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Abstract 

The  Protein  Data Bank  currently contains  about 600 data sets of three-dimensional  protein  coordinates  determined 

by X-ray  crystallography or NMR.  There is considerable  redundancy in the  data  base,  as  many  protein  pairs  are 

identical or very similar  in sequence.  However,  statistical analyses of protein sequence-structure relations  require 

nonredundant  data. We have  developed  two  algorithms  to  extract  from  the  data  base  representative sets of pro- 

tein  chains  with  maximum  coverage  and  minimum  redundancy.  The  first  algorithm  focuses  on  optimizing a par- 

ticular  property  of  the selected proteins  and  works by successive selection of  proteins  from  an  ordered list and 

exclusion of all  neighbors  of  each selected protein.  The  other  algorithm  aims  at maximizing the size of the selected 

set and  works by successive thinning  out of clusters  of  similar  proteins.  Both  algorithms  are generally applicable 

to  other  data bases in which criteria of similarity can  be defined and relate to problems  in graph  theory.  The largest 

nonredundant set extracted  from  the  current release of the  Protein  Data Bank has 155 protein  chains. In this set, 

no  two  proteins  have  sequence  similarity higher than a certain  cutoff (30% identical residues for aligned subse- 

quences  longer  than 80  residues), yet all structurally  unique  protein families are  represented. Periodically updated 

lists of  representative data sets are available by electronic mail from  the file server “netserv@embl-heideIberg.de.” 

The selection may be useful in statistical  approaches  to  protein  folding  as well as in the  analysis  and  documenta- 

tion of the  known  spectrum of three-dimensional  protein  structures. 

Keywords: NMR;  protein  data sets; X-ray  crystallography 

There is a continuing need for representative lists of pro- 

teins, especially in the  context of statistical and rule-based 

approaches  to  the analysis  and  prediction of protein 

structure.  However,  data  banks of protein  structures  and 

sequences  (Bernstein  et al., 1977; Protein  Identification 

Resource,  National  Biomedical Research Foundation, 

Georgetown  University,  Washington, D.C.; Bairoch & 

Boeckmann, 1991) are very nonhomogeneous  in  the sense 

that  some  protein families are heavily represented  (e.g., 

immunoglobulins),  whereas  others  are  only  represented 

by a single entry. In the  data base of three-dimensional 

(3D) protein  structure,  the  Protein  Data  Bank,  the  prob- 

lem  is compounded by the fact that  the  same  protein may 

appear in  different  crystal  forms, with a  variety  of  sub- 

strate  analogues  or with  different  engineered  point  mu- 

tations.  Although all these data sets are useful in general, 

their  blind  use in statistical  analyses  would  lead to seri- 
ous overcounting,  perhaps  masking otherwise observable 

regularities. With  the  current  rapid increase in the size of 

data  banks, selection by hand of representative data sets, 

~. 

Reprint requests to: Chris  Sander,  European Molecular Biology Lab- 
oratory,  Meyerhofstrasse  1, D-6900 Heidelberg,  Germany. 

once enjoyable  and feasible (Kabsch & Sander, 1983), be- 

comes an increasingly boring and time-consuming  prop- 

osition.  The need for  an  automatic  procedure  for  the 

selection  of  representative data sets is urgent. 

Desired properties of nonredundant data 

What is a representative data set? One may want one rep- 

resentative per protein  family  (defined in evolutionary 

terms) or  one representative per protein type (defined ac- 

cording to function  or  structure). All types or families are 

to be  represented. The precise requirements  depend on 

the scientific  question at  hand,  but in  general  terms the 

selection  should result in a data set that  combines maxi- 

mum  coverage with minimum  redundancy. 

In  this  report we focus on the  data base  of  3D  protein 

structures and on the following requirements. (1) No pair 
of proteins  in  the selected set should have more  than a 
given level of sequence  similarity. (2) The experimental 

quality of the  protein  structures  should be optimal  or 

meet given criteria. (3) The number of proteins in the set 

should  be  maximal,  within  the given constraints. 
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Manual selection of nonredundant data sets 

Earlier selections had attempted to fulfill similar criteria. 
In 1983, along with a dictionary of protein secondary 
structures, a list of 62 selected proteins with 10,925 resi- 
dues was published in which no pair of proteins had more 
than 50% identical residues after optimal alignment 
(Kabsch & Sander, 1983). Rooman and Wodak (1988), in 
their attempt to identify predictive sequence motifs in the 
protein structure data base, used a list of 75 proteins with 
less than 50% sequence similarity and crystallographic 
resolution of better than 2.5 A. Niefind and Schomburg 
(1991) used a list of 69 proteins with a total of 13,563 res- 
idues to derive amino acid similarity coefficients for pro- 
tein modeling and sequence alignment. Unger et al. 
(1989) used a list of 82 chains for their building blocks ap- 
proach to the analysis and prediction of protein struc- 
tures. Heringa and Argos (1991) counted 157 proteins, of 
which no pair has more than 50% identical residues. 

Alqorithm 1 Alqorithrn 2 

Problems to be solved 

The principal difficulty in designing algorithms to solve 
this problem is combinatorial complexity: the number of 
potential representative sets of similar quality is very 
large, and it is impractical to test them all. Other more 
technical difficulties are due to data base development: 
any procedure not sufficiently robust to be routinely ap- 
plied to new updates of the data base would soon leave 
us with an antiquated selection. Also, single Protein Data 
Bank data sets can contain multiple chains that have to 

be treated separately, and accessory information such as 
crystallographic resolution is not unambiguously coded 
for in the data sets. 

Two solutions 

We present two different algorithms (Fig. 1) for the se- 

lection of representative data sets from any data base in 
which similarity relationships can be defined. We apply 
these to the Protein Data Bank and derive the largest re- 
ported set of Protein Data Bank entries nonredundant at 
a strict level of sequence similarity. 

Both solutions are conceptually very simple. Central to 
each is the concept of distance (or similarity) in sequence 
space. When two proteins are similar to each other, we 
will also use the terms “they are close to each other” or 

“they are neighbors.’’ In its simplest form, assessment of 
similarity requires a one-bit decision. Two proteins are ei- 
ther similar to each other or they are not. The decision 
can be made, for example, on the basis of dynamic se- 
quence alignment algorithms followed by application of 
a length-dependent threshold of similarity. Or, for pro- 
tein structures, on the basis of optimal 3D alignment, fol- 
lowed by application of an appropriate cutoff. 

