 ILRCNDKKFNGTGPCTNVSTVQCTHGIKPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLNGSVVINCTRPSNNTRKSIHL
ay037270 ILKCNDKNFNGTGPCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEIVIKSENFTDNAKTIIVQLNKSISINCTRPNNNTRKSINI
af331424 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331423 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331425 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331430 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331431 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331432 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331433 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331427 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331428 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331429 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331426 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSNNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
u16387 ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSPQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
u16388 ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
u16378 ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
af042104 LLKCNNKTFNGKGPCTYVSTVQCTHGVKPVVSTQLLLYGSLAEEEVVIRSDNFTDNAKTIIVQLRDPVQINCTRPANNTRESIHI
af042102 ILKCNEKGFNGKGPCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIKSDNFTNNAKTIIVQLNTSVEITCVRPNNNTRRSIPI
af042106 ILKCKDKRFNGKGPCTSVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSDNFTNNAKTIIVQLSKSVEITCVRPNNNTRKSITM
af146728 ILKCNNKTFNGKGPCANISTVQCTHGIRPVVSTQLLLNGSLAEKEIVIRSDNFTDNAKSIIVQLNESVEIHCMRPNNNTRKGIYV
af042103 ILKCKDKKFNGKGLCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSDNFTNNAKTIIVQLKESVKINCTRPNNNTRKSITI
u08975 ILKCNDKKFNGTGFCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEDIVIKSENFSDNAKTIIVQLNETVKIDCIRPNNNTRKGIHM
af042105 ILKCREEDFNGTGLCKNVSTVQCTHGIRPVVSTQLLLNGSLAEKEVAIRSANFMDSNKNIIVQLNESVKISCIRPNNNTRKSMTL
 1........10........20........30........40........50........60........70........80....

u08972 GPGRAFYATGDIIGDIRQAYCNISRAQWNNTLEQIAIKLGEQFKN-KKIAFNQSSGGDPEIVMHTFNCGGEFFYCNSTELFKG
u08973 GPGRAFYATGDIIGDIRQAYCNISRAQWNNTLEQIAIKLGEQFKN-KKIAFTQSSGGDPEIVMHTFNCGGEFFYCNSTELFKG
af042101 GPGRAFYATGDIIGNIRQAYCTLNRARWNDTLKQIAEKLGEQFKN-KTIVFNQSSGGDPEIVMHSFNCGGEFFYCNSTQLFNG
u16372 GPGSAIYATGAIIGDIRQAHCNISRAKWNNTLKQIAEKLREQFN--KTIVFNRSSGGDPEIV-HSFNCGGEFFYCNSTQLFNS
u16374 GPGSAIYATGAIIGDIRQAHCNISRAKWNTTLKQI-EKLREQFN--KTIVFNRSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
u16375 GPGSAIYATGAIIGDIRQVHCNISRAKWNDTLKQIAEKLREQFN--KTIAFNRSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
u16373 GPGSAFYATGDIIGDIRQAHCNVNRAKWNNTLKQIVEKLREQFEN-KTIVFNQSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
af042100 GQRRAFYATGKIIGDIRHAHCNISGAKWDNTLQQIVNFLKEQFGNYKTIVFNQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
u16376 GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16382 GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16381 GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16383 GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16385 GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16386 GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16377 GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16379 GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGEFFYCNSTKLFNS
u16380 GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNRSSGGDPEIVMHSFNCGGEFFYCNSTKLFNS
l22088 GFGRALYATGEIIGDIRQAHCILNGTEWNKTLNQIAIKLREQFGGNKTIVFNQSSGGDPEIVMHSFNCGGEFFYCNTTQLFSG
ay037270 GPGRALYATGEIIGNIRQAHCNISATEWNNTLEQIVTKLGEQFGVNKTIIFNQSSGGDPEIVMHSFNCGGEFFYCNTTELFNS
af331424 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331423 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331425 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331430 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331431 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331432 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331433 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331427 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331428 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331429 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331426 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
u16387 GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGELFYCNTTQLFNS
u16388 GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGELFYCNTTQLFNS
u16378 GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGEFFYCNTTQLFNS
af042104 GPGRAFYAT-DIIGDIRQAHCNSSRAEWIKTLQQVVTKLKKQFGNNKTIVFNPSSGGDPEIVMHIFNCGGEFFYCNSTQLFNS
af042102 GPGRAFYTTE-IIGDIRQAYCNITKANWTDTLQKVAIKLREQFN--KTIAFKPSSGGDPEIVTHSFNCGGEFFYCNSTQLFNG
af042106 GPGRAFYTTE-IIGDIRQAYCNISKANWTDTLEQIARKLREQFEN-KTIVFKPSSGGDPEIVTHSFNCGGEFFYCNSTQLFNG
af146728 GPGRHIYATEKIVGDIRQAHCNISRTNWTSVLRQIAVKLRERFKN-KTIVFNHSSGGDPEIVRHSFNCGGEFFYCNSTQLFNS
af042103 GPGKAFYATXEIIGDIRQAHCNLSRVDWNETLRQIAIKLGEQFKKN-TIVFNPSSGGDPEIVMHSFNCGGEFFYCDSTRLFNS
u08975 GWGRTFYATGRIIGDIRQAHCNLSKVAWNRTLERIAIKLRNQFNYNNDKNFNQSSGGDPEIVMHSFNCGGEFFYCDTTHLFNS
af042105 GPGKVFYTTG-ITGDIRKAHCNISRKEWNKTLERIAIKLGEQFKNK-TIVFKPSAGGDPEIKMHSFNCGGEFFYCNTTPLFNR
 90........100.......110.......120.......130.......140.......150.......160......

Figure 3.13: ClustalW alignment of 27 HIV/SIV gp120 sequences. The output is modified with
the BOXSHADE program.

Viral Evolution and Escape: Sequence Variation 57

Figure 3.14: A rooted tree of 27 aligned HIV/SIV gp120 sequences. HV1XX=HIV-1 sequences,
HV2XX=HIV-2 sequences, SIVMX=SIV (macaque), SIVSX=SIV (sooty mangabey), SIVCZ=SIV (chim-
panzee).

We can divide the immune evasion mechanisms (mainly of viruses) broadly
into three categories that allow:

1. avoiding the humoral immune response,

2. interfering with the cellular immune response,

3. disrupting the immune effector functions, e.g., by expressing some cy-
tokines.

58 Sequence analysis in immunology

The humoral response is impaired whenever the antibody binding sites on
a protein (often on the surface) mutate in such a way that binding is no longer
possible. Especially neutralizing antibodies, i.e., the antibodies that can block
infection of the cells by the pathogen, cause a high selection pressure on the
virus to mutate. The most straightforward way of identifying such mutants
is via sequence analysis of the pathogenic samples. The first step is to align
the sequences to pinpoint which regions of the pathogen are mutating. This
may be the region that is under the strongest selection pressure by the anti-
bodies. However, it could also be areas with no constrains. Such alignments
demonstrate that the most typical examples of escape from antibody response
occur in the influenza virus and HIV. The human body can rapidly mount neu-
tralizing antibodies against the major surface protein of the influenza surface
protein, hemagglutinin. The influenza virus evades this humoral response by
two mechanisms [Gorman et al., 1992]. First, using point mutations, the vi-
ral variants can escape neutralization, but this does not cause severe disease,
since there will still be some unaltered epitopes that can be recognized. Sec-
ond, if RNA segments are exchanged between different strains, the hemagglu-
tinin protein can gain a totally different structure. In such a case, the anti-
bodies made during previous infections are no longer functional and severe
pandemics can occur [Claas and Osterhaus, 1998]. Interestingly, the phyloge-
netic analysis of the hemagglutinin protein shows that the antigenic evolution
of the influenza virus is punctuated, i.e., some mutants cause epidemics for
almost eight consecutive years, while others last only for two or three years
[Smith et al., 2004]. Since the 1960s (when the first sequences were collected)
every viral mutant has been able to cause an epidemic for at least two years,
after which enough individuals will have acquired immunity to limit the spread
significantly (herd immunity).

Similarly, the cytotoxic T lymphocyte (CTL) response can be abrogated
whenever peptide binding of MHC molecules or binding of the T cell receptor
to the MHC-peptide complex is disturbed. It is relatively difficult to observe
such escapes, because they are different for each individual, depending on her
or his MHC background. Therefore many CTL escape variants can be circulat-
ing in a host population without one becoming the dominant mutant. Only in
chronic infections like HIV and hepatitis B is it possible to find these escape
mutants in a patient. Again, for HIV we have an extensive amount of data to
analyze CTL escape mutants. Using sequence analysis it is possible to see that
escape mutations are not spread all over the viral genome, because HIV is not
able to tolerate changes equally well in all proteins. HIV has very flexible pro-
teins like the envelope protein, gp160, where up to 35% of the sequence can
be different from the wild-type virus [Gaschen et al., 2002]. On the other hand,
for some proteins, like capsid protein p24, the surface cannot tolerate point
mutations without a severe loss of viral fitness [von Schwedler et al., 2003,

Prediction of Functional Features of Biological Sequences 59

Leslie et al., 2004].
An effective vaccine should be able to target the parts of a pathogenic

genome that are quite conserved even under the above-mentioned selection
pressures. For example, given that less than a 2% amino acid change can cause
a failure in cross-reactive immunity of the influenza vaccine [Korber et al.,
2001b], it is obvious that for an HIV vaccine to use the envelope protein would
be futile. One approach to deal with such large diversity is to use the consen-
sus or the ancestral virus sequence as a vaccine. Such sequences have the ad-
vantage of being central and most similar to circulating strains. Another, safer
approach would be to design epitope vaccines, which again requires choosing
the most conserved epitopes. But the selection of such epitopes also requires
computational analysis that goes beyond what simple sequence comparison
techniques can handle, as the binding specificities are influenced by correla-
tions between amino acids present at different peptide positions. A solution
to this problem is to use machine learning techniques (see chapter 5).

