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ABSTRACT 

Motivation: Proteins recognizing short peptide fragments play a 

central role in cellular signaling. As a result of high-throughput tech-

nologies, peptide-binding protein specificities can be studied using 

large peptide libraries at dramatically lower cost and time. Interpreta-

tion of such large peptide data sets however is a complex task, es-

pecially when the data contain multiple receptor binding motifs, and/ 

or the motifs are found at different locations within distinct peptides. 

Results: The algorithm presented in this paper, based on Gibbs 

sampling, identifies multiple specificities in peptide data by perform-

ing two essential tasks simultaneously: alignment and clustering of 

peptide data. We apply the method to de-convolute binding motifs in 

a panel of peptide data sets with different degrees of complexity 

spanning from the simplest case of pre-aligned fixed-length pep-

tides, to cases of unaligned peptide data sets of variable length. 

Example applications described in this paper include mixtures of 

binders to different MHC class I and class II alleles, distinct classes 

of ligands for SH3 domains, and sub-specificities of the HLA-

A*02:01 molecule. 

Availability: The Gibbs clustering method is available online as a 

web server at http://www.cbs.dtu.dk/services/GibbsCluster 

Contact: mniel@cbs.dtu.dk 

Supplementary information: Supplementary Data are available at 

Bioinformatics online. 

 

1 INTRODUCTION 

Peptides are short amino acid sequences occurring ubiquitously in 

biological processes, such as metabolism, signal transduction and 

immune response. They are also extensively used in research to 

mimic functional or (linear) structural aspects of proteins and pro-

tein interactions. The advantage of using peptides lies in the rela-

tive ease in generating large libraries of sequences, such as in 

phage display technologies (Koivunen et al., 1999; Bratkovič, 

2010). More recently, developments in high-throughput peptide 

microarrays have allowed producing large-scale data sets of pep-
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tide-ligand interactions, and have been applied to various problems 

including antibody-antigen interactions, peptide-MHC binding, 

kinase binding motifs and other receptor-ligand interactions (Soen 

et al., 2003; Schutkowski, 2005; Uttamchandani and Yao, 2008; 

Halperin et al., 2011). 

Identifying receptor-ligand binding motifs within peptide data sets 

is a highly challenging task for at least two major reasons which 

we term alignment and poly-specificity. The alignment problem 

arises because most receptor motifs are weak and short making 

identification of the binding register within the ligands not trivial 

(Nielsen et al., 2004). The poly-specificity problem arises because 

receptor-ligand data sets often contain multiple motifs either due to 

the experimental setup or to the actual poly-specificity of the re-

ceptor (Gfeller, 2012). Several bioinformatics methods have been 

developed attempting to deal with these challenges and detect sub-

tle sequence signals in peptide data sets, including motif alignment 

(Bailey et al., 2006), Gibbs sampling (Lawrence et al., 1993), Hid-

den Markov Models (Noguchi et al., 2002) and artificial neural 

networks (Nielsen and Lund, 2009). In particular, artificial neural 

networks (ANNs) have shown a high performance on this kind of 

data (Wang et al., 2010; Andreatta et al., 2011). Significant corre-

lations between residues have been found in peptide interaction 

domains (Gfeller et al., 2011). Although positional correlations can 

be accurately captured by ANNs, the specificities of such domains 

can in many cases more intuitively be represented by multiple 

position-specific scoring matrices (PSSM) (Bailey and Elkan, 

1995; Gfeller et al., 2011; Kim et al., 2011). Multiple PSSMs allow 

visualizing poly-specificities as sequence logos of the different 

binding modes.  

While the above methods attempt to deal with the challenges in-

volved in motif identification in peptide data sets, they all suffer 

from the limitations of only dealing with single specificities or 

requiring the input data to be pre-aligned to a common motif.  In 

this paper, we describe a novel approach for effective alignment 

and clustering of peptide data going beyond these limitations. In 

the Gibbs clustering method, alignment and specificity clustering 

are performed simultaneously by sampling the space of possible 

solutions using a Gibbs sampling strategy. Each cluster is repre-

sented by a PSSM, and the method aims at maximizing the infor-

mation content of individual matrices while minimizing the over-

lap between distinct clusters.  