Outline of algorithm I .  Given a sorted list of candi- 
date proteins, process each protein in turn by selecting or 

X : removed 

Fig. 1. How do the algorithms for the selection of sets of dissimilar pro- 

teins work? In this example, there are seven proteins in the original data 

base, schematically shown (top) in a two-dimensional projection of some 
space of properties. Two proteins that are similar to each other are close 

to each other in this space. A dot marks each protein and a circle cen- 

tered on the dot the territory of its neighbors, i.e., all proteins consid- 

ered similar to it. Circles can overlap as the similarity relationship is not 

transitive, i.e., protein A can be similar to both proteins C and D without 

C and D being similar. The task of the algorithms is to select a subset 

of the original set of proteins such that no two proteins in the selected 

subset are similar, i.e., no  circle includes more than one dot. 
Algorithm 1 (select until done) works by selecting some protein (cen- 

ter of gray circle) and removing all its neighbors, as they would be similar 

to an already selected protein. I t  then goes on to the next protein, un- 

til the data base is exhausted. Algorithm 2 (remove until done) works 

by removing the protein with the largest number of neighbors first, and 

this protein is no longer counted as a neighbor of any other protein. It 

then reassesses the number of neighbors and removes the protein with 

the largest number of neighbors in the new situation, and so on, until 

the proteins left over have no more neighbors. In this example, algo- 

rithm 1 (2) resulted in a nonredundant set of three (four) proteins (bot- 

tom), so the performance of algorithm 2 was superior if the goal was 

to  maximize the number of proteins in the selected set. 

discarding it according to the following criteria: (1) dis- 
card proteins that are similar to already selected proteins; 
(2) discard proteins that fail to meet additional user- 
specified standards. 
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Outline of algorithm 2. Given a list of  candidate  pro- 

teins and a list of  neighbors  for  each of the  proteins, re- 

move  one  protein  at a time  from  the list until  those 

remaining  in  the list have no more  neighbors  in  the  list. 

The remaining  proteins  then  represent  the selected non- 

redundant set. As  the  number of neighbor relations in  the 

original list is a constant,  one  can  attempt to  maximize 

the  number of selected proteins by removing at each  step 

proteins with the largest number  of neighbor  relations. 

For either  algorithm,  proteins  definitely  to be selected 

or definitely to be  excluded  can  be specified by the user 

prior to running  the  algorithm. 

Results and discussion 

Three lists of representative proteins 

We present several lists for  comparison,  one generated 

using  algorithm  1  (Fig. 2) and  two  generated using algo- 

rithm  2  (Fig. 3). The first list was generated from a test 

list ordered  in  terms of increasing  crystallographic  nom- 

inal  resolution, so that its 136 protein  chains with 23,295 

residues tend to contain  representatives  of the best avail- 

able  resolution.  The  cutoff in  sequence  similarity is at 

30% identical residues (Fig. 2). The second and  third lists 

have been exclusively optimized  for list size. The second 

list (Fig. 3A) uses the  same  cutoff in  sequence  similarity 

as  the  first list but has  14% more chains (155 instead of 

136) and  27%  more residues (29,615 instead of 23,295). 

The  third list uses a much higher cutoff in sequence sim- 

ilarity, at 50% identical residues, and is correspondingly 

larger: 35,918 residues in 190 chains.  Chains of length less 

than 20 residues were excluded from  any list at  the  outset. 

By construction,  the first  two  lists, with the  same  cut- 

off, overlap in that  they  must  contain at least all outliers, 

i.e.,  proteins  that  have no neighbors in the  Protein  Data 

Bank,  e.g.,  rhodanese  (IRHD)  or  elongation  factor  TU 

(1ETU). Only for families that  have several or  many 

members,  e.g.,  immunoglobulins, do  the lists differ.  In 

practice,  the choice as to which list to use should be care- 

fully considered, and chains that  do not  suit the  purpose 

of the investigation, e.g.,  membrane  proteins in  studies 

of  soluble  globular  proteins,  should  be  removed. 

List size as a function of cutoff 
in sequence similarity 

What  cutoff in sequence  similarity  should  be  chosen in 

deriving  representative lists? How sensitive is the size of 

the list to  the  cutoff? Figure 4, generated with algorithm 

2, shows that  the size of the list changes  only  gradually, 

from 135 protein  chains  at  the  threshold for  structural 

homology  (Sander & Schneider,  1991),  i.e.,  25%  for 

aligned  subsequences of more  than  80 residues, to 155 at 

30%, 190 at  50%,  and finally, to  the full size of the  data 

base, 764 chains,  at  the  extreme limit of loo%, corre- 

sponding to treating all sequences as dissimilar. The  sharp 

increase at 100% simply reflects the  fact  that  about  one- 

half  of the 764 chains  are 100% identical in sequence to 

another  chain in the  Protein  Data Bank  (e.g.,  sequence- 

identical subunits; same protein in different crystal forms, 

etc.). 

In  practice,  the precise value of the  cutoff has  only 

weak influence on  the size of the  sample  implied by the 

list, except for very permissive values of the  cutoff.  One 

way to choose  the  cutoff is to make it as low as possible, 

consistent with the requirement of having at least one rep- 

resentative from each structural class (see Methods). With 

current  alignment  techniques,  this  leads to a  cutoff  at 

about  30% identical  residues, which is used in the  first 

(Fig. 2) and second  (Fig. 3A) list. 

Advantages and disadvantages 

The  first  algorithm (select until done) optimizes  a  user- 

defined  property of the selected set of  proteins,  such  as 

crystallographic  resolution, by sorting  the  candidate list 

according to  that property. It is faster  in that  not all pair 

comparisons have to be calculated,  as  proteins in the  skip 

list do not need to be  compared to all other  proteins. The 

second  algorithm  (remove  until  done) maximizes the 

number of proteins  in  the  final  selection. It is, however, 

more  time-consuming,  as all pair  relations are needed. 

Preprocessing filters can  be applied to  the lists from either 

algorithm, in order  to  impose  additional  requirements. 

For example,  when  low-resolution  crystal  structures are 

removed from  the  outset, say  structures with resolution 

not  better  than 3.0 A ,  the second  algorithm will aim at 

generating the longest possible representative list of struc- 

tures with better  than 3.0 A resolution.  In  practice,  the 

algorithms,  applied to  the  current  Protein  Data  Bank, 

can  run to completion  on  a  work  station  computer (e.g., 

SPARCstation 2,  DECstation 5000) in  a  matter of 2-3 h 

(algorithm 1) and 2-3 days  (algorithm 2, including about 

3*105 sequence  comparisons). 

Sequence-unique or structure-unique? 