3.7 Prediction of Functional Features of Biological Sequences

During experimental analysis of the immune system, proteins of unknown
function are typically being identified as key players using high-throughput
gene expression or proteomics data. The functional assignment of such im-
mune system–related proteins also often requires sequence analysis that goes
beyond what can be solved by simple sequence alignment methods. In most
genomes no more than 40 to 60% of the proteins can be assigned a functional
role based on sequence similarity to proteins with known function. Tradi-
tionally, protein function has been related directly to the 3D structure of the
protein chain of amino acids, which currently, for an arbitrary sequence, is
quite hard (in the general case, impossible) to compute. As the sequence,
in a given biochemical context, determines the structure, functional informa-
tion between two sequences can be transferred by comparing the sequence of
amino acids by aligning the two against each other. This method is fast and
powerful, but only solves part of the problem: it is still impossible to deter-
mine that two quite different sequences encode proteins with essentially the
same biochemical function.

Several different methods have been developed which do not rely on di-
rect sequence similarity, but on features which go beyond sequence-wide sim-
ilarity, such as the gene position in the genome, or integration of local or
global protein features. One such method, ProtFun, does not, like sequence
alignment, compare any two sequences, but operates in the “feature” space
of all sequences. ProtFun is therefore complementary to methods based on
alignment and the inherent, position-by-position quantification of similarity

60 Sequence analysis in immunology

between two sequences and their amino acids [Jensen et al., 2002, 2003]. This
particular method is still entirely sequence-based and does not require prior
knowledge of gene expression, gene fusion, or protein-protein interaction.

For any function assignment method, the ability to correctly predict the
functional relationship depends strongly on the function classification scheme
used. One would, e.g., not expect that a method based on coregulation of genes
will work well for a category like "enzyme," since enzymes and the genes cod-
ing for their substrates or substrate transporters often display strong coregu-
lation at the gene and protein levels.

The ProtFun approach to function prediction is based on the fact that a
protein is not alone when performing its biological task. It will have to oper-
ate using the same cellular machinery for modification and sorting as all the
other proteins do. Essential types of post-translational modifications (PTMs)
include glycosylation, phosphorylation, and cleavage of N-terminal signal pep-
tides controlling the entry to the secretory pathway, but hundreds of other
types of modification exist (a subset of these will be present in any given or-
ganism). Many of the PTMs are enabled by local consensus sequence motifs,
while others are characterized by more complex patterns of correlation be-
tween the amino acids close or far apart in the sequence.

This suggests an alternative approach to function prediction, as one may
expect that proteins performing similar functions would share some attributes
even though they are not at all related at the global level of amino acid se-
quence. As several powerful predictive methods for PTMs and localization
have been constructed, a function prediction method based on such attributes
can be applied to all proteins where the sequence is known.

3.7.1 The ProtFun Method

The ProtFun method integrates (using an artificial neural network approach;
see chapter 5 for a general introduction) many individual attribute predictions
and calculated sequence statistics (out of many more tested for discriminative
value) (see figure 3.15). The integrated method predicts functional categories
which can be defined in various ways. The method predicts, e.g., whether a se-
quence is likely to function as an enzyme, and if so, its category according to
the classes defined by the Enzyme Commission. The same scheme can be used
to predict any other set of functional classes, including highly specific ones,
such as "ligand gated ion channel." It can, for example, be used to identify hor-
mones, growth factors, receptors, and ion channels in the human genome as
defined by the Gene Ontology Consortium gene function classification scheme.
Obviously, even though such methods produce predictions with false positives
and false negatives, they can provide essential clues, e.g., to selecting an assay

Prediction of Functional Features of Biological Sequences 61

if the confidence scores are sufficiently high.
The method uses combinations of attributes as input to the neural network

for predicting the functional category of a protein. Combinations of attributes
can be selected by evaluating their discriminative value for a specific functional
category, say proteins involved in transcription or proteins being transporters.
Attributes useful for function prediction must not only correlate well with
the functional classification scheme, but must also be predictable from the
sequence with reasonable accuracy.

Interestingly, the combinations of attributes selected for a given category
also implicitly characterize a particular functional class in an entirely new way.
This type of method identifies, without any a priori ranking of their impor-
tance, the biological features relevant to a particular type of functionality, say
attributes which are discriminative for two different categories of ion channels.

The success of the method indicates that (even predicted) PTMs correlate
strongly with the functional categories and this fits well with general biologi-
cal knowledge. For proteins with “regulatory function” one of the most impor-
tant features turned out to be phosphorylation, consistent with the fact that
reversible phosphorylation is a well-known and widely used regulatory mecha-
nism. Glycosylation was also found to be a strong indicator for regulatory pro-
teins. The most important single feature for distinguishing between enzymes
and nonenzymes turned out to be predicted protein secondary structure. This
also makes sense, as enzymes are known to be overrepresented among all-
alpha proteins where the amino acid chain forms an alpha-helix structure, and
more rarely are found to be all-β proteins, where the structure is rich in β-
sheet.

3.7.2 Individual Sequence Prediction

The ProtFun method can be used to characterize the entire genome, but it is
perhaps best suited for obtaining functional hints for individual sequences for
later use in assay selection and design. As an example we can take the human
prion sequence which is being associated with the Creutzfeldt-Jacob disease.
The functionality of this protein, which seems to produce no phenotype when
knocked out in mice, was for a long time not fully understood. The ProtFun
method predicts (see figure 3.16) with high confidence that the human prion
sequence belongs to the transport and binding category, and also that it is very
unlikely to be an enzyme. Indeed, prions have now been shown to be able to
bind and transport copper, while no catalytic activity has ever been observed.
Interestingly, as the prion is a cell surface glycoprotein (expressed by neural
cells) it has a distinct pattern of post-translational modification, which most
likely contains information which can be exploited by the prediction method

62 Sequence analysis in immunology

Figure 3.15: The ProtFun neural networks that predict the function of proteins in protein feature
space. Each sequence is converted into features and then the networks (NN) integrate these
features and provide a prediction for the affinity toward different functional categories. For
different categories different protein features will have discriminatory value. During training
(using experimentally characterized data) the most discriminative features are determined for
each category.

Prediction of Functional Features of Biological Sequences 63

######### ProtFun 1.1 predictions ##########

>PRIO_HUMAN

Functional category Prob

Amino_acid_biosynthesis 0.020
Biosynthesis_of_cofactors 0.032
Cell_envelope 0.146
Cellular_processes 0.053
Central_intermediary_metabolism 0.130
Energy_metabolism 0.029
Fatty_acid_metabolism 0.017
Purines_and_pyrimidines 0.528
Regulatory_functions 0.013
Replication_and_transcription 0.020
Translation 0.035
Transport_and_binding => 0.831

Enzyme/nonenzyme Prob
Enzyme 0.250
Nonenzyme => 0.750

Enzyme class Prob
Oxidoreductase (EC 1.-.-.-) 0.070
Transferase (EC 2.-.-.-) 0.031
Hydrolase (EC 3.-.-.-) 0.057
Isomerase (EC 4.-.-.-) 0.020
Ligase (EC 5.-.-.-) 0.010
Lyase (EC 6.-.-.-) 0.017

Figure 3.16: The prediction output from the ProtFun method for the human prion protein,
PRIO_HUMAN. The method produces three types of output for functional categories: broad cel-
lular role, enzyme classes, and Gene Ontology categories, only the two first are included here for
reasons of space. The number of Gene Ontology categories predicted is growing and is currently
around 75. The numerical output can be used, for example, to select an assay, or the order in
which different assays should be selected, when confirming experimentally the function of an
uncharacterized protein. The ProtFun method is made available at www.cbs.dtu.dk/services.

for functional inference.

The neural network was not transferring functional information just by
identifying by sequence similarity from the nearest neighbor in sequence space
used to train the system, as the maximal similarity between the prion sequence
and the data set used to train and test the ProtFun method was only 14.8%
identity at the amino acid level to a proline-arginine-rich repeat protein. Pre-
dictions like these are very useful when resolving protein function, because
they can be used to generate specific hypotheses and direct laboratory experi-
ments for sequences where no information at all can be obtained by alignment.

64 Sequence analysis in immunology

3.7.3 Predicting Functional Categories for Systems Biology: the Cell
Cycle as an Example

Characterization of the immune system also requires that genes and proteins
are grouped into subsystems, where the biochemical task of each protein may
be highly different. The ProtFun method can also be used to group sequences
in this manner. As an example with relevance for the immune system, we de-
scribe here a version of the method that predicts whether a protein is encoded
by a periodically transcribed, cell cycle regulated gene, or not. The ability of a
cell to replicate itself is one of the most fundamental features of life, and also
of disease, most importantly in relation to cancers. The hundreds of genes
maintaining the cell cycle work together in a highly robust manner, making it
possible for cells to divide under many different growth conditions and other
influences from the environment. The robustness is achieved by sophisticated
regulation making the periodic gene expression highly stable. The eukary-
otic cell cycle is regulated at many levels, from transcription and translation
to posttranslational modification and targeted protein degradation. Proteins
need not only be produced, but also be removed again when no longer needed.
The cell cycle molecular machinery consists of highly diverse proteins, with
little sequence similarity.