© The Author (2012). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Associate Editor: Prof. Alfonso Valencia

 Bioinformatics Advance Access published October 24, 2012
 by Soren B

runak on D
ecem

ber 12, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


 

2 

2 METHODS 

The Gibbs clustering algorithm attempts to group the input peptide 

data into a number of clusters and for each cluster identify the 

optimal local sequence alignment based on the optimization of the 

fitness of the system in terms of Kullback-Leibler distance (KLD) 

sum of the alignments. The KLD allows measuring the information 

gain of an observed amino acid distribution compared to a back-

ground distribution (the frequency of each amino acid in random 

protein sequences). A given alignment can be represented by a log-

odds (LO) weight matrix, which summarizes the amino acid pref-

erences for each column of the alignment. Throughout the paper, 

we graphically represent LO matrices using the sequence logo 

visualization tool Seq2Logo (Thomsen and Nielsen, 2012). 

2.1 Log-odds matrices 

 

A log-odds weight matrix is calculated as log(pA,j / qA), where pA,j 

is the frequency of amino acid A at position j, and qA is the back-

ground frequency of A. These frequencies are calculated as de-

scribed in Nielsen et al., 2004, including heuristic sequence 

weighting and pseudo-count correction. To avoid the creation of 

small highly specialized clusters, we introduce an additional term 

to the log-odds matrix calculation to account for the size of the 

alignment. In our scheme, terms in the PSSM are calculated using: 

   

       (1) 

 

  

where n is the number of peptides in the alignment, σ is a weight 

on small clusters, and pA,j’ is the pseudo-count corrected frequency. 

The function of σ is to flatten the log-odds matrix when the align-

ment is composed of few sequences (n small), but its effect is mi-

nor when the matrix is constructed on many data points (n large). 

Practically, it avoids the creation of small and specialized align-

ments, favoring instead larger and more general ones. 

A peptide x can be scored simply by adding the LO values for the 

amino acid found at each position in x: 

         

                  (2) 

 

where j is the index over the positions in the alignment core, and A 

is the amino acid found at position j in x. However, when evaluat-

ing the fitness of a given sequence x in an alignment (where x is 

part of the alignment), we must take the precaution of excluding x 

from the matrix calculation before doing the evaluation. We call 

LOA,j’ the log-odds matrix made without sequence x. 

2.2 Scoring function 

 

In the general case, a Gibbs clustering solution is composed of g 

clusters, each with a corresponding alignment and LO matrix. 

When evaluating a clustering solution, we aim to maximize the 

intra-cluster fitness of the alignment while minimizing the similar-

ity between different clusters. In other words, the distance between 

points in the same cluster should be as small as possible, whilst the 

distance between points in different groups should be maximal. In 

the Gibbs clustering algorithm, we implement this maximization 

using the relationship: 

 

               (3) 

           
 

where Si is the score of a given peptide to the log-odds matrix 

LOA,j’ of cluster i. Note that, as discussed above, the log-odds ma-

trix of group i is calculated excluding the peptide to be scored. The 

max() part of the equation determines the inter-cluster similarity, 

i.e. which cluster is the closest to cluster i. If we imagine to have, 

besides the g clusters given by the data, and additional cluster 

composed of the universe of natural peptides, the amino acid fre-

quencies pA,j’ in this extra group would be equal to the background 

frequencies qA for any amino acid A. Thus log(qA/ qA)=0 in equa-

tion 1, leading to a LOA,j matrix composed of zeros which gives 

scores SBG=0 for all sequences. This justifies the zero in equation 

3, and provides a generalization for the case where there is only 

one cluster, with Si*=Si . 
The parameter λ modulates the weight of inter-cluster similarity on 

the final sequence score. For λ=0 overlap between clusters is not 

penalized, leading to tight but promiscuous clusters. Large λ values 

put emphasis on inter-cluster similarity, at the expense of consis-

tency within the same group.  