The similarity  relationship  in  the set of all proteins  re- 

quired  for posing this  problem  can be based on sequence 

alignment,  optimal  superposition of 3D coordinates (Tay- 

lor & Orengo, 1989; Vriend & Sander, 1991), or  other cri- 

teria. If the goal is to have a set of structurally  unique 

proteins,  then explicit structural  superposition  should  be 

used,  rather  than sequence  alignment.  A  fundamental 

limitation of current  sequence  alignment  algorithms is 

that they can  only establish,  beyond  reasonable doubt, 

that  two  proteins  are similar  in structure, when the se- 

quence  similarity exceeds a certain  threshold.  But they 

cannot establish that  two proteins are dissimilar in  struc- 

ture when sequence  similarity is very low. For  example, 

we can  be  certain  that  endothiapepsin  4APE  and rhizo- 
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1 C551SPSEAE CYTOCHROME C551, ELECTRON TRANSPORT (PSEUDOMONAS AERUGINOSAI 
6 C562SECOLI CYTOCHROME 6562, ELECTRON TRANSPORT (ESCHERICHIA SCOLI) 
1 AATSECOLI ASPARTATE AMINOTRANSFERASE, TRANSFERASE (ESCHERICHIA COLI) 
0 ARAFSECOLI L-ARABINOSE-BINDING PROTEIN,(ESCHERICHIA COLI) 
0 ATXASSTRGL ACTINOXANTHIN, ANTIBACTERIAL PROTEIN (ACTINOMYCES GLOBISPORUS) 
0 ADHESHORSE APO-LIVER ALCOHOL DEHYDROGENASE, OXIDOREDUCTASE (EQUUS CABALLUS, LIVER) 
1 KADlSPIG ADENYLATE KINASE, TRANSFERASE(PHOSPH0TRANSFERASE) (SUS SCROFA) 
4 AlATSHUMAN ALPHA-1-ANTITRYPSIN, PROTEINASE INHIBITOR MODIFIED (HOMO SAPIENS) 
4 AlATSHUMAN ALPHA-1-ANTITRYPSIN, PROTEINASE INHIBITOR MODIFIED (HOMO SAPIENS) 
0 PYRBSECOLI ASPARTATE CARBAMJYLTRANSFERASE, TRANSFERASE (E. COLI) 
0 PYRISECOLI ASPARTATE CARBAMJYLTRANSFERASE, TRANSFERASE (E.  COLI! 
1 AZURSALCDE AZURIN, ELECTRON TRANSPORT PROTEIN (ALCALIGENES DENITRIFICANS) 
6 CYBSSBOVIN CYTOCHROME 65, ELECTRON TRANSPORT (BOS TAURUS, LIVER) 
0 BDSlSANESU ANTI-VIRAL PROTEIN, ANTI-HYPERTENSIVE (ANEMONIA SULCATA) 
0 BLACSSTAAU BETA-LACTAMASE, HYDROLASE (STAPHYLOCOCCUS AUREUS) 
0 ---------- BEAN POD MOTTLE VIRUS (MIDDLE COMPONENT) BOUNTIFUL BEAN 
0 -""""_ 
2 PMSBOVIN PHOSPHOLIPASE A2, HYDROLASE (80s TAURUS, PANCREAS) 

BEAN POD MOTTLE VIRUS (MIDDLE COMPONENT) BOUNTIFUL BEAN 

0 CAHZSHUMAN CARBONIC ANHYDRASE, LYASE (HOMO SAPIENS, ERYTHROCYTES) 
0 GUXlSTRIRE CELLOBIOHYDROLASE I (C-TERHINAL DOMAIN), HYDROLASE (TRICHODERMA REESEI) 
8 CYCSSAZOVI CYTOCHROME C5 (OXIDIZED), ELECTRON TRANSPORT (AZOTOBACTER VINELANDII) 
6 CYCSORYSA CYTOCHROME C, ELECTRON TRANSPORT (ORYZA SATIVA) 

0 CD4SHUMAN T-CELL SURFACE GLYCOPROTEIN CD4 (HOW SAPIENS) 

5 CYCPSRHOMO CYTOCHROME C, ELECTRON TRANSPORT (RHODOSPIRILLUM MOLISCHIANUM) 

21 CYC3SDESVM CYTOCHROME C3, ELECTRON TRANSPORT (DESULFOVIBRIO WLGARIS) 
1 CAT3SECOLI CHLORAMPHENICOL ACETYLTRANSFERASE, TRANSFERASE (E. COLI) 
0 ICBPSSOLTU CARBOXYPEPTIDASE A INHIBITOR 
0 CBPASBOVIN CARBOXYPEPTIDASE A-ALPHA, HYDROLASE (60s TAURUS, PANCREAS) 
2 CPXASPSEPU CYTOCHROME P45OCAM. OXIDOREDUCTASE (PSEUWMONAS PUTIDA) 
0 PRVBSCYPCA PARVALBUMIN, CALCIUM BINDING CALCIUM-BINDING (CYPRINUS CARPI01 

0 RCROSLAMBD CRO REPRESSOR, GENE REGULATING PROTEIN, BACTERIOPHAGE (LAMBDA) 
0 CRAMSCRAAB CRAMBIN, PLANT SEED PROTEIN (CRAMBE ABYSSINICA) 

0 SUBTSBACLI SUBTILISIN CARLSBERG, SERINE PROTEINASE (BACILLUS SUBTILISI 
0 ICICSHIRME EGLIN-C (HIRUDO MEDICINALIS) 

2 CCPRSYEAST CYTOCHROME C PEROXIDASE, OXIDOREDUCTASE (SACCHAROMYCES CEREVISIAE) 
1 RL7SECOLI RIBOSOMAL PROTEIN L7/L12 (C-TERMINAL DOMAIN) (ESCHERICHIA COLI) 

6 DYRSCHICK DIHYDROFOLATE REDUCTASE, OXIDOREDUCTASE (GALLUS GALLUS, LIVER) 
4 GLB3SCHITH HEMOGLOBIN, OXYGEN TPANSPORT (CHIRONOMOUS THUMMI THUMMII 
2 CARPSCRYPA ENDOTHIAPEPSIN, HYDROLASE (ACID PROTEINASE) (ENDOTHIA PARASITICA) 
2 EFTUSECOLI ELONGATION FACTOR TU, TRANSPORT AND PROTECTION PROTEIN (ESCHERICHIA COLI) 
0 HV3KSHUMAN IMMUNOGLOBULIN FAB, IMMUNOGLOBULIN (HOMO SAPIENS) 
6 PROASSTAAU PROTEIN A (FRAGMENT 8) (STAPHYLOCOCCUS AUREUS) 

2 FERlSAZOVI FERREWXIN, ELECTRON TRANSPORT (AZOTOBACTER VINELANDII) 
6 GClSHUMAN IMMUNOGLOBULIN FC, IW4UNOGLOBULIN (HOMO SAPIENS) 

1 FERSBACTH FERREDOXIN, ELECTRON TRANSPORT (BACILLUS THERM3PROTEOLYTICUS) 
1 FERSSPIPL FERREWXIN, ELECTRON TRANSPORT (SPIRULINA PLATENSIS) 
3 FLAVSCLOSP FLAVODOXIN, ELECTRON TRANSPORT (CLOSTRIDIUM MP) 
1 CRPSECOLI CATABOLITE GENE ACTIVATOR PROTEIN, GENE REGULATORY PROTEIN (E. COLI) 