A key technique being used to elucidate which genes are involved in a given
subsystem is the DNA microarray method (see section 5.1). This is also the
case for the cell cycle, where gene expression measurements are made during
many different time points of the cycle. Unfortunately, many of the “lists”
of genes, which have been produced in this way do not agree as much as
expected, even if these studies have produced highly valuable information
de Lichtenberg et al. [2003, 2004]. Part of the disagreement relates to dif-
ferences in experimental conditions and procedures, but a large fraction is
presumably related to basic noise problems in the DNA microarray technology
when measuring the expression level of weakly expressed genes.

The ProtFun function classification technique described above can be used
to predict, in feature space, such systems biology related categories de Lichten-
berg et al. [2003]. Not all cell cycle related genes are periodic, but many of the
key factors enabling the final formation of protein complexes are. The fact that
the method with a reasonable high performance is able to separate such two
highly diverse categories, demonstrates that many cell cycle proteins indeed
display correlations between their features, which are different from those of
other proteins. These features include phosphorylation, glycosylation, stabil-
ity and/or disposition for targeted degradation, as well as localization in the
cell.

In relation to the immune system many other sets of proteins creating a
given subsystem may also display feature based similarities that can be ex-

Prediction of Functional Features of Biological Sequences 65

ploited in a prediction approach like ProtFun. One aim is of course to identify
novel components involved, but also to discover whether such biochemically
diverse proteins share features which can be used to describe the biology be-
hind their functionality.

Chapter 4

Methods Applied in
Immunological Bioinformatics

A large variety of methods are commonly used in the field of immunological
bioinformatics. In this chapter many of these techniques are introduced. The
first section describes the powerful techniques of weight-matrix construction,
including sequence weighting and pseudocount correction. The techniques
are introduced using an example of peptide-MHC binding. In the following
sections the more advanced methods of Gibbs sampling, ANNs, and hidden
Markov models (HMMs) are introduced. The chapter concludes with a section
on performance measures for predictive systems and a short section introduc-
ing the concepts of representative data set generation.

4.1 Simple Motifs, Motifs and Matrices

In this section, we shall demonstrate how simple but reasonably accurate pre-
diction methods can be derived from a set of training data of very limited size.
The examples selected relate to peptide-MHC binding prediction, but could
equally well have been related to proteasomal cleavage, TAP binding, or any
other problem characterized by simple sequence motifs.

A collection of sequences known to contain a given binding motif can be
used to construct a simple, data-driven prediction algorithm. Table 4.1 shows
a set of peptide sequences known to bind to the HLA-A*0201 allele.

From the set of data shown in table 4.1, one can construct simple rules
defining which peptides will bind to the given HLA molecule with high affinity.
From the above example it could, e.g., be concluded that a binding motif must

67

68 Methods Applied in Immunological Bioinformatics

ALAKAAAAM
ALAKAAAAN
ALAKAAAAV
ALAKAAAAT
ALAKAAAAV
GMNERPILT
GILGFVFTM
TLNAWVKVV
KLNEPVLLL
AVVPFIVSV

Table 4.1: Small set of sequences of peptides known to bind to the HLA-A*0201 molecule.

be of the form
X1[LMIV]2X3X4X5X6X7X8[MNTV]9 , (4.1)

where Xi indicates that all amino acids are allowed at position i, and [LMIV]2
indicates that only the specified amino acids L, M, I, and V are allow at position
2. Following this approach, two peptides with T and V at position 9, respec-
tively, will be equally likely to bind. Since V is found more often than T at
position 9, one might, however, expect that the latter peptide is more likely to
bind. We will later discuss in more detail why positions 2 and 9 are of special
importance.

Using a statistical approach, such differences can be included directly in
the predictions. Based on a set of sequences, a probability matrix ppa can be
constructed, where ppa is the probability of finding amino acid a (a can be any
of the 20 amino acids) on position p (p can be 1 to 9 in this example) in the
motif. In the above example p9V = 0.4 and p9T = 0.2. This can be viewed as
a statistical model of the binding site. In this model, it is assumed that there
are no correlations between the different positions, e.g., that the amino acid
present on position 2 does not influence which amino acids are likely to be
observed on other positions among binding peptides.

The probability [also called the likelihood p(sequence|model)] of observing
a given amino acid sequence a1a2 . . . ap . . . given the model can be calculated
by multiplying the probabilities for observing amino acid a1 on position 1, a2
on position 2, etc. This product can be written as

∏

p
ppa . (4.2)

Any given amino acid sequence a1a2 . . . ap . . . may also be observed in a ran-
domly chosen protein. Furthermore, long sequences will be less likely than

Simple Motifs, Motifs and Matrices 69

short ones. The probability p(sequence|background model) of observing the
sequence in a random protein, can be written as

∏

p
qa, (4.3)

where qa is the background frequency of amino acid a on position p. The
index p has been left out on qa since it is normally taken to be equal on all
positions.

The ratio of these two likelihoods is called the odds ratio O,

O =
∏
p ppa∏
p qa

=
∏

p

ppa
qa

. (4.4)

The background amino acid frequencies qa define a so-called null model. Dif-
ferent null models can be used: the amino acid distribution in a large set of
proteins such as the Swiss-Prot database [Bairoch and Apweiler, 2000], a flat
distribution (all amino acid frequencies qa are set to 1/20), or an amino acid
distribution estimated from sequences known not to be binders (negative ex-
amples). If the odds ratio is greater than 1, the sequence is more likely given
the model than given the background model.

The odds ratio can be used to predict if a peptide is likely to bind. Mul-
tiplying many probabilities may, however, result in a very low number that
in computers are rounded off to zero (numerical underflow). To avoid this,
prediction algorithms normally use logarithms of odds ratios called log-odds
ratios.

The score S of a peptide to a motif is thus normally calculated as the sum
of the log-odds ratio

S = logk

∏

p

ppa
qa

 =

∑

p
logk

(
ppa
qa

)
, (4.5)

where ppa as above is the probability of finding amino acid a at position p
in the motif, qa is the background frequency of amino acid a, and logk is
the logarithm with base k. The scores are often normalized to half bits by
multiplying all scores by 2/ logk(2). The logarithm with base 2 of a number x
can be calculated using a logarithm with another base n (such as the natural
logarithm with base n = e or the logarithm with base n = 10) using the simple
formula log2(x) = logn(x)/ logn(2). In half-bit units, the log-odds score S is
then given as

S = 2
∑

p
log2

(
ppa
qa

)
. (4.6)

70 Methods Applied in Immunological Bioinformatics

4.2 Information Carried by Immunogenic Sequences

Once the binding motif has been described by a probability matrix ppa, a num-
ber of different calculations can be carried out characterizing the motif.

4.2.1 Entropy

The entropy of a random variable is a measure of the uncertainty of the ran-
dom variable; it is a measure of the amount of information required to describe
the random variable [Cover and Thomas, 1991]. The entropy H (also called the
Shannon entropy) of an amino acid distribution p is defined as

H(p) = −
∑

a
pa log2(pa) , (4.7)

where pa is the probability of amino acid a. Here the logarithm used has the
base of 2 and the unit of the entropy then becomes bits [Shannon, 1948]. The
entropy attains its maximal value log2(20) " 4.3 if all amino acids are equally
probable, and becomes zero if only one amino acid is observed at a given
position. We here use the definition that 0 log(0) = 0. For the data shown in
table 4.1 the entropy at position 2 is, e.g., found to be " 1.36.

4.2.2 Relative Entropy

The relative entropy can be seen as a distance between two probability distri-
butions, and is used to measure how different an amino acid distribution p is
from some background distribution q. The relative entropy is also called the
Kullback-Leibler distance D and is defined as

D(p‖q) =
∑

a
pa log2(

pa
qa
) . (4.8)

The background distribution is often taken as the distribution of amino acids
in proteins in a large database of sequences. Alternatively, q and p can be the
distributions of amino acids among sites that are known to have or not have
some property. This property could, e.g., be glycosylation, phosphorylation,
or MHC binding.

The relative entropy attains its maximal value if only the least probable
amino acid according to the background distribution is observed. The relative
entropy is non-negative and becomes zero only if p = q. It is not a true metric,
however, since it is not symmetric (D(p‖q) $= D(q‖p)) and does not satisfy the
triangle inequality (D(p‖q) $< D(p‖r)+D(r‖q)) [Cover and Thomas, 1991].

Information Carried by Immunogenic Sequences 71

4.2.3 Logo Visualization of Relative Entropy

To visualize the characteristics of binding motifs, the so-called sequence logo
technique [Schneider and Stephens, 1990] is often used. The information con-
tent at each position in the sequence motif is indicated using the height of a
column of letters, representing amino acids or nucleotides. For proteins the
information content is normally defined as the relative entropy between the
amino acid distribution in the motif, and a background distribution where all
amino acids are equally probable. This gives the following relation for the
information content:

I =
∑

a
pa log2

pa
1/20

= log2(20)+
∑

a
pa log2 pa . (4.9)

The information content is a measure of the degree of conservation and has a
value between zero (no conservation; all amino acids are equally probable) and
log2(20) " 4.3 (full conservation; only a single amino acid is observed at that
position). In the logo plot, the height of each letter within a column is propor-
tional to the frequency pa of the corresponding amino acid a at that position.
When another background distribution is used, the logos are normally called
Kullback-Leibler logos, and letters that are less frequent than the background
are displayed upside down.

In logo plots, the amino acids are normally colored according to their prop-
erties:

• Acidic [DE]: red

• Basic [HKR]: blue

• Hydrophobic [ACFILMPVW]: black

• Neutral [GNQSTY]: green

But other color schemes can be used if relevant in a given context. An example
of a logo can be seen in Figure 4.1.