Equation 3 defines the energy function of a single sequence in the 

alignment. The overall score of the alignment/clustering is given 

by the average score of all sequences in the data set. The fitness of 

the system can be thought of as the relative entropy or Kullback-

Leibler distance (KLD) from the background model made on ran-

dom peptides. 

2.3 Moves of the algorithm 

 

Initially, peptides are distributed randomly in g clusters. Then the 

algorithm proceeds with a number of “moves” to align and cluster 

the sequences and optimize the KLD of the alignment/clustering. 

The probability of accepting a move is given by: 

    

      (4) 

 

where dE is the energy change as a result of the move, and T is a 

scalar commonly known as the temperature of the system, lowered 

by discrete steps during the iterations. 

The algorithm consists of 3 different moves: i) Single sequence 

move: in this move, we attempt to transfer a peptide x from one 

group G0 to a destination group Gd chosen at random. The score 

So* of x in its original cluster is calculated using equation 3, select-

ing the core register that gives the highest score. In the same way, 

Sd* is obtained for the destination group. The move is then ac-

cepted or rejected following equation 4, where dE = Sd*-So*. ii) 

Simple shift: this move attempts to move a peptide x within a 

group, by applying a random shift to the alignment core of x. The 

score of x is calculated before and after the shift, and the dE be-

tween the two configurations determines whether the move is ac-

cepted or rejected according to equation 4. iii) Phase shift: the 

entire alignment of a group Go is shifted a random number of posi-

tions to the left or to the right. This move may be important if the 

alignment reaches a local minimum where the sequences are opti-

LOA, j =
n

n + σ
log

pA, j '

qA

S = LOA, j

j

 '

Si

* = Si − λmax
1≤n≤g
n≠i

Sn ,0( )

P = min 1,e
dE

T   
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mally aligned to each other but the core window is not centered on 

the most informative motif. As in the other moves, the configura-

tions before and after the move are compared to calculate whether 

the move is favorable or unfavorable, and accepted/rejected fol-

lowing equation 4.  

The “simple shift” and “phase shift” moves have been described 

before for multiple sequence alignment (Lawrence et al., 1993; 

Nielsen et al., 2004). The new feature of the Gibbs clustering 

method is the additional “single sequence” move, which allows 

transferring sequences between different clusters. The three moves 

are generally performed with different frequency. The simple shift 

move, with the lowest impact among the three moves, is attempted 

at each iteration. Single sequence moves are performed every Fr 

iterations. Phase shifts, which affect at the same time all peptides 

in a given clusters, would generally be the least frequent and occur 

every Fs iterations, with Fs>Fr>1. Throughout the paper these pa-

rameters are fixed to Fr=10 and Fs=1,000. The default cooling 

schedule uses 20 linear temperature steps starting from an initial T 

of 0.8 down to 10-5. 

2.4 Trash cluster to collect spurious sequences 

 

The algorithm allows including an additional cluster, called trash-

cluster, to collect the peptides that appear not to match any of the 

motifs being identified. The behavior of the trash-cluster is identi-

cal to any of the other clusters, with the difference that the se-

quences in the trash cluster do not contribute to the overall score of 

the system. The trash-cluster can be thought of as the universe of 

all natural peptides (i.e. the background model) and peptides can 

be moved in and out from the trash-cluster with probability defined 

by the Monte Carlo relationship (equation 4), where the score to 

the trash-clusters is always equal to the background baseline (zero 

by default, but can be set to different values to adjust the levels of 

sensitivity and specificity). 