0 GLUCSPIG GLUCAGON, HORMONE (SUS SCROFA, PANCREAS) 
1 DGALSECOLI GALACTOSE/GLUCOSE BINDING PROTEIN, PERIPLASMIC BINDING PROTEIN (E. COLI) 

2 G3PSBACST D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (BACILLUS STEAROTHERMOPHILUS) 
D CRGBSBOVIN CRYSTALLIN GAMMA-11, (BOS TAURUS, EYE LENS PROTEIN) 

0 GLNASSALTY GLUTAMINE SYNTHETASE, LIGASEtAMIDE SYNTHETASE) (SALMONELLA TYPHIMURIUM) 
0 VHEDSBPFD GENE 5 DNA BINDING PROTEIN (VIRAL) FILAMENTOUS BACTERIOPHAGE FD (MJ-3) 
1 2HAOSSPIOL GLYCOLATE OXIDASE, OXIDOREDUCTASE (SPINACIA OLERACEA) 
1 GSHPSBOVIN GLUTATHIONE PEROXIDASE, OXIDOREDUCTASE (BOS TAURUS, ERYTHROCYTE) 
1 HPISSCHRVI OXIDIZED HIGH POTENTIAL IRON PROTEIN,ELECTRON TRANSFER (CHROMATIUM v-) 
0 ITHlSHIRME HIRUDIN, COAGULATION INHIBITOR (HIRUDO MEDICINALIS) 
0 HAlHSHUMAN HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN, (Horn SAPIENS1 
2 HEMASINAAI HEMAGGLUTININ, INFLUENZA VIRUS 
2 HEMASINAAI HEMAGGLUTININ, INFLUENZA VIRUS 
0 IAASSTRTE ALPHA-AMYLASE INHIBITOR, AGLYCOSIDASE INHIBITOR (STREPTOMYCES TENDAE) 

0 ILlBSHUHAN INTERLEUKIN-1 BETA, CYTOKINE (HOMO SAPIENS) 
3 POLSHIVlA HIV-1 PROTEASE, HYDROLASE (ACID PROTEINASE) 

0 IDHSECOLI ISOCITRATE DEHYDROGENASE, OXIDOREDUCTASE (ESCHERICHIA COLI) 
1 CABISBOVIN CALCIUM-BINDING PROTEIN (VITAMIN D-DEPENDENT) (BOS TAURUS) 

0 IL~SHUMAN INTERLEUKIN 8, CYTOKINE (HOMO SAPIENS, RECOMBINANT IN E. COLI) 
0 INSSPIG INSULIN, HORMONE (SUS SCROFAI 
0 INSSPIG INSULIN, HORMONE (SUS SCROFA) 
0 LYCVSBPT4 LYSOZYME (MUTANT), HYDROLASE (0-GLYCOSYL), BACTERIOPHAGE T4 
0 LIVKSECOLI LEUCINE-BINDING PROTEIN, PERIPLASMIC BINLING PROTEIN (E. COLI) 
0 LDHMSSQUAC APO-LACTATE DEHYDROGENASE, OXIDOREDUCTASE (SQUALUS ACANTHIAS, MUSCLE) 
4 LGBZSLUPLU LEGHEWGLOBIN (CYAN0,MET). OXYGEN TRANSPORT. (LupIt+Us LUTEUS L) 
0 LECSPEA LECTIN (PISUM SATIWM, SEEDS) 
0 LECSPEA LECTIN (PISUM SATIWM, SEEDS1 
o LYcSHUMAN LYSOZYME, HYDROLASE (0-GLYCOSYL), (HOMO SAPIENS) 

2 MDHCSPIG CYTOPLASMIC MALATE DEHYDROGENASE, OXIDOREDUCTASE (SUS SCROFA.  heart) 
4 MYGSPHYCA MYOGLOBIN, OXYGEN STORAGE (PHYSETER CATODON) 

0 POLGSENHGO MENGO ENCEPHALOMYOCARDITIS VIRUS COAT PROTEIN MONKEY BRAIN (HENGO 
1 HEMSTHEZO MYOHEMERYTHRIN, OXYGEN BINDING (THEMISTE ZOSTERICOW\, RETRACTOR MUSCLE) 
3 MELlSApIME MELITTIN, TOXIN (HEMOLYTIC POLYPEPTIDE) (APIS HELLIFEM, 
1 MT25mBBIT CD-1 METALmTHIONEIN-2A, METALLOTHIONEIN (ORYCTOLAGUS CUNICULUS. liver) 
1 MT2SmT CD-7 METALLOTHIONEIN-2, METALLOTHIONEIN (RATTUS RArnUS,liver) 

1 NXSlSLATSE NEUROTOXIN 8, (LATICAUDA SEMIFASCIATA) 

Fig. 2. Continues on facing  page. 
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0 IOVOSTYMCU  OVOMUCOID  THIRD  DOMAIN,  PROTEINASE  INHIBITOR  (LOPHURA  NYCTHEMERA) 

0 TTHYSHUMAN  THYROXINE,  TRANSPORT  (RETINOL) IN SERUM  PREALBUMIN  (HOMO  SAPIENS) 
4  PAPASCARPA  PAPAIN,  HYDROLASE  (SULFHYDRYL  PROTEINASE)  (CARICA  PAPAYA) 
0 AZUPSALCFA  PSEUDOAZURIN,  ELECTRON  TRANSFER,  (ALCALIGENES  FAECALIS,  STRAIN 5-6)  

0 PLASSPOPNI  PLASTOCYANIN,  ELECTRON  TRANSPORT  (POPULUS  NIGRA, leaves) 
0 PEPASPIG  PEPSIN,  HYDROLASE (SUS SCROFA) 
0 KLPlSECOLI  PHOSPHOFRUCTOKINASE, TWSFERASE(PHOSPH0TRANSFERASE) (E.  COLI) 

2  PHHYSPSEFL p-HYDROXYBENZOATE HYDROXYLASE,  OXIDOREDUCTASE  (PSEUDOMONAS  FLUORESCENS) 

1  PMGYSYEAST PHOSPHOGLYCERATE MUTASE,  TRANSFERASE  (SACCHAROMYCES  CEREVISIAE) 

1 POLHSPOLlM  POLIOVIRUS,  PICORNAVIRUS  POLIOVIRUS  (HOMO  SAPIENS) 
1  POLHSPOLlM  POLIOVIRUS,  PICORNAVIRUS  POLIOVIRUS  (HOMO  SAPIENS) 
1 POLHSPOLlM  POLIOVIRUS,  PICORNAVIRUS  POLIOVIRUS  (HOMO  SAPIENS) 
0 PAHOSCHICK  AVIAN  PANCREATIC H O W N E  (MELEAGRIS  GALLOPAVO,  PANCREAS) 