4.2.4 Mutual Information

Another important quantity used for characterizing a motif is the mutual in-
formation. This quantity is a measure of correlations between different po-
sitions in a motif. The mutual information measure is in general defined as
the reduction of the uncertainty due to another random variable and is thus
a measure of the amount of information one variable contains about another.
Mutual information between two variables is defined as

I(A;B) =
∑

a

∑

b
pab log2(

pab
papb

) , (4.10)

72 Methods Applied in Immunological Bioinformatics

Figure 4.1: Logo showing the bias for peptides binding to the HLA-A*0201 molecule. Positions 2
and 9 have high information content. These are anchor positions that to a high degree determine
the binding of a peptide [Rammensee et al., 1999]. See plate 4 for color version.

where pab is the joint probability mass function (the probability of having
amino acid a in the first distribution and amino acid b in the second distribu-
tion) and

pa =
∑

b
pab , pb =

∑

a
pab . (4.11)

It can be shown that [Cover and Thomas, 1991],

I(A;B) = H(A)−H(A|B) (4.12)

where H is the entropy defined in equation(4.7). From this relation, we see that
uncorrelated variables have zero mutual information since H(A|B) = H(A)
for such variables. The mutual information attains its maximum value, H(A),
when the two variables are fully correlated, since H(A|B) = 0 in this case.
The mutual information is always non-negative. Mutual information can be
used to quantify the correlation between different positions in a protein, or
in a peptide-binding motif. Mutations in one position in a protein may, e.g.,
affect which amino acids are found at spatially close positions in the folded
protein. Mutual information can be visualized as matrix plots [Gorodkin et al.,
1999]. Figure 4.2 gives an example of a mutual information matrix plot for
peptides binding to MHC alleles within the A2 supertype. For an explanation
of supertypes, see chapter 13.

Sequence Weighting Methods 73

Figure 4.2: Mutual information plot calculated from peptides binding to MHC alleles
within the A2 supertype. The plot was made using MatrixPlot [Gorodkin et al., 1999]
(http://www.cbs.dtu.dk/services/MatrixPlot/).

4.3 Sequence Weighting Methods

In the following, we will use the logo plots to visualize some problems one
often faces when deriving a binding motif characterized by a probability matrix
ppa as described in section 4.1.

The values of ppa may be set to the frequencies fab observed in the align-
ment. There are, however, some problems with this direct approach. In figure
4.3, a logo representation of the probability matrix calculated from the pep-
tides in table 4.1 is shown. From the plot, it is clear that alanine has a very
high probability at all positions in the binding motif. The first 5 sequences in
the alignment are very similar, and may reflect a sampling bias, rather than an
actual amino acids bias in the binding motif. In such a situation, one would
therefore like to downweight identical or almost identical sequences.

74 Methods Applied in Immunological Bioinformatics

Figure 4.3: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201.

Different methods can be used to weight sequences. One method is to
cluster sequences using a so-called Hobohm algorithm [Hobohm et al., 1992].
The Hobohm algorithm (version 1) takes an ordered list of sequences as input.
From the top of the list sequences are placed on an accepted list or discarded
depending on whether they are similar (share more than X% identify to any
member on the accepted list) or not. This procedure is repeated for all se-
quences in the list. After the Hobohm reduction, the pairwise similarity in the
accept list therefore has a maximum given by the threshold used to generate
it.

This method is also used for the construction of the BLOSUM matrices
normally used by BLAST. The most commonly used clustering threshold is
62%. After the clustering, each peptide k in a cluster is assigned a weight
wk = 1/Nc , where Nc is the number of sequences in the cluster that contains
peptide k. When the amino acid frequencies are calculated, each amino acid in

Pseudocount Correction Methods 75

sequence k is weighted by wk. In the above example the first 5 peptides will
form one cluster, and each of these sequences thus contributes with a weight
of 1

5 to the probability matrix. The frequency of A at position p1 will then
be p1A = 2/6 = 0.33 as opposed to 6/10 = 0.6 found when using the raw
sequence counts.

In the Henikoff and Henikoff [1994] sequence weighting scheme, an amino
acid a on position p in sequence k contributes a weight wkp = 1/rs, where r
is the number of different amino acids at a given position (column) in the align-
ment and s the number of occurrences of amino acid a in that column. The
weight of a sequence is then assigned as the sum of the weights over all posi-
tions in the alignment. The Henikoffs’ method is fast as the computation time
only increases linearly with the number of sequences. For the Hobohm cluster-
ing algorithm, on the other hand, computation time increases as the square of
the number of sequences (depending on the similarity between the sequences).
Performing the sequence weighting using clustering generally leads to more ac-
curate results, and clustering is the suggested choice of method if the number
of sequences is limited and the calculation thus computationally feasible.

Figure 4.4 shows a logo representation of the probability matrix calculated
using clustering sequence weighting. From the figure it is apparent that the
strong alanine bias in the motif has been removed.

4.4 Pseudocount Correction Methods

Another problem with the direct approach to estimating the probability matrix
ppa is that the statistics often will be based on very few sequence examples (in
this case 10 sequences). A direct calculation of the probability p9I for observ-
ing an isoleucine on position 9 in the alignment, e.g., gives 0. This will in turn
mean that all peptides with an isoleucine on position 9 will score minus infin-
ity in equation (4.5), i.e., be predicted not to bind no matter what the rest of the
sequence is. This may be too drastic a conclusion based on only 10 sequences.
One solution to this problem is to use a pseudocount method, where prior
knowledge about the frequency of different amino acids in proteins is used.
Two strategies for pseudocount correction will be described here: Equal and
BLOSUM correction, respectively. In both cases the pseudocount frequency
gpa for amino acid a on position p in the alignment is estimated as described
by Altschul et al. [1997],

gpa =
∑

b

fpb
qb

qab =
∑

b
fpb qa|b . (4.13)

Here, fpb is the observed frequency of amino acid b on position p, qb is the
background frequency of amino acid b, qab is the frequency by which amino

76 Methods Applied in Immunological Bioinformatics

Figure 4.4: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using the clustering sequence
weighting method.

acid a is aligned to amino acid b derived from the BLOSUM substitution matrix,
and qa|b is the corresponding conditional probability. The equation shows how
the pseudo-count frequency can be calculated. The pseudocount frequency for
isoleucine at position 9 in the example in table 4.1 would, e.g., be

g9I =
∑

b
f9b qI|b = 0.3 qI|V + 0.2 qI|T . . .0.1 qI|L " 0.09 , (4.14)

where here, for simplicity, we have used the raw count values for f9b. In
real applications the sequence-weighted probabilities are normally used. The
qa|b values are taken from the BLOSUM62 substitution matrix [Henikoff and
Henikoff, 1992].

In the Equal correction, a substitution matrix with identical frequencies for
all amino acids (1/20) and all amino acid substitutions (1/400) is applied. In
this case gpa = 1/20 at all positions for all amino acids.

Weight on Pseudocount Correction 77

4.5 Weight on Pseudocount Correction

From estimated pseudocounts, and sequence-weighted observed frequencies,
the effective amino acid frequency can be calculated as [Altschul et al., 1997]

ppa =
αfpa + βgpa

α+ β . (4.15)

Here fpa is the observed frequency (calculated using sequence weighting), gpa
the pseudocount frequency, α the effective sequence number minus 1, and
β the weight on the pseudocount correction. When the sequence weighting
is performed using clustering, the effective sequence number is equal to the
number of clusters. When sequence weighting as described by Henikoff and
Henikoff [1992] is applied, the average number of different amino acids in the
alignment gives the effective sequence number. If a large number of different
sequences are available α will in general also be large and a relative low weight
will thus be put on the pseudocount frequencies. If, on the other hand, the
number of observed sequences is one, α is zero, and the effective amino acid
frequency is reduced to the pseudocount frequency gpa. If we calculate the
log-odds score S, for a G, as given by equation (4.5), G gets the score:

SG = log
gpG
qG

= log
qGG
qGqG

, (4.16)

where we have used equation (4.13) for gpa. The last log-odds score is the
BLOSUM matrix score for G−G, and we thus find that the log-odds score for a
single sequence reduces to the BLOSUM identical match score values.

Figure 4.5 shows the logo plot of the probability matrix calculated from
the sequences in table 4.1, including sequence weighting and pseudocount
correction. The figure demonstrates how the pseudocount correction allows
for probability estimates for all 20 amino acids at all positions in the motif.
Note that I is the fifth most probable amino acid at position 9, even though
this amino acid was never observed at the position in the peptide sequences.

4.6 Position Specific Weighting

In many situations prior knowledge about the importance of the different po-
sitions in the binding motif exists. Such prior knowledge can with success be
included in the search for binding motifs [Lundegaard et al., 2004, Rammensee
et al., 1997]. In figure 4.6, we show the results of such a position-specific
weighting. The figure displays the probability matrix calculated from the 10
sequences and a matrix calculated from a large set of 485 peptides. It demon-
strates how a reasonably accurate motif description can be derived from a very

78 Methods Applied in Immunological Bioinformatics

Figure 4.5: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using both the methods of se-
quence weighting and pseudocount correction.

limited set of data, using the techniques of sequence weighting, pseudocount
correction, and position-specific weighting.

4.7 Gibbs Sampling

In previous sections, we have described how a weight matrix describing a se-
quence motif can be calculated from a set of peptides of equal length. This ap-
proach is appropriate when dealing with MHC class I binding, where the length
of the binding peptides are relatively uniform. MHC class II molecules, on the
other hand, can bind peptides of very different length, and the weight-matrix
methods described up to now are hence not directly applicable to characterize
this type of motif. Here we describe a motif sampler suited to deal with such
problems.