2.5 Measures of clustering quality 

 

As a measure of clustering quality, we used the Adjusted Rand 

Index (ARI). This measure is based on the well-known Rand index 

(Rand, 1971), but corrected for chance and class size. We imple-

mented the ARI corrected for chance as in Hubert and Arabie, 

1985. As a term of comparison, we also used a modified version of 

the Matthews correlation coefficient (MCC) extended to more than 

the conventional two classes (positives and negatives). In the gen-

eral case where A mixed specificities are grouped in C clusters, a 

MCC is initially calculated for each cluster. The true positives (TP) 

for group Ci are given by the class Ai with highest number of se-

quences in Ci, the false positives (FP) by the number of sequences 

in Ci not belonging to Ai, the false negatives (FN) by the number of 

sequences labeled Ai not found in Ci, and the true negatives (TN) 

are all the remaining sequences. The MCC for the entire matrix is 

then calculated as the average MCC of each cluster. The notation 

for ARI and MCC calculation is also illustrated in Table S1. 

2.6 Training from multiple initial seeds 

 

Gibbs sampling is a heuristic rather than a rigorous optimization 

procedure. Therefore, it cannot guarantee that the most optimal 

solution is always reached from any starting configuration. A 

common procedure to boost performance is to repeat the sampling 

from a number of initial random configurations, and select the 

solution that appears to be optimal in terms of the fitness function 

that governs the system. Clearly, this is a sound procedure only if 

optimal fitness (KLD) corresponds to optimal clustering of the 

data. We investigated the correlation between fitness and quality of 

the clustering on MHC class I data sets containing different num-

ber of specificities. Binders to different alleles were combined to 

obtain mixtures of 5 to 8 alleles, and then the Gibbs clustering 

algorithm was used to recover the distinct motifs. For each allele 

combination, we ran the algorithm from 40 random initial configu-

rations, measuring for each the fitness in terms of KLD and the 

clustering quality in terms of ARI.  

In general, we observe that both KLD and ARI tend to decrease as 

the number of alleles in the mixture increases (Figure S1). Yet, in 

the case of MHC class I where motifs are very strong and distinct 

from each other, it is possible to reconstruct with high accuracy 

even up to 8 different specificities. The same considerations can be 

made if we measure clustering quality in terms of MCC instead of 

ARI, which correlates in very similar fashion to KLD (Figure S2). 

These results show that, only based on the KLD, it is possible to 

filter out sub-optimal solutions. By running the algorithm from 

different starting conditions, and selecting solutions with high 

KLD, the method achieves a higher classification performance. 

Multiple seeding and automatic selection of the optimal solution 

are integrated in the Gibbs clustering algorithm. 

3 RESULTS 

The Gibbs clustering algorithm performs two essential tasks simul-

taneously: alignment and clustering of peptide data. Here, we use 

the method to de-convolute binding motifs in a panel of different 

peptide data sets with different degrees of complexity spanning 

from the simplest case of pre-aligned fixed-length peptides, to 

cases of unaligned peptide data sets of variable length. More de-

tails about the data sets are given as Supplementary Data. 

3.1 Pre-aligned data - Mixtures of binders to MHC 

class I alleles 

In order to benchmark the clustering aspect of the Gibbs algorithm, 

we used a set of pre-aligned fixed-length peptides with experi-

mentally confirmed binding to representatives of the 12 MHC class 

I supertypes (see Supplementary Data). These 12 MHC molecules 

all have highly specific binding motifs with limited mutual overlap 

(Lund et al., 2004). For each number of alleles n = {1,2,...,8}, 10 

different combinations of n alleles were constructed randomly 

from the pool of the 12 MHC molecules. For each data set, the 

algorithm was used to cluster the peptides into c = {1, 2,..., 12} 

groups and the c with optimal KLD score was recorded. Figure 1 

shows the results of this calculation. For λ=0.5, the number of 

predicted motifs correlates well with the actual number of alleles in 

the data set. With smaller values of λ, the method tends to over-

estimate the number of motifs, while for larger λ clusters with 

shared similarities are more heavily penalized and are merged into 

fewer clusters. The predictions are most consistent (lowest varia-
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tions in the optimal number of clusters) on mixtures of few alleles. 