8 CYCRSRHOVI PHOTOSYNTHETIC  REACTION  CENTER  (RHODOPSEUDOMONAS  VIRIDIS) 
8  CYCRSRHOVI PHOTOSYNTHETIC  REACTION  CENTER  (RHODOPSEUDOMONAS  VIRIDIS) 

8  CYCRSRHOVI PHOTOSYNTHETIC  REACTION  CENTER  (RHODOPSEUDOMONAS  VIRIDIS) 
8  CYCRSRHOVI PHOTOSYNTHETIC  REACTION  CENTER  (RHODOPSEUDOMONAS  VIRIDIS) 

0 TRYPSBOVIN BETA  TRYPSIN,  HYDROLASE  (SERINE  PROTEINASE) (BOS TAURUS,  PANCREAS) 
1  BPTlSBOVIN TRYPSIN  INHIBITOR,  PROTEINASE  INHIBITOR (BOS TAURUS,  PANCREAS) 

0 IPYRSYEAST INORGANIC  PYROPHOSPHATASE,  ACID  ANHYDRIDE  HYDROLASE  (SACCHAROMYCES C.1 
0 RPClSBP434 434  REPRESSOR  (N-TERMINAL  DOMAIN),  GENE  REGULATING  PROTEIN  (PHAGE 434) 

0 ---------- BENCE-JONES  PROTEIN  (LAMBDA,  V-DOMAIN),  IMMUNOGLOBULIN  (HOMO  SAPIENS) 
0 THTRSBOVIN RHODANESE,  TRANSFERASE (805 TAURUS,  LIVER) 

0 POLGSHRV14  RHINOVIRUS 14 COAT  PROTEIN  (HCMO  SAPIENS) 
9  RNTlSASPOR  RIBONUCLEASE T1,  HYDROLASE (ENWRIBONUCLEASE) (ASPERGILLUS  ORYZAE) 
1 RNPSBOVIN  RIBONUCLEASE A, HYDROLASE  (PHOSPHORIC  DIESTER) (805 TAURUS,  PANCREAS) 
0 GAGSRSVP ROUS SARCOMA VIRUS PROTEASE,  HYDROLASE  (ASPARTYL  PROTEINASE) 
0 RUBRSCLOPA RUBREWXIN, ELECTRON  TRANSFER  (CLOSTRIDIUM  PASTEURIANUM) 
0 COATSSOBMV  SOUTHERN  BEAN  MOSAIC VIRUS COAT PROTEIN , COAT PROTEIN  (VIRAL) 
0 PRTASSTRGR  PROTEINASE A,  HYDROLASE  (SERINE  PROTEINASE)  (STREPTOMYCES  GRISEUS) 
1 IPRZSSOLTU  SERINE  PROTEINASE-INHIBITOR  (SOLANUM  TUBEROSUM) 
2  SCX3SCENSC  SCORPION  NEUROTOXIN  (CENTRUROIDES  SCULPTURATUS  EWING) 
2  NUCSSTAAU  NUCLEASE,  HYDROLASE  (PHOSPHORIC  DIESTER)  (STAPHYLOCOCCUS  AUREUS) 

0 ISUBSSTRAO SUBTILISIN INHIBITOR, PROTEINASE  INHIBITOR (STREPTONYCES  ALBOGRISEOLUS) 

0 SODCSBOVIN SUPEROXIDE DISMUTASE, OXIDOREDUCTASE (BOS TAURUS,  ERYTHROCYTE) 

0 COATSSTNV  TOBACCO  NECROSIS  VIRUS  COAT  PROTEIN OF SATELLITE  TOBACCO  NECROSIS VIRUS 
0 COATSTBSVB  TOMATO  BUSHY  STUNT  VIRUS 
0 IPSTSPIG  PORCINE  PANCREATIC  SECRETORY  TRYPSIN  INHIBITOR (SUS SCROFA,  PANCREAS) 
5 HBASHUMAN  HEMOGLOBIN,  OXYGEN  TRANSPORT  (HOMO  SAPIENS) 
1 THERSBACTH  THERMOLYSIN,  HYDROLASE  (BACILLUS  THERMOPROTEOLYTICUSI 
0 COATSTMV  INTACT  TOBACCO  MOSAIC  VIRUS 

0 TNFASHUMAN TUMOR  NECROSIS  FACTOR-ALPHA,  LYMPHOKINE  (HOMO  SAPIENS) 
0 TPCSSMELGA TROPONIN-C,  CONTRACTILE  SYSTEM  PROTEINS  (MELEAGRIS  GALLOPAVO) 

0 SYYSBACST TYROSYL-TRANSFER  RNA  SYNTHETASE,  LIGASE  (BACILLUS  STEAROTHERMJPHILUS) 
0 UBIQSHUMAN UBIQUITIN,  CHROMJSOMAL  PROTEIN (HOMO SAPIENS,  ERYTHROCYTES) 

0 AGIZSWHEAT AGGLUTININ,  LECTIN  (AGGLUTININ)  (TRITICUM WLGARIS, GERM) 
0 UTERSRRBIT UTEROGLOBIN,  STEROID  BINDING  (ORYCTOLAGUS  CUNICULUS) 

0 TRPASSALTY TRYPTOPHAN  SYNTHASE,  LYASE  (CARBON-OXYGEN)  (SALMONELLA  TYPHIMURIUM) 
1 TRPRSECOLI TRP  REPRESSOR, DNA BINDING  REGULATORY  PROTEIN  (ESCHERICHIA  COLI) 

0 XYLASARTSl D-XYLOSE  ISOMERASE,  ISOMERASE  (INTRAMOLECULAR  OXIDOREDUCTSE) 
0 TRPASSALTY TRYPTOPHAN  SYNTHASE,  LYASE(CARBON-OXYGEN)  (SALMONELLA  TYPHIMURIUM) 

0 TPISSYEAST TRIOSE  PHOSPHATE  ISOMERASE  (SACCHAROMYCES  CEREVISIAEI 

Fig. 2. Continued from facingpage. Selected set of 136 nonredundant proteins with optimal  crystallographic resolution according 

to  algorithm 1. The  chains  contain  a  total of 23,295 residues.  No  pair  of  chains  in  the list exceeds  30%  sequence  identity  after 

optimal  alignment  (more precisely, five percentage  points  above  the  length-dependent  threshold  for  structural  homology  [Sander 