The general problem to be solved by the motif sampler is to locate and

Gibbs Sampling 79

Figure 4.6: Left: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using the methods of sequence
weighting, pseudocount correction, and position-specific weighting. The weight on positions 2
and 9 is 3. Right: Logo representation of the probability matrix calculated from 485 peptides
known to bind HLA-A*0201.

characterize a pattern embedded within a set of N amino acids (or DNA) se-
quences. In situations where the sequence pattern is very subtle and the mo-
tif weak, this is a highly complex task, and conventional multiple sequence
alignment programs will typically fail. The Gibbs sampling method was first
described by Lawrence et al. [1993] and has been used extensively for location
of transcription factor binding sites [Thompson et al., 2003] and in the anal-
ysis of protein sequences [Lawrence et al., 1993, Neuwald et al., 1995]. The
method attempts to find an optimal local alignment of a set of N sequences

80 Methods Applied in Immunological Bioinformatics

by means of Metropolis Monte Carlo sampling [Metropolis et al., 1953] of the
alignment space. The scoringfunction guiding the Monte Carlo search is de-
fined in terms of fitness (information content) of a log-odds matrix calculated
from the alignment.

The algorithm samples possible alignments of the N sequences. For each
alignment a log-odds weight matrix is calculated as log(ppa/qa), where ppa
is the frequency of amino acid a at position p in the alignment and qa is the
background frequency of that amino acid. The values of ppa can be estimated
using sequence weighting and pseudocount correction for low counts as de-
scribed earlier in this chapter.

The fitness (energy) of an alignment is calculated as

E =
∑

p,a
Cpa log

ppa
qa

, (4.17)

where Cpa is the number of times amino acid a is observed at position p in
the alignment, ppa is the pseudocount and sequence weight corrected amino
acid frequency of amino acid b and position p in the alignment. Finally, qa
is the background frequency of amino acid a. E is equal to the sum of the
relative entropy or the Kullback-Leibler distance [Kullback and Leibler, 1951]
in the window.

The set of possible alignments is, even for a small data set, very large. For
a set of 50 peptides of length 10, the number of different alignments with
a core window of nine amino acids is 250 " 1015. This number is clearly
too large to allow for a sampling of the complete alignment space. Instead,
the Metropolis Monte Carlo algorithm is applied [Metropolis et al., 1953] to
perform an effective sampling of the alignment space.

Two distinct Monte Carlo moves are implemented in the algorithm: (1) the
single sequence move, and (2) the phase shift move. In the single sequence
move, the alignment of a sequence is shifted a randomly selected number of
positions. In the phase shift move, the window in the alignment is shifted a
randomly selected number of residues to the left or right. This latter type of
move allows the program to efficiently escape local minima. This may, e.g.,
occur if the window overlaps the most informative motif, but is not centered
on the most informative pattern.

The probability of accepting a move in the Monte Carlo sampling is defined
as

P = min(1, edE/T) , (4.18)

where dE is difference in (fitness) energy between the end and start configu-
rations and T is a scalar. Note that we seek to maximize the energy function,
hence the positive sign for dE in the equation. T is a scalar that is lowered
during the calculation. The equation implies that moves that increase E will

Gibbs Sampling 81

Figure 4.7: Example of an alignment generated by the Gibbs sampler for the DR4(B1*0401)
binding motif. The peptides were downloaded from the MHCPEP database [Brusic et al., 1998a].
Top left: Unaligned sequences. Top right: Logo for unaligned sequences. Bottom left: Sequences
aligned by Gibbs sampler. Bottom right: Logo for sequences aligned by the Gibbs sampler.
Reprinted, with permission, from Nielsen et al. [2004]. See plate 5 for color version.

always be accepted (dE > 0). On the other hand, only a fraction given by
edE/T of the moves which decrease E will be accepted. For high values of the
scalar T (T % dE) this probability is close to 1, but as T is lowered during the
calculation, the probability of accepting unfavorable moves will be reduced,
forcing the system into a state of high fitness (energy). Figure 4.7 shows a set
of sequences aligned by their N-terminal (top left) and the corresponding logo
(top right). The lower panel shows the alignment by the Gibbs sampler and the
corresponding logo. The figure shows how the Gibbs sampler has identified a
motif describing the binding to the DR4(B1*0401) allele. For more details on
the Gibbs sampler see Chapter 8.

82 Methods Applied in Immunological Bioinformatics

4.8 Hidden Markov Models

The Gibbs sampler and other weight-matrix approaches are well suited to de-
scribe sequence motifs of fixed length. For MHC class II, the peptide binding
motif is in most situations assumed to be of a fixed length of 9 amino acids.
This implies that the scoringfunction for a peptide binding to the MHC com-
plex can be written as a linear sum of 9 terms. In many situations this simple
motif description is, however, not valid. In the previous chapter, we described
how protein families, e.g, often are characterized by conserved amino acid re-
gions separated by amino acid segments of variable length. In such situations
a weight matrix approach is poorly suited to characterize the motif. HMMs, on
the other hand, provide a natural framework for describing such interrupted
motifs.

In this section, we will give a brief introduction to the HMM framework.
First, we describe the general concepts of the HMM framework through a sim-
ple example. Next the Viterbi and posterior decoding algorithms for aligning
a sequence to a HMM are explained, and finally the use of HMMs in some se-
lected biological problems is described. A detailed introduction to HMMs and
their application to sequence analysis problems may be found, e.g., in Durbin
et al. [1998] and Baldi and Brunak [2001].

4.8.1 Markov Model, Markov Chain

A Markov model consists of a set of states. Each state is associated with a
probability distribution assigning probability values to the set of possible out-
comes. A set of transition probabilities for switching between the states is
assigned. In a Markov model (or Markov chain) the outcome of an event de-
pends only on the preceding state.

An example of such a model is a B cell epitope model. Regions in the
sequence with many hydrophobic residues are less likely to be exposed on
the surface of proteins and it is therefore less likely that antibodies can bind
to these regions. In this model, we divide positions in a protein in two states:
epitopes E and non-epitopes N. We divide the 20 different amino acids in three
groups. Hydrophobic [ACFILMPVW] , uncharged polar [GNQSTY] and charged
[DEHKR]. This model is displayed in Figure 4.8. Even though this model is
highly simplified and does only capture the most simple, of the very complex,
features describing the B cell epitopes, it serves the purpose of introducing
the important concepts of an HMM.

Hidden Markov Models 83

Figure 4.8: B cell epitope model. The model has two states: Epitope E and non epitope N. In
each state, three different types of amino acids can be found Hydrophobic (H), uncharged polar
(U) and charged (C). The transition probabilities between the two states are given next to the
arrows, and the probability of each of the three types of amino acids are given for each of the
two states.

4.8.2 What is Hidden?

What is hidden in the HMM? In biology HMMs are most often used to assign a
state (epitope or non-epitope in this example) to each residue in a biological
sequence (3 types of amino acids in this example). An HMM can, however, also
be used to construct artificial sequences based on the probabilities in it. When
the model is used in this way, the outcome (often called the emissions) is a
sequence like HHHUHHCH It is not possible from the observed sequence
to establish if the model for each letter was in the epitope state or not. This
information is kept hidden by the model.

4.8.3 The Viterbi Algorithm

Even though the list of states used by the HMM to generate the observed se-
quence is hidden, it is possible to obtain an accurate estimate of the list of
states used. If we have an HMM like the one described in figure 4.8, we can
use a dynamic programming algorithm like the one described in chapter 3 to
align the observed sequence to the model and obtain the path (list of states)
that most probably will generate the observations. The dynamic programming
algorithm doing the alignment of a sequence to the HMM is called the Viterbi
algorithm.

If the highest probability Pk(xi) of a path ending in state k with observation
xi is known for all states k, then the highest probability for observation xi+1
in state l, can be found as

Pl(xi+1) = pl(xi+1)max
k
(Pk(xi)akl) , (4.19)

84 Methods Applied in Immunological Bioinformatics

where pl(xi+1) is the probability of observation xi+1 in state l, and akl is the
transition probability from state k to state l.

By using this relation recursively, one can find the path through the model
that most probably will give the observed sequence. To avoid underflow in
the computer the algorithm normally will work in log-space and calculate
logPl(xi+1) instead. In log-space the recursive equation becomes a sum, and
the numbers remain within a reasonable range.

An example of how the Viterbi algorithm is applied is given in figure 4.9.
The figure shows how the optimal path through the HMM of figure 4.8 is
calculated for a sequence of NGSLFWIA. By translating the sequence into
the three states defining hydrophobic, neutral and charged residues, we get
HHHUUUUU . In the example, we assume that the model is the non-epitope
state at the first H, which implies that is PE(H1) = −∞. The value for assign-
ing H to the state N is PN(H1) = log(0.55) = −0.26. For the next residue, the
path must come from the N state. We therefore find, PN(H2) = log(0.55) +
log(0.9) − 0.26 = −0.57, and PE(H2) = log(0.4) + log(0.1) − 0.26 = −1.66,
since aNN0.9, and aNE = 0.1. The backtracking arrows are for both the E and
the N state placed to the previous N state. For the third residue the path to
the N state can come from both the N and the E states. The value PN(H3) is
therefore found using the relation

PN(H3) = log(0.55)+max{log(0.9)− 0.57, log(0.1)− 1.66} = −0.88 (4.20)

and likewise the value PE(H3) is

PE(H3) = log(0.4)+max{log(0.1)− 0.57, log(0.9)− 1.66} = −1.97 (4.21)

In both cases the max function selects the first argument, and the backtracking
arrows are therefore for both the E and the N state assigned to the previous
N state. This procedure is repeated for all residues in the sequence, and we
obtain the result shown in Figure 4.9. With the arrows, it is indicated which
state was selected in the maxk function in each step in the recursive calcula-
tion. Repeating the calculation for all residues in the observed sequence, we
find that the highest score −4.08 is found in state E. Backtracking through
the arrows, we find the optimal path to be EEENNNNN (indicated with solid
arrows). Note that the most probable path of the sequence HHHUUUU would
have ended in the state N with a value of −3.48, and the corresponding path
would hence have been NNNNNNN. Observing a series of uncharged amino
acids thus does not necessarily mean that the epitope state was used.