This is a natural consequence of both the increased complexity of 

the search space as the number of alleles is increased, and the 

promiscuity of MHC binding peptides.  Although the 12 MHC 

class I molecules share very limited overlap in specificity, a larger 

collection of alleles increases inevitably the chance of including 

cross-binding peptides the data set.  

3.2 Unaligned data - Mixtures of binders to MHC 

class II alleles 

To demonstrate the performance of the Gibbs clustering method on 

data sets of unaligned peptides of variable length, we turned to the 

MHC class II system. As opposed to MHC class I molecules, 

which in the vast majority of cases interact only with peptides of 

length between 8 and 10 amino acids, MHC class II molecules can 

bind peptides of highly variable length (Rammensee et al., 1999). 

Binding of a peptide to a MHC class II molecule is primarily de-

termined by a core of 9 amino acids, but the location of the 9-mer 

core within the peptide is not known a priori. Therefore, MHC 

class II binding data is by nature unaligned with respect to the 

binding core.  

The Gibbs clustering algorithm was applied to identify motifs in a 

set of binders to the MHC class II HLA-DRB1*03:01 and HLA-

DRB1*04:01 molecules. Compared to MHC class I, class II alleles 

share a high degree of overlap in their binding specificities. This 

promiscuity between different MHC class II molecules compli-

cates the performance evaluation of the clustering algorithm, as a 

peptide may match the motif of multiple alleles, in which case it is 

not clear in what cluster the sequence should be rightfully placed. 

To lower this potential degree of cross-binding, the data set was 

constructed to include experimentally confirmed binders with 

weak predicted cross-binding potential (for details refer to Sup-

plementary Data). We maintained the same parameters used for the 

MHC class I benchmark, except for λ which was increased to 0.8 

to avoid the creation of excessively small and specialized clusters 

(running the algorithm with λ=0.5 resulted, in particular, in the 

DRB1*03:01 peptides being sub-divided into several small and 

highly specialized clusters). Additionally, since HLA-DR mole-

cules are known to prefer hydrophobic amino acids at position P1, 

we imposed a preference for this kind of amino acids in the Gibbs 

sampling moves as proposed by Nielsen et al., 2004.  The algo-

rithm was run multiple times to create 1-4 clusters, each started 

from 5 different random configurations. For each cluster size, the 

solution with the highest KLD score was recorded. The optimal 

solution indicated the presence of two clusters (Figure S3), and the 

corresponding motifs are shown in Figure 2. The main distinctive 

feature in the logos of Figure 2 is the acidic (D) anchor at position 

P4 and a basic (K/R) anchor at position 6 of the first motif, which 

are absent in the second logo. These preferences characterize the 

binding motif of HLA-DRB1*03:01. The classification of the pep-

tides in the two groups (Figure 2c) demonstrates that most peptides 

are clustered correctly, with an accuracy of 79% and MCC of 0.59. 

3.3 Gibbs clustering as a tool to remove noise from 

data 

In the previous examples, we assumed that all sequences fit into 

one cluster or another. However, experimental data often contains 

some level of noise and hence peptides which may not fit in any of 

the motifs. The Gibbs clustering algorithm allows, by the inclusion 

of a trash-cluster, a very simple yet highly effective manner to 

detect such spurious peptides and remove them from the motif 

identification (see methods for the implementation). 

In Table S2 is shown the effect of the trash cluster on mixtures of 

1, 2, 3 and 4 MHC class I alleles polluted with 50 random peptides. 

We observed that the majority of the random peptides were placed 

into the trash-cluster, but that an average of about 5 peptides were 

assigned to one of the clusters. This fits the overall expectation as 

1-5% of random natural peptides are estimated to bind to a given 

MHC class I molecules (Rao et al., 2009; Yewdell and Bennink, 

Figure 1: Box-and-whisker plot showing the optimal number of clusters 

on mixtures of different MHC class I alleles. The algorithm was run on 10 

different random combinations of n alleles, where n = {1...8}, starting with 

c = {1...12} clusters for each combination. The optimal number of clusters 

of each of the 10 combinations is the c with highest KLD of the system. 