& Schneider, 19911, i.e., 29.8%  for  alignments of length 80 or longer,  higher  cutoff  for  shorter  alignments).  Column  notation 

is as follows:  PDB,  Protein  Data  Bank  four-letter  data  set  identifier,  with  proteins  sorted  on  the  first  letter  (second  byte); C, 

chain  identifier, in cases  where  the  data set contains  more  than  one  protein  chain, or else "-"; NAA, number of amino  acids 

in the  protein  chain;  RES,  crystallographic  resolution in A, or NMR for structures  determined by nuclear  magnetic  resonance 

spectroscopy; VoSTR, number of backbone hydrogen bonds involved in  secondary  structure, per I 0 0  residues (in parallel and  anti- 

parallel  bridges,  and  in (i, i + 4) and (i, i + 3) type  H-bonds  defined  as in Kabsch and  Sander (1983); VoNCS, number of Cys 

residues in disulfide  bonds,  per  100  residues;  TONHE,  ratio  of  the  number of heteroatoms  (HETATM  records)  to  the  number 

of protein  atoms (ATOM records)  in  the  PDB  data set (not  just  in  the  chain),  times 100; Swissprot,  sequence  identifier in the 

Swissprot  protein  sequence data base  (Bairoch & Boeckmann, 1991), where  sequence  identity between SWISS-PROT  and  PDB 

entry is more  than 98% and total sequence  length is within  three  residues;  Name,  Function,  Species,  protein  name,  function, 

and species as  taken from the  COMPND,  HEADER,  and  SOURCE  records in  the  Protein  Data  Bank;  Exclusion,  criteria by 

which  a  protein  may  be  excluded  by  the  end-user  (Res,  insufficient  resolution:  RES > 2.6 A; Sec,  insufficient  amount of sec- 

ondary  structure:  %STR < 35%; Siz, too small:  NAA < 40; Ss, too  many SS bonds:  %NCS > 8%;  Mem,  membrane  protein 

or part  of  a  membrane  complex).  No  firm  recommendation  for  removing  particular  proteins is implied  here. 

puspepsin 2APR have the  same  structure on  the basis of aligned residues; in fact,  parts of their structures are sim- 

observing 37% identities  in 320 aligned  residues.  But we ilar in that over  a  three-helix  motif of 38 residues they 

cannot  assert that  phage 434 repressor (1R69) and phage have a root  mean  square position deviation (rmsd) of C ,  

lambda  cro repressor (1CRO) do  not have  similar  struc- atoms of less than 2.9 A. 

ture  on  the basis of observing  only 16% identities  in 62 For these  reasons  the lists derived  here do  contain 
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Fig. 3. Two selected  sets  of  nonredundant  protein  chains  according  to  algorithm 2. A: A total of IS5 chains  with 29,615 resi- 

dues,  using  a  cutoff  in  sequence  similarity  at 30% identical  residues  (more  precisely,  five  percentage  points  above  the  thresh- 

old for  structural  homology  [Sander & Schneider, 19911, see Fig. 1 and  Methods). B: A total of 190 chains  with 35,918 residues, 

using  a  cutoff  in  sequence  similarity  at 50% identical  residues (25 percentage  points  above  the  threshold).  Only  the  four-letter 

Protein  Data  Bank  identifiers  and  the  one-letter  chain  identifiers  are  given.  When  no  chain  identifier is given,  the  chain with 

a  blank  character (" ") in the  chain  column  of  the  atomic  coordinate lines in  the  Protein  Data  Bank  data set is used. 
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Fig. 4. Size of  the lists of representative proteins  extracted  from  the  Pro- 

tein  Data  Bank as  a  function  of  the  cutoff  in  sequence  similarity.  The 

graph is a  guide  for  choosing  a  particular list for  a  particular  problem. 

Each  point  represents  a list in which no two  proteins  have  sequence sim- 

ilarity  higher  than  the  given  cutoff.  The  more  severe  the  cutoff,  the 

shorter  the  list. List size is defined  as  the  number  of  protein  chains  (left 

vertical  axis) or as  the  total  number of residues  in  these  chains  (right). 

The  cutoff in  sequence  similarity is in  percentage  of  identical  residues 

after  optimal  alignment  of  all  protein  pairs. For aligned  sequence  pairs 

shorter  than 80 residues, a higher cutoff is applied,  following  the  length 

dependence  of  the  threshold  for  structural  homology  (Sander & 

Schneider, 1991) by  adding  a  fixed  number  of  percentage  points  to  the 

cutoff. For example,  adding  plus  five  percentage  points  to  the  length- 

dependent  threshold  corresponds  to 29.8% on  the  horizontal axis. The 

precise size of the list may  vary  from  one  run to the  next,  using  differ- 

ent  random  number  seeds,  as  the  algorithm is not  mathematically 

guaranteed  to  find  the  global  optimum.  In  practice,  the size of the list 
varies  by less than 0.5% (0.47% standard  deviation  of  the  number of 

residues  in 50 lists at  the 29.8% cutoff). 

groups of proteins of similar structures,  although they are 

minimally redundant in  sequence. For example, the fol- 

lowing sets of  proteins  of  similar 3D fold  are in the first 

list (Fig. 2): immunoglobulin-like  proteins  1CD4  (human 

T-cell receptor), 2RHE  (human  lambda immunoglobulin 

variable  domain), and 2FB4 (human  immunoglobulin 

heavy chain), 1 FC2  (human  gamma immunoglobulin FC 

region); globins 1LH3  (plant leghemoglobin), ITHB (hu- 

man hemoglobin), lMBD (sperm whale myoglobin), and 

1 ECN (insect erythrocruorin); small copper-binding  pro- 

teins lPAZ (bacterial azurin), IPCY (plant plastocyanin), 

and  2AZA (bacterial  pseudoazurin); helix-turn-helix re- 

pressors 2WRP  (bacterial  TRP  repressor), 1R69 (phage 

434 repressor), lCRO  (bacteriophage  cro  repressor); 

spherical  virus  coat  proteins from 2MEV (mengo  virus), 

1 RMU  (rhinovirus), 2PLV (poliovirus), 2STV (tobacco 

necrosis virus), and 2TBV (tomato bushy stunt virus). 

Structural similarity in these examples  can be established 

by optimal  structural  alignment.  For  example, T-cell re- 

ceptor  2CD4  and  immunoglobulin  2RHE have an rmsd 

of C, atoms  of  1.2 A over 79 residues with a sequence 

identity of 24%;  or, sperm whale myoglobin  IMBD  and 

insect erythrocruorin lECN have an rmsd of 1.7 A over 

118 residues with a  sequence  identity of 18%. 

Is any  structural family  not  represented in the lists? If  

it is desirable to have at least one  representative  from 

each  structural  family,  the  cutoff in sequence  similarity 

has to be chosen appropriately, using independent knowl- 

edge of what  constitutes  structural families. We find  that 

a cutoff of five percentage  points  above the (length- 

dependent)  threshold of structural  similarity  (Sander & 
Schneider, 1991)  (see Methods)  avoids  rejection of struc- 

turally  unique  proteins on the  grounds of spurious se- 

quence  similarity  to  another  protein in the  list.  An 

interesting borderline case is the pair 2WRP  (TRP repres- 

sor)  and  lETU (elongation  factor) for which the FASTA 

alignment  algorithm  (Pearson & Lipman, 1988) detects 

37% identical residues in  a 49-residue overlap, 4.1 per- 

centage  points  above  the  threshold, with four gaps of to- 

tal  gap length  of 5 residues. This  alignment  does reflect 

some similarity of secondary structure  (primarily helices), 
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but  not similarity of tertiary  structure  (rmsd = 9.8 A). 