4.8.4 The Forward-Backward Algorithm and Posterior Decoding

Many different paths through an HMM can give rise to the same observed se-
quence. Where the Viterbi algorithm gives the most probable path through an

Hidden Markov Models 85

Figure 4.9: Alignment of sequence HHHUUUUU to the B cell epitope model of figure 4.8. The
upper part of the figure shows the log-transformed HMM. The probabilities have been trans-
formed by taking the logarithm with base 10. The model is assumed to start in the non-epitope
state at the first H. The table in the lower part gives the logPl(xi+1) values for the different
observations in the N (non epitope), and E (epitope) states, respectively. The arrows show the
backtracking pointers. The solid arrows give the optimal path, the dotted arrows denote the
suboptimal path. The upper two rows in the table give the amino acid and three letter trans-
formed sequence, respectively . The lower row gives the most probable path found using the
Viterbi algorithm.

HMM given the observed sequence, the so-called forward algorithm calculates
the probability of the observed sequence being aligned to the HMM. This is
done by summing over all possible paths generating the observed sequence.
The forward algorithm is a dynamic programming algorithm with a recursive
formula very similar to the Viterbi equation, replacing the maximization step
with a sum [Durbin et al., 1998]. If fk(xi−1) is the probability of observing the
sequence up to and including xi−1 ending in state k, then the probability of
observing the sequence up to and including xi ending in state l can be found
using the recursive formula

fl(xi) = pl(xi)
∑

k
fk(xi−1)akl . (4.22)

Here pl(xi) is the probability of observation xi in state l, and akl is the transi-
tion probability from state k to state l.

86 Methods Applied in Immunological Bioinformatics

Another important algorithm is the posterior decoding or forward-
backward algorithm. The algorithm calculates the probability that an ob-
servation xi is aligned to the state k given the observed sequence x. The
term “posterior decoding” refers to the fact that the decoding is done af-
ter the sequence is observed. This probability can formally be written as
P(πi = k|x) and can be determined using the so-called forward-backward
algorithm [Durbin et al., 1998].

P(πi = k|x) =
fk(i)bk(i)
P(x)

. (4.23)

The term fk(i) is calculated using the forward recursive formula from before,

fk(i) = pk(xi)
∑

l
fl(xi−1)alk , (4.24)

and bk(i) is calculated using a backward recursive formula,

bk(xi) =
∑

l
aklpl(xi+1)bl(i+ 1) . (4.25)

From these relations, we see why the algorithm is called forward-backward.
fk(i) is the probability of aligning the sequence up to and including xi with
a path ending in state k, and bk(i) is the probability of aligning the sequence
xi+1 . . . xN to the HMM starting from state k. Finally P(x) is the probability of
aligning the observed sequence to the HMM.

One of the most important applications of the forward-backward algorithm
is the posterior decoding. Often many paths through the HMM will have prob-
abilities very close to the optimal path found by the Viterbi algorithm. In such
situations posterior decoding might be a more adequate algorithm to extract
properties of the observed sequence from the model. Posterior decoding gives
a list of states that most probably generate the observed sequence using the
equation

πposteriori = max
k
P(πi = k|x) , (4.26)

where P(πi = k|x) is the probability of observation xi being aligned to state
πk given the observed sequence x. Note that posterior decoding is different
from the Viterbi decoding since the list of states found by posterior decoding
need not be a legitimate path through the HMM.

4.8.5 Higher Order Hidden Markov Models

The central property of the Markov chains described until now is the fact that
the probability of an observation only depends on the previous state and that

Hidden Markov Models 87

the probability of an observed sequence, X, thus can be written as

P(X) = P(x1)P(x2|x1)P(x3|x2) · · ·P(xN|xN−1) (4.27)

where P(xi) denotes the probability of observing x at position i.
In many situations, this approximation might not be valid since the proba-

bility of an observation might depend on more than just the preceding state.
However by use of higher order Markov models, such dependences can be cap-
tured. In a Markov model of n’th order, the probability of an observation xi is
given by

P(xi) = P(xi|xi−1, . . . , xi−n) (4.28)

A second order hidden Markov model describing B cell epitopes may thus
consist of two states each with 9 possible observations HH, HU , HC , UH,
UU , UC , CH, CU , and CC . By assigning different probability values to for
instance the observationsHU , UU and CU , the model can capture higher order
correlations.

An n’th order Markov model over some alphabet is thus equivalent to a first
order Markov chain over an alphabet of n-tuples.

4.8.6 Hidden Markov Models in Immunology

Having introduced the HMM framework through a simple example, we now
turn to some relevant biological problems that are well described using HMMs.
The first is highly relevant to antigen processing, and describes how an
HMM can be designed to characterize the binding of peptides to the human
transporter associated with antigen processing (TAP). The second example
addresses a more general use of HMMs in characterizing similarities between
protein sequences, the so-called profile HMMs.

TAP Transport of the peptides into the endoplasmic reticulum is an essen-
tial step in the MHC class I presentation pathway. This task is done by TAP
molecules and a detailed description of the function of the TAP molecules is
given in chapter 7. The peptides binding to TAP have a rather broad length dis-
tribution, and peptides up to a length of 18 amino acids can be translocated
[van Endert et al., 1994]. The binding of a peptide to the TAP molecules is to
a high degree determined by the first three N-terminal positions and the last
C-terminal position in the peptide. Other positions in the peptide determine
the binding to a lesser degree. The binding of a peptide to the TAP molecules
is thus an example of a problem where the binding motif has variable length,
and hence a problem that is well described by a HMM. Figure 4.10 shows an
HMM describing peptide TAP binding. The figure highlights the important
differences and similarities between a weight matrix and an HMM. If we only

88 Methods Applied in Immunological Bioinformatics

Figure 4.10: HMM for peptide TAP binding. The model can describe binding of peptides of
different lengths to the TAP molecules. The binding motif consists of 9 amino acids. The first
three N-terminal amino acids, and the last C-terminal amino acids must be part of the binding
motif. Each state is associated with a probability distribution of matching one of the 20 amino
acids. The arrow between the states indicates the transition probabilities for switching between
the states. The amino acid probability distributions for each state are estimated using the
techniques of sequence weighting and pseudocount correction (see section 4.4).

consider alignment of 9mer peptides to the HMM, we see that no alignment
can go through the insertion states (labeled as I in the figure). In this situation
the alignment becomes a simple sum of the amino acid match scores from
each of the 9 states N1-N3, P1-P5, and C9, and the HMM is reduced to a sim-
ple weight matrix. However, if the peptide is longer than nine amino acids,
the path through the HMM must pass some insertion state, and it is clear that
such a motif could not have been characterized well by a weight matrix.

Profile Hidden Markov Models Profile HMMs are used to characterize se-
quence similarities within a family of proteins. As described in chapter 3 a
multiple alignment of protein sequences within a protein family can reveal im-
portant information about amino acids conservation, mutability, active sites,
etc.

A profile HMM provides a natural framework for compiling such informa-
tion of a multiple alignment. In figure 4.11, we show an example of a profile
HMM. The architecture of a profile HMM is very similar to the model for pep-
tide TAP binding. The model is build from a set of match states (P1-P7). These
states describe what is conserved among most sequences in the protein fam-
ily. Some sequences within a family will have amino acid insertions; others will
have amino acid deletions with respect to the motif. To allow for such varia-
tion in sequence, the profile HMM has insertion and deletion states (labeled as
I and D in the figure, respectively). The model can insert amino acids between
match states using the insertion state, and a match state can be skipped using
the deletion states.

An example of a multiple alignment was given in figure 3.12C. From this
type of alignment, one can construct a profile HMM. If we consider positions

Artificial Neural Networks 89

Figure 4.11: Profile HMM with 7 match states. Match states are shown as squares, insertion state
as diamonds, and deletion states as circles. Each match and insertion state has an associated
probability distribution for matching the 20 different amino acids. Transitions between the
different states are indicated by arrows.

in the alignment with less than 40% gaps to be match states, then all other
positions are either insertions or deletions. In the example in figure 3.12 Neu-
rospora crassa and Saccharomyces cerevisiae hence contain an insertion in po-
sition 58-64, whereas positions 32-38 in Saccharomyces cerevisiae, and posi-
tions 35-38 in Neurospora crassa are deleted. Note that we count the positions
in the alignment, not the positions in the sequence. The figure demonstrates
that insertions and deletions are distributed in a highly nonuniform manner
in the alignment. Also, it is apparent from the figure that not all positions are
equally conserved. The W in position 72 is thus fully conserved in all species,
whereas the W in position 53 is more variable. These variations in sequence
conservation and in the probabilities for insertions and deletions are naturally
described by an HMM, and profile HMMs have indeed been applied success-
fully to the identification of new and remote homolog members of families
with well-characterized protein domains [Sonnhammer et al., 1997, Karplus
et al., 1998, Durbin et al., 1998].