The four panels show the predicted number of clusters for four different 

values of λ for a fixed value of σ = 10. With λ=0.5 the correlation between 

number of alleles in the data set and predicted number of clusters falls 

approximately on a straight line with slope = 1. 

 

Figure 2: Reconstructed binding motifs from a mixture of binders to 2 

MHC class II alleles. The data set was composed of respectively 202 and 

201 binders to the molecules HLA-DRB1*03:01 and HLA-DRB1*04:01. In 

a) and b) are shown the logos of the two motifs identified by the algorithm, 

with the first cluster predominantly composed of DRB1*03:01 binders and 

the second of DRB1*04:01 binders. c) confusion matrix for the two classes 

of binders, the correlation coefficient is MCC = 0.59. 
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1999). Furthermore, most of the random peptides that were in-

serted into one of the clusters had consistently lower scores than 

the actual binders (Figure S4). The Gibbs clustering algorithm 

allows obtaining different levels of sensitivity and specificity by 

varying the threshold to assign a peptide to the trash cluster. In-

creasing this threshold would remove more noise (peptides with 

low cluster score) from the data set, but at the same time would 

increase the number of binders placed in the trash. In the experi-

ments with noisy data (Table S2), a few sequences measured to be 

binders to a given allele are assigned to the trash (2 for the 1 clus-

ters case, 2 for 2 clusters, 2 for 3 clusters, 4 for 4 clusters). Interest-

ingly, none of these peptides appear to match the binding motifs of 

the alleles they were measured to bind to. Using the state-of-the-art 

MHC class I binding prediction method NetMHCcons (Karosiene 

et al., 2012), these peptides all show extremely low predicted bind-

ing affinity to their respective HLA restriction element (>10,000 

nM, see Table 1). Furthermore, an experimental re-examination of 

three of these peptides confirmed that they are indeed non-binders 

to their respective HLA molecule (J. Sidney, personal communica-

tion). The method was thus able, whilst grouping distinct specifici-

ties into different clusters, to also identify false positives that most 

likely correspond to erroneous measurements in the experimental 

assay. Introducing the trash-bin for the MHC class II benchmark 

also led to an improved clustering performance, removing two 

outlier peptides, maintaining the optimal solution to consist of two 

clusters and enhancing the performance to MCC=0.62 (data not 

shown). 

3.4 SH3 domains 

The Src Homology 3 domain (SH3 domain) is a small protein in-

teraction module abundantly found in eukaryotes. SH3 domains 

consist of about 60 amino acids and have been shown to mediate 

protein-protein interactions by preferentially binding to short 

proline-rich sequences (Yu et al., 1994). The minimal consensus 

sequence for SH3 domain binding is composed of two prolines 

located two amino acids apart (PxxP), but it is commonly recog-

nized that there exist two main classes of binders: class I ligands 

having a general consensus sequence +xφPxφP and class II ligands 

with consensus sequence φPxφPx+ (where + is a positively 

charged amino acid, usually R, φ is a hydrophobic amino acid, and 

x any amino acid) (Mayer, 2001). However, there are a few excep-

tions to the these predominant motifs, and a number of non-

consensus ligands have been identified (reviewed in Carducci et 

al., 2012; Saksela and Permi, 2012).  