Clearly,  adjustment of gap penalty  parameters or a  more 

refined definition of the  threshold  for  structural  homology 

(Sander & Schneider, 1991) could  move  this  particular 
case out of the gray zone.  However,  the general point re- 

mains  that  a set of structurally  unique  proteins  cannot  be 

defined in terms of sequence  criteria  alone  as  long as  the 

problem of protein  structure  prediction  from  sequence is 

not solved. 

Extensions 

Variants of the  algorithms  can easily be developed.  For 

example, the  algorithms could  be used to generate  many 
nonoverlapping  sets  of  proteins, by defining the  output 

list of a run  as  the exclusion list of subsequent  runs.  Such 

sets may be useful in testing the stability of statistical pro- 

cedures. For  algorithm 1 ,  the test list could be  ordered ac- 

cording to  any desired property,  e.g., species origin, so 
that if possible all selected proteins  come  from a  limited 
set of species. 

Looking  beyond  protein  structures,  the  algorithms  are 
sufficiently  general so that they can  be  applied to  any 

data base of entities for which a  similarity  relationship 

and a threshold of similarity can be  meaningfully  de- 

fined.  For example,  one  could take  the  data base of pro- 
tein  sequences,  currently at  about 30,000 proteins,  and 

extract  a  nonredundant set  of proteins in similar fashion. 
Note, however, that  algorithm 2 would require  the calcu- 

lation of 900 million  pair  relationships.  Algorithms  that 

exploit  hash  tables  probably can  deal with this  problem 

in  finite  time.  In the  much smaller data base of protein 
3D  coordinates  one  could  extract  a  representative set of 

folding  units by defining an  appropriate similarity rela- 
tionship  between  protein  3D  structures,  exploiting  per- 

haps  the  fast  algorithms  for  detection  of  similar 3D 

substructures  (Orengo & Taylor, 1990; Vriend & Sander, 
1991). 

Future development 

The  Protein  Data Bank is continuing to grow,  and it does 

so at a  fast  rate.  The list of Kabsch and  Sander (1983) 

had 10,925 residues  in 62 proteins of which no two  pro- 

teins had  more  than 50% identical residues. In 1991, that 

number  increased  more than  threefold  to  about 36,000 

residues  in 190 chains  (Fig. 4) (algorithm 2). Statistical 
analyses  of  sequence-structure  relations  can  become 

more reliable  as  a  result.  However, a data base  increase 
to,  say, 1,000 nonredundant  chains is many  years  away, 
assuming the use of current  technology and  current lev- 
els of funding. 

Here we have restricted ourselves to  an application use- 
ful  in  protein  structure research by producing lists that 

are maximally dispersed in sequence space, yet contain  at 
least  one  representative of each structural  family.  The 

lists  of  representative  protein  chains  reported  here, with 

under 30,000 residues, will soon  be  out of date.  Plans of 

an ongoing  project  are to supply updated lists to  the sci- 

entific  community  as  more solved protein  structures be- 

come  available. 

Methods 

The algorithms  are now described  in  more  detail.  Note 

that  the problem and algorithm  could  be neatly described 
in the language of graph  theory (a protein is a vertex; two 

vertices are  connected by an edge if the  two  proteins  are 

similar; the  matrix of all  pair  relationships is the  adja- 

cency matrix; the problem is to find  the largest subgraph 

that  has  no edges; and so on [e.g., Sedgewick, 19831). 

However, for ease of communication we choose here not 
to use the  language of graph  theory. 

Algorithm I :  Select  until done 

The first  algorithm  proceeds by simultaneous processing 

of three lists of protein  identifiers, the test list of all  can- 
didate  proteins (or  protein  chains),  the  skip  list,  and  the 

select list. The test list can  be  sorted  according to user- 
defined criteria, such as resolution (for  proteins of known 

3D  structure), so that  certain types of proteins  have  a 
higher probability of being selected. The  skip list contains 

proteins  that  are similar to a previously processed protein 
from  the test list and may also contain  a  priori  unwanted 

proteins. The select  list (initially empty)  contains  proteins 

chosen  as  part of the  nonredundant  data set. 

In  detail,  the  three lists are processed as follows: ( 1 )  

read  one  protein identifier from  the test list and check if 

this  protein is a member of the  skip list; if so, process the 

next protein in the test list,  i.e.,  repeat  step 1 ;  otherwise 

(2) check if the  protein satisfies user-specified require- 
ments,  such  as  minimum  sequence  length,  maximum 

number of unknown residues, and  the like. If the require- 

ments  are  satisfied,  append  the  protein to  the select list; 

otherwise, process the next protein  in  the test list, i.e., re- 

peat  step 1 ;  (3) with the selected protein,  start a FASTA 

search  (Pearson & Lipman, 1988) against  all  remaining 
sequences in the test  list; (4) scan the FASTA output file 

and  append  to  the skip list proteins with a higher similarity 

than  the specified threshold  (e.g., five percentage  points 

above  the  threshold  for  structural  homology  correspond- 
ing to  the length of the FASTA alignment  [Sander & 

Schneider, 19911). Finally, step 1 is repeated until all pro- 
teins in the test list are processed. 

Algorithm 2: Remove until done 

The second algorithm is computationally  more expensive, 
as it requires  a  complete  matrix of pair  relations among 
all  proteins  in  the  candidate  list.  The  goal of the algo- 
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rithm is to remove, in the smallest  number  of  steps, one 

protein  at a time, together with  its pair relations, until the 

matrix  of  the remaining  proteins  contains no  more pair 

relations.  This  global  optimization  problem is far from 

trivial. We solve the  problem in  practice by a procedure 

of  the  “greedy” type: removal of the  protein with the 

largest number of pair  relations at a particular  step  tends 

to minimize the  total  number  of steps needed to remove 

all pair  relations in the  matrix. 

For the  examples  presented  here,  the  matrix is gener- 

ated by aligning each protein  chain with all other  protein 

chains  using  a  dynamic  sequence  alignment  algorithm 

(Smith & Waterman, 1981), using program  Swalign. Af- 

ter  application of the  threshold  for  structural homology 

(Sander & Schneider, 1991), the  matrix  contains only one 

bit for each  protein  pair, 1 if the  two  proteins  are simi- 

lar  (are  neighbors,  are  related)  and 0 otherwise. 