4.9 Artificial Neural Networks

As stated earlier the weight-matrix approach is only suitable for prediction of
a binding event in situations where the binding specificity can be represented

90 Methods Applied in Immunological Bioinformatics

independently at each position in the motif. In many (in fact most) situations
this is not the case, and this assumption can only be considered to be an ap-
proximation. In the binding of a peptide to the MHC molecule the amino acids
might, e.g., compete for the space available in the binding grove. The mutual
information in the binding motif will allow for identification of such higher-
order sequence correlations. An example of a mutual information calculation
for peptides binding to the MHC class I complex is shown in figure 4.2.

Neural networks with a hidden layer are designed to describe sequence
patterns with such higher-order correlations. Due to their ability to handle
these correlations, hundreds of different applications within bioinformatics
have been developed using this technique, and for that reason ANNs have
been enjoying a renaissance, not only in biology but also in many other data
domains.

Neural networks realize a method of computation that is vastly different
from “rule-based techniques” with strict control over the steps in the calcula-
tion from data input to output. Conceptually, neural networks, on the other
hand, use “influence” rather than control. A neural network consists of a large
number of independent computational units that can influence but not con-
trol each other’s computations. That such a system, which consists of a large
number of unintelligent units, in their biological counterparts can be made to
exhibit “intelligent” behavior is not directly obvious, but one can with some
justification use the central nervous system in support of the idea. However,
the ANNs obviously do not to any extent match the computing power and so-
phistication of biological neural systems.

ANNs are not programmed in the normal sense, but must be influenced by
data — trained — to associate patterns with each other.

The neural network algorithm most often used in bioinformatics is similar
to the network structure described by Rumelhart et al. [1991]. This network
architecture is normally called a standard, feedforward multilayer perceptron.
Other neural network architectures have also been used, but will not be de-
scribed here. The most successful of the more complex networks involves dif-
ferent kinds of feedback, such that the network calculation on a given (often
quite short) amino acid sequence segment possibly can depend on sequence
patterns present elsewhere in the sequence. When analyzing nucleotide data
the applications have typically been used also for long sequence segments,
such as the determination of whether a given nucleotide belongs to a protein
coding sequence or not. The network can in such a case be trained to take
advantage of long-range correlations hundreds of nucleotide positions apart
in a sequence.

The presentation of the neural network theory outlined below is based on
the paper by Rumelhart et al. [1991], as well as the book by Hertz et al. [1991].
The training algorithm used to produce the final network is a steepest descent

Artificial Neural Networks 91

method that learns a training set of input-output pairs by adjusting the net-
work weight parameters such that the network for each input will produce a
numerical value that is close to the desired target output (either representing
disjunct categories, or real values such as peptide binding affinities). The idea
with the network is to produce algorithms which can handle sequence corre-
lations, and also classify data in a nonlinear manner, such that small changes
in sequence input can produce large changes in output. The hope is that the
network then will be able to reproduce what is well-known in biology, namely
that many single amino acid substitutions can entirely disrupt a mechanism,
e.g., by inhibiting binding.

The feedforward neural network consists of connected computing units.
Each unit “observes” the other units’ activity through its input connections.
To each input connection, the unit attaches a weight, which is a real number
that indicates how much influence the input in question is to have on that
particular unit. The influence is calculated as the weight multiplied by the
activity of the neuron delivering the input. The weight can be negative, so an
input can have a negative influence. The neuron sums up all the influence it
receives from the other neurons and thereby achieves a measure for the total
influence it is subjected to. From this sum the neuron subtracts a threshold
value, which will be omitted from the description below, since it can be viewed
as a weight from an extra input unit, with a fixed input value of −1. The linear
sum of the inputs is then transformed through a nonlinear, sigmoidal function
to produce its output. The input layer units does not compute anything, but
merely store the network inputs; the information processing in the network
takes place in the internal, hidden layer (most often only one layer), and in
the output layer. A schematic representation of this type of neural network is
shown in figure 4.12.

4.9.1 Predicting Using Neural Networks: Conversion of Input to Out-
put

Formally the calculation in a network with one hidden layer proceeds as fol-
lows. Let the indices i, j, and k refer to the output, hidden, and input layers,
respectively. The input neurons each receive an input Ik. The input to each of
the hidden units is

hj =
∑

k
vjkIk, (4.29)

where vjk is the weight on the input k to the hidden unit j. The output from
the hidden units is

Hj = g(hj) (4.30)

92 Methods Applied in Immunological Bioinformatics

Figure 4.12: Schematic representation of a conventional feedforward neural network used in
numerous applications within bioinformatics.

where
g(x) = 1

1+ e−x (4.31)

is the sigmoidal function most often used. Note that

g′(x) = g(x)(1− g(x)) . (4.32)

Each output neuron receives the input

oi =
∑

j
wijHj , (4.33)

wherewij are the weights between the hidden and the output units to produce
the final output

Oi = g(oi) . (4.34)

Different measures of the error between the network output and the de-
sired target output can be used [Hertz et al., 1991, Bishop, 1995]. The most
simple choice is to let the error E be proportional to the sum of the squared
difference between the desired output di and the output Oi from the last layer
of neurons:

E = 1
2

∑

i
(Oi − di)2 . (4.35)

4.9.2 Training the Network by Backpropagation

One option is to update the weights by a back-propagation algorithm which
is a steepest descent method, where each weight is changed in the opposite

Artificial Neural Networks 93

direction of the gradient of the error,

∆wij = −ε
∂E
∂wij

and ∆vjk = −ε
∂E
∂vjk

. (4.36)

The change of the weights between the hidden and the output layer can be
calculated by using

∂E
∂wij

= ∂E
∂Oi

∂Oi
∂oi

∂oi
∂wij

= δiHj , (4.37)

where
δi = (Oi − di)g′(oi) . (4.38)

To calculate the change of weights between the input and the hidden layer we
use the following relations

∂E
∂vjk

= ∂E
∂Hj

∂Hj
∂vjk

, (4.39)

and
∂E
∂Hj

=
∑

i

∂E
∂oi

∂oi
∂Hj

=
∑

i

∂E
∂oi

wij , (4.40)

and
∂Hj
∂vjk

= ∂Hj
∂hj

∂hj
∂vjk

= g′(hj)Ik , (4.41)

and thus
∂E
∂vjk

= g′(hj)Ik
∑

i
δiwij . (4.42)

In the equations described here the error is backpropagated after each presen-
tation of a training example. This is called online learning. In batch, or offline,
learning, the error is summed over all training examples and thereafter back-
propagated. However, this method has proven inferior in most cases [Hertz
et al., 1991].

In figure 4.13, we give a simple example of how the weights in the neural
network are updated using backpropagation. The figure shows two configu-
rations of a neural network with two hidden neurons. The network must be
trained to learn the XOR (exclusive or) function. That is the function with the
following properties:

fXOR(0,0) = fXOR(1,1) = 0 (4.43)

fXOR(1,0) = fXOR(0,1) = 1 .

This type of input-output association is the simplest example displaying
higher-order correlation, as the two input properties are not independently

94 Methods Applied in Immunological Bioinformatics

Figure 4.13: Update of weights in a neural network using backpropagation. The figure shows
the neural network before updating the weights (left) and the network configuration after one
round of backpropagation (right). The learning rate ε in the example is equal to 0.5. Note that
this is a large value for ε. Normally the value is of the order 0.05.

linked to the categories. The “1” category is represented by input examples
where only one of the two features are allowed to be present — not both
features simultaneously. The (1,1) example from the “0” category is therefore
an “exception,” and this small data set can therefore not be handled by a
linear network without hidden units. The example may seem very simple;
still it captures the essence of the sequence properties in many binding sites,
where the two features could be charge and side chain volume, respectively.
In actual application the number of input features is typically much higher.

In the example shown in figure 4.13, we have for simplicity left out the
threshold value normally subtracted from the input to each neuron. The fig-
ure shows the neural network before updating the weights and the network
configuration after one round of backpropagation. With the example (1,1),
the network output, O, from the network with the initial weights is 0.6. This
gives the following relation for δ:

δ = (0.6− 0)g′(o) = 0.6 ·O · (1−O) = 0.15 , (4.44)

where we have used equation (4.32) for g′(o).
The change of the weights from the hidden layer to the output neuron are

updated using equation (4.37):

∆w1 = −ε 0.15 · 0.5 = −0.075ε

Artificial Neural Networks 95

∆w2 = −ε 0.15 · 0.88 = −0.13ε . (4.45)

The change of the weights in the first layer are updated using equation (4.42)

∆v11 = −ε g′(h1) · 1 · δ · (−1)
= ε H1 (1−H1) · δ
= 0.04ε

∆v21 = −ε g′(h1) · 1 · δ · (−1) = 0.04ε (4.46)

∆v12 = −ε g′(h2) · 1 · δ · 1 = −0.02ε
∆v22 = −ε g′(h2) · 1 · δ · 1 = −0.02ε .

Modifying the weights according to these values, we obtain the neural network
configuration shown to the right of figure 4.13. The network output from the
updated network is 0.57. Note that the error indeed has decreased. When the
network is trained on all four patterns of the XOR function during a number
of training cycles (including the three threshold weights), the network will in
most cases reach an optimal configuration, where the error on all four patterns
is practically zero.

Figure 4.14 demonstrates how the XOR function is learned by the neural
network. If we construct a neural network without a hidden layer this data set
cannot be learned, whereas a network with two hidden neurons learns the four
examples perfectly.