The Gibbs clustering algorithm was run on a large data set of 2,457 

peptides binding to the Src SH3 domain. The peptides are 12 

amino acids long and unaligned with respect to the binding mo-

tif(s) to the SH3 domain. As the data set may contain non-

consensus ligands as well as noise, we performed the align-

ment/clustering with the addition of a trash-cluster, which collects 

peptides that do not match any of the main motifs. To ensure the 

removal of non-consensus sequences that may only partially match 

the major motifs, the baseline for the trash cluster was set to a rela-

tively high value of 10. The sequence motifs identified by the 

Gibbs clustering are shown in Figure 3. Aligning all sequences into 

a single cluster (Figure 3a) showed the characteristic PxxP pattern, 

in this case preceded by a leucine (L) and arginine/proline (R/P) 

three positions back. Clustering the peptides into two groups re-

vealed the two sequence motifs shown in Figure3b. They corre-

spond very well to the two known classes of SH3 domain ligand, 

one with the PxφPxRN pattern (class II) and the other with pattern 

RxφPxφP (class I). Dividing further the data set and creating 3 

clusters led to the emergence of a new subset of specificity (panel 

c) besides the two described in the 2-clusters case. Although sev-

eral exceptions to the two main classes have been discovered 

(Saksela and Permi, 2012), this RxRPφP pattern has not, to the best 

of our knowledge, been described before. Splitting the data set 

further to more than 3 clusters does not show new specificities 

besides those described here. 

The two motifs displayed in Figure 3b agree strongly with the re-

sults obtained in a previous study (Kim et al., 2011), where the 

MUSI method was applied to the same phage display data set. The 

Gibbs clustering method however has the strong advantage, com-

pared to MUSI, in that the data do not need to be aligned prior to 

Peptide HLA IEDB a Predicted b Validated c 

DHHFTPQII A*01:01 62 28485 24822 

SQTSYQYLI B*07:02 248 24349 49928 

NAFGWENAY B*07:02 350 24481 - 

TVFKGFVNK B*27:05 235 13723 - 

ELPIVTPAL B*40:01 314 15208 - 

ADKNLIKCS B*40:01 316 33324 76190 
a Binding affinity deposited in the Immune Epitope Database. 
b Predicted binding affinities using NetMHCcons. 
c Re-tested binding affinities after detection as outliers. 

As a rule of thumb, generally affinity<50nM identifies a strong binder, 

50nM<affinity<500nM a weak binder, affinity>500nM non-binders. 

Figure 3: Sequence motifs on SH3 domain binding data clustered in 1 to 3 

clusters. a) Sequence motif of the data set aligned in one single cluster. The 

cluster contains 2,360 peptides, 97 peptides were discarded to the trash 

cluster. b) Sequence motifs for SH3 domain data split in two clusters. The 

two groups are in strong agreement with the canonical class I (right, 1,892 

peptides) and class II (left, 498 peptides) types of SH3 domain ligands. 67 

peptides were moved to the trash cluster. c) Sequence motifs when the data 

is split in 3 clusters. The clusters have sizes of respectively 1,606, 490 and 

305 peptides, with 56 peptides discarded to the trash cluster. 

Table 1: Measured, predicted and re-tested binding affinities (in nM) for 

peptides assigned to the trash cluster. 
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clustering.  Instead, in the Gibbs clustering method alignment and 

clustering are performed simultaneously. In the specific case of 

SH3 domain binding, where both motifs share a strong common 

PxxP pattern, a pre-alignment strategy to a common motif like the 

one implemented in MUSI can be successful. However, in the 

general case, the different motifs will be weak and will not share a 

common pattern. On such data, it becomes difficult if not impossi-

ble to accurately identify the binding core within the peptide data 

set using alignment techniques (Nielsen et al., 2004). For instance, 

by applying the MUSI method on the MHC class II data set from 

above, we found the solution with two motifs being suboptimal 

compared to a solution with a single motif. Forcing MUSI to gen-

erate two clusters, the overall performance was MCC=0.21, which 

is significantly lower than what was obtained using the Gibbs clus-

tering method (p<0.01, bootstrap test). 

3.5 Sub- specificities of MHC class I molecules 

 

Peptide binding to MHC molecules is one of the most selective 

steps in determining MHC class I-restricted CTL responses. The 

strength of this interaction is commonly measured in terms of bind-

ing affinity between peptide and MHC complex. However, not all 

peptides with high affinity are immunogenic, indicating the pres-

ence of other factors determining an effective response (Assarsson 

et al., 2007). Some studies have suggested that the stability of the 

MHC-peptide complex is a major player in determining immuno-

genicity (Busch and Pamer, 1998; Geironson et al., 2012; Harndahl 

et al., 2012). 