In detail,  the  algorithm proceeds as follows. In each it- 

eration  step,  the  protein with the largest number of rela- 

tions (neighbors) is removed by setting all its pair relation 

bits to  zero. I f  the largest  number of pair  relations is 

shared by more  than  one  protein,  the choice of protein to 

be  removed is made  arbitrarily, using a random number 

generator.  The  algorithm  terminates when all pair relations 

in the  matrix have been set to  zero, i.e., all remaining 

proteins are mutually  dissimilar. The  proteins remaining 

are considered as  the selected set. In a final  pass  over all 
removed proteins, a protein is reinstated (added to  the se- 

lected set) if it  has no  neighbors in the selected set. In 
practice,  this  final pass rarely increases the size of the se- 

lected set. 

In principle,  this  algorithm  can  be  reformulated so as 

to  guarantee  the global optimum  of  the largest  number 

of unrelated  chains, namely by a  complete  tree  search to 

arbitrary  depth. However,  execution times of such an  al- 

gorithm would be prohibitive. This algorithm,  as  the first 

one,  can  also be used to  optimize a particular  property, 

such  as  crystallographic  resolution,  in  the  following 

sense. By initially removing all proteins  with,  say,  a res- 

olution less than  a certain cutoff,  the algorithm then  aims 

at generating  the largest list of proteins with a resolution 

better  than  the given cutoff. 

Choice of cutoff  parameter 

The choice of cutoff  parameter  for sequence  similarity 

between two  proteins  depends on the  purpose of the  list. 
Here, we wanted to  have  the  protein  representatives 

spaced as widely as possible in sequence space  (minimum 

redundancy), which requires the strictest possible cutoff, 

yet not miss any  structurally  unique  family  (maximum 

coverage), which puts a lower bound  on  the  cutoff.  The 

lower bound was determined by raising the  cutoff  param- 

eter  from 25% (for length  80, higher percentages for 

shorter sequences  [Sander & Schneider, 19911) until all 

structurally  unique  protein families are represented in the 

list. With the  current  data base and  our assessment of 

what constitutes unique folds, the cutoff in sequence sim- 

ilarity was set at  plus five percentage  points  above  the 

length-dependent  threshold of structural  homology,  i.e., 

roughly  at  the  upper  edge of the “twilight zone”  (Doolit- 

tle, 1986). One may argue  that this level is too permissive. 

However, even if the  cutoff in sequence  similarity is set 

very low at, say, 20% identical residues, the resulting list 

would still contain pairs of proteins  that have very  low  se- 

quence  similarity yet are identical in basic fold. So, rais- 

ing the  cutoff  until  each  structural  protein  family is just 

represented is a  reasonable  objective  criterion  for  a  rep- 

resentative list based on sequence  similarity. 

List distribution via electronic mail 

The lists of selected proteins  can be obtained  from  the 

EMBL file server by electronic  mail.  There is one file 

per list. File names are,  e.g., pdb-select-56-cut30.pid, 
where pdb stands  for  Protein Data Bank, 56 refers to the 

PDB release number,  cut30 refers to the  cutoff in se- 

quence  identity, and pid stands  for  protein identifiers. 

The following mail message sent to NETSERV@EMBL- 

Heidelberg.DE  should result in  the  above list being sent 
by return email:  send proteindata:pdb-select-56- 

cut30.pid. To  obtain general information send the mes- 

sage: help  proteindata. Files for release 58 of the PDB  are 

currently  available.  These are provided on  the Diskette 

Appendix (see \SUPLEMNT\Hobohm.doc  for listing). 

Acknowledgments 

We value  highly the willingness of many  crystallographers  and 

NMR spectroscopists to  deposit their structures  soon  after they 

have been determined. We are  grateful  to  Martin Vingron for 

alignment  software  code used  in algorithm 2 ,  to  Peter Rice for 

maintaining  the  Protein  Data Bank and  related files, to Roy 

Omond  and Rainer  Fuchs for implementing and maintaining the 

network file server,  and to the  members of the  Protein Design 

Group for valuable discussions. 

References 

Bairoch, A. & Boeckmann, B. (1991). The  SWISS-PROT  protein se- 
quence  data  bank. Nucleic Acids  Res, 19, 2247-2250. 

Bernstein, F.C., Koetzle, T.F., Williams,  G.J.B.,  Meyer, E.F., Brice, 
M.D.,  Rodgers, J . R . ,  Kennard, O., Shimanouchi,  T., & Tasumi,  M. 
(1977). The  Protein  Data Bank: A  computer-based  archival file for 
macromolecular  structures. J. Mol. Biol. 112, 535-542. 

Doolittle, R.F. (1986). Of Urfs and Orfs: A Primer on How to Analyze 
Derived Amino  Acid Sequences. University Science Books, Mill Val- 
ley, California. 

Heringa, J.  & Argos, P. (1991). Side  chain  clusters in protein  structures 
and  their  role  in  protein  folding. J. Mol. Biol. 220, 151-171. 

Kabsch, W. & Sander, C. (1983). Dictionary of protein  secondary  struc- 
ture. Pattern  recognition of hydrogen  bonded  and  geometrical  fea- 
tures. Biopolymers 22, 297-2637. 

Niefind, K .  & Schomburg, D. (1991). Amino  acid similarity coefficients 
for  protein  modelling  and  sequence  alignment  derived  from  main- 
chain  folding  angles. J. Mol. B i d .  219, 481-497. 

Orengo,  C.A. & Taylor, W.R. (1990). A  rapid  method of protein  struc- 
ture alignment. J. Theor. Biol. 147, 517-551. 

 Cold Spring Harbor Laboratory Press on July 7, 2008 - Published by www.proteinscience.orgDownloaded from 



Selection of representative protein  data  sets 

Pearson, W.R. & Lipman,  D.J. (1988). Improved  tools for biological 
sequence  comparison. Proc. Natl. Acad. Sei. USA 85, 2444-2448. 

Rooman,  J.M. & Wodak,  S.J. (1988). Identification of predictive se- 
quence  motifs limited by protein  structure  data base size. Science 
335,45-49. 

Sander, C. & Schneider, R. (1991). Database of homology-derived pro- 
tein structures  and  the  structural meaning of sequence alignment. 
Proteins 9 ,  56-68. 

Sedgewick, R. (1983). Algorithms. Addison Wesley, Reading, Massa- 
chusetts. 

417 

Smith, T.F. & Waterman, M.S. (1981). Identification of common mo- 
lecular subsequences. J. Mol. Biol. 147, 195-197. 

Taylor, W.R. & Orengo,  C.A. (1989). Protein  structure  alignment. J.  
Mol. Biol. 208, 1-22. 

Unger, R., H a d ,  D.,  Wherland, S., & Sussman, J.L. (1989). A  3D 
building blocks approach  to analyzing and predicting structure of 
proteins. Proteins 5, 355-373. 

Vriend, G. &Sander, C .  (1991). Detection of common three-dimensional 
substructures  in  proteins. Proteins 11, 52-58. 

 Cold Spring Harbor Laboratory Press on July 7, 2008 - Published by www.proteinscience.orgDownloaded from 