When examining the weight configuration of the fully trained network it
becomes clear how the data set from the XOR function has been learned by
the network. The XOR function can be written as

fXOR(x1, x2) = (x1 + x2)− 2x1x2 = y − z , (4.47)

where y = x1 + x2 and z = 2x1x2. From this relation, we see that the hidden
layer allows the network to linearize the problem into a sum of two terms.
The two functions y and z are encoded by the network using the properties of
the sigmoid function. If we assume for simplicity that the sigmoid function is
replaced by a step function that emits the value 1 if the input value is greater
than or equal to the threshold value and zero otherwise, then the y and z
functions can be encoded having the weights vij = 1 for all values of i and
j and the corresponding threshold values 1 and 2 for the first and second
hidden neuron, respectively. With these values for the weights and thresholds,
the first hidden neuron will emit a value of 1 if either of the input values are
1, and zero otherwise. The second hidden neuron will emit a value of 1 only
if both the input neurons are 1. Setting the weights w1 = 1, and w2 = −1, the
network is now able to encode the XOR function.

96 Methods Applied in Immunological Bioinformatics

Figure 4.14: Neural network learning curves for nonlinear patterns. The plot shows the Pearson
correlation as a function of the number of learning cycles during neural network training. The
black curve shows the learning curve for the XOR function for a neural network without hidden
neurons, and the gray curve shows the learning curve for the neural network with two hidden
neurons.

4.9.3 Sequence Encoding

To feed the neural network with sequence data the amino acids must be trans-
formed into numerical values in the input layer. A large set of different encod-
ing schemes exists. The most conventionally used is the sparse or orthogonal
encoding scheme, where each amino acid is represented as a 20- or 21-bit bi-
nary string. Alanine is represented as 10000000000000000000 and cysteine as
01000000000000000000, · · ·, where the last digit is used to represent blank,
N- and C-terminal positions in a sequence window, i.e., when a window extends
one of the ends of the sequence. Other encoding schemes take advantage of
the physical and chemical similarities between the different amino acids. One
such encoding scheme is the BLOSUM encoding, where each amino acid is en-
coded as the 20 BLOSUM matrix values for replacing the amino acid [Nielsen
et al., 2003]. A summary of other sequence encoding schemes can be found in
[Baldi and Brunak, 2001].

Performance Measures for Prediction Methods 97

Predicted positive Predicted negative Total
Actual positive TP FN AP
Actual negative FP TN AN
Total PP PN N

Table 4.2: Classification of predictions. TP: true positives (predicted positive, actual positive);
TN: true negatives (predicted negative, actual negative); FP: false positives (predicted positive,
actual negative); FN: false negatives (predicted negative, actual positive).

4.10 Performance Measures for Prediction Methods

A number of different measures are commonly used to evaluate the perfor-
mance of predictive algorithms. These measures differ according to whether
the performance of a real-valued predictor (e.g., binding affinities) or a classi-
fication is to be evaluated.

In almost all cases percentages of correctly predicted examples are not the
best indicators of the predictive performance in classification tasks, because
the number of positives often is much smaller than the number of negatives in
independent test sets. Algorithms that underpredict a lot will therefore appear
to have a high success rate, but will not be very useful.

We define a set of performance measures from a set of data with N pre-
dicted values pi and N actual (or target) values ai. The value pi is found using
a prediction method of choice, and the ai is the known corresponding target
value. By introducing a threshold ta, the N points can be divided into actual
positives AP (points with actual values ai greater than ta) and actual nega-
tives AN . Similarly, by introducing a threshold for the predicted values tp, the
points can be divided into predicted positives PP and predicted negatives PN .
These definitions are summarized in table 4.2 and will in the following be used
to define a series of different performance measures.

4.10.1 Linear Correlation Coefficient

The linear correlation coefficient, which is also called Pearson’s r , or just the
correlation coefficient, is the most widely used measure of the association be-
tween pairs of values [Press et al., 1992]. It is calculated as

c =
∑
i(ai − a)(pi − p)√∑

i(ai − a)2
√∑

i(pi − p)2
, (4.48)

where the overlined letters denote average values. This is one of the best
measures of association, but as the name indicates it works best if the actual

98 Methods Applied in Immunological Bioinformatics

and predicted values when plotted against each other fall roughly on a line. A
value of 1 corresponds to a perfect correlation and a value of −1 to a perfect
anticorrelation (when the prediction is high, the actual value is low). A value
of 0 corresponds to a random prediction.

4.10.2 Matthews Correlation Coefficient

I f all the predicted and actual values only take one of two values (normally
0 and 1) the linear correlation coefficient reduces to the Matthews correlation
coefficient [Matthews, 1975]

c = TPTN − FPFN√
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

= TPTN − FPFN√
APANPPPN

. (4.49)

As for the Pearson correlation, a value of 1 corresponds to a perfect correla-
tion.

4.10.3 Sensitivity, Specificity

Four commonly used measures are calculated by dividing the true posi-
tives and negatives by the actual and predicted positives and negatives
[Guggenmoos-Holzmann and van Houwelingen, 2000],

Sensitivity Sensitivity measures the fraction of the actual positives which are
correctly predicted: sens = TP

AP .

Specificity Specificity denotes the fraction of the actual negatives which are
correctly predicted: spec = TN

AN

PPV The positive predictive value (PPV) is the fraction of the predicted posi-
tives which are correct: PPV = TP

PP .

NPV The negative predictive value (NPV) stands for the fraction of the negative
predictions which are correct: NPV = TN

PN .

4.10.4 Receiver Operator Characteristics Curves

One problem with the above measures (except Pearson’s r) is that a thresh-
old tp must be chosen to distinguish between predicted positives and neg-
atives. When comparing two different prediction methods, one may have a
better Matthews correlation coefficient than the other. Alternatively, one may
have a higher sensitivity or a higher specificity. Such differences may be due
to the choice of thresholds and in that case the two prediction methods may

Performance Measures for Prediction Methods 99

Rank Prediction Actual TPP FPP Area
1 0.1 1 0.33 0 0
2 0.3 0 0.33 0.5 0.17
3 0.35 1 0.66 0.5 0.17
4 0.7 1 1.00 0.5 0.17
5 0.88 0 1.00 1 0.67

0.0 0.2 0.4 0.6 0.8 1.0
False positive proportion (FPP)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

itiv
e

pr
op

or
tio

n
(T

PP
)

Figure 4.15: Calculation of a ROC curve. The table on the left side of the figure indicates the
steps involved in constructing the ROC curve. The pairs of predicted and actual values must
first be sorted according to the predicted value. The value in the lower right corner is the AROC
value. In the right panel of the figure is shown the corresponding ROC curve.

be rendered identical if the threshold for one of the methods is adjusted. To
avoid such artifacts a nonparametric performance measure such as a receiver
operator characteristics (ROC) curve is generally applied.

The ROC curve is constructed by using different values of the threshold tp
to plot the false-positive proportion FPP = FP/AN = FP/(FP + TN) on the x-
axis against the true positive proportion TPP = TP/AP = TP/(TP + FN) on the
y-axis [Swets, 1988]. Figure 4.15 shows an example of how to calculate a ROC
curve and the area under the curve, AROC , which is a measure of predictive
performance. An AROC value close to 1 indicates again a very good correla-
tion; a value close to 0 indicates a negative correlation and a value of 0.5, no
correlation. A general rule of thumb is that an AROC value > 0.7 indicates a
useful prediction performance, and a value > 0.85 a good prediction. AROC
is indeed a robust measure of predictive performance. Compared with the
Matthews correlation coefficient, it has the advantage that it is independent of
the choice of tp. It is still, however, dependent on the choice of a threshold ta
for the actual values. Compared with Pearson’s correlation r it has the advan-
tage that it is nonparametric, i.e., that the actual value of the predictions is not
used in the calculations, only their ranks. This is an advantage in situations
where the predicted and actual values are related by a nonlinear function.

100 Methods Applied in Immunological Bioinformatics

4.11 Clustering and Generation of Representative Sets

When training a bioinformatical prediction method, one very important initial
step is to generate representative sets. If the data used to train, for instance, a
neural network have many very similar data examples, the network will not be
trained in an optimal manner. The reason for this is first of all that the network
will focus on learning the data that are repeated and thereby get a lower ability
to generalize. The other equally important point is that the performance of the
prediction method will be overestimated, since the data in the training and test
sets will be very alike.

Generating a representative set from a data set is therefore a very important
part of the development of a prediction method. The general idea behind
generation of representative sets is to exclude redundant data. In making a
representative set one also implicitly makes a clustering since all data points
which were removed because of similarity to another data point can be said to
define a cluster.

In sequence analysis a number of algorithms exist for selecting a represen-
tative subset from a set of data points. This is generally done by keeping only
one of two very similar data points. In order to do this a measure for similarity
must be defined between two data points. For sequences this can, e.g., be per-
centage identity, alignment score, or significance of alignment score. Hobohm
et al. [1992] have presented two algorithms for making a representative set
from a list of data points D.

Hobohm 1 Repeat for all data points on the list D:

• Add next data point in D to list of nonredundant data points N if it
is not similar to any of the elements already on the list.

Hobohm 2 Repeat until all sequences are removed from D:

• Add the data point S with the largest number of similarities to the
non redundant set N.

• Remove data point S and all sequences similar to S from D.

Before applying the Hobohm 1 algorithm, the data points can be sorted ac-
cording to some property. This will tend to maximize the average value of this
property in the selected set because points higher on the list have less chance
of being filtered out. The property can, e.g., be chosen to be the quality of the
experimental determination of the data point. The Hobohm 2 algorithm aims
at maximizing the size of the selected set by first removing the worst offend-
ers, i.e., those with the largest number of neighbors. Hobohm 1 is faster than
Hobohm 2 since it is in most cases not necessary to calculate the similarity
between all pairs of data points.