By means of the Gibbs clustering algorithm, we investigated if 

there exist sub-specificities for MHC class I binding, and whether 

these sub-specificities correlated with different levels of affinity 

and/or stability. For this purpose, we used a data set recently pub-

lished by Harndahl et al., 2012 consisting of 650 peptides binding 

with affinity stronger than 500nM to HLA-A*02:01 for which also 

the peptide stability had been measured. We applied the Gibbs 

clustering algorithm to split the data set in two clusters using de-

fault parameters and investigated the properties of the sequences in 

the two groups. 

The sequence motifs for the resulting clusters are shown in Figure 

4. The first cluster (G1), composed of 441 sequences, was highly 

specific in terms of amino acid preference, with [LIM] at P2 and 

[VLI] at P9. The contribution from other positions is secondary. 

The second cluster (G2) is more promiscuous at both anchor posi-

tions P2 and P9, especially at P2 where several amino acids other 

than L, I and M are allowed. The peptides in the two groups had a 

median binding affinity of 6 nM and 9 nM, for G1 and G2 respec-

tively. This difference is not significant (p=0.095, Wilcoxon rank-

sum test). In contrast, we observed that peptides in G1 have a sig-

nificantly higher stability compared to G2 (p<10-6, Wilcoxon rank-

sum test): the median half-life of the MHC-peptide complex in G1 

is Th≈5.7 hours, whereas in G2 it is only Th≈2.1 hours. 

From these results, we can conclude that the method identified 

subtle differences between the binders to HLA-A*02:01 that ap-

pear to differentiate stable binders from unstable binders. In par-

ticular, as previously noted peptide-HLA-A*02:01 complexes ap-

pear to be destabilized by a suboptimal amino acid in just one of 

the two anchor positions and in particular position P2 (Harndahl et 

al., 2012). 

4 DISCUSSION 

We proposed an efficient algorithm to identify multiple specifici-

ties in peptide data sets. The applications of the method are numer-

ous, ranging from the deconvolution of poly-specificities contained 

in a data set, to the analysis of sub-specificities within a known 

binding motif. The algorithm aims at identifying the solution (the 

set of clusters and corresponding alignments) that optimally fits the 

peptide data set. The optimal solution is automatically selected and 

the identified binding motifs are visualized as individual sequence 

logos. Using a panel of benchmark data sets, we have demon-

strated the power of the Gibbs clustering method in deconvoluting 

poly-specificities contained both in pre-aligned and unaligned pep-

tide data sets covering the MHC class I, MHC class II and human 

SH3 domain systems. 

Gibbs sampling is a powerful approach to explore large spaces of 

possible solutions. In the case of amino acid sequences, there are 

immense possible ways of aligning and clustering them as soon as 

the number of sequences becomes bigger than a handful. The 

probabilistic nature of Gibbs sampling allows efficient sampling of 

the search space and convergence towards a state of high fitness of 

the system. Compared to other motif identification methods, Gibbs 

clustering is unique in that it incorporates alignment and clustering 

in a set of alternative sampling moves, allowing for simultaneous 

identification of clusters and optimal sequence alignment. This 

property makes the method capable of identifying subtle and rela-

tively weak binding motifs (as demonstrated for the case of MHC 

class II binding motifs) but it comes at the price of computational 

speed. Analyzing the 400 peptides in the MHC class II binding 

data set takes a little more than 5 minutes using Gibbs clustering. 

This running time is reduced to 15 seconds using the MUSI algo-

rithm (Kim et al., 2011) yet at the cost a of dramatic and signifi-

cant drop in accuracy.  

In a general situation, it is not known a priori how many motifs are 

contained in a data set. When presented with a set of experimental 

data, the investigator ideally wants a definitive answer to the ques-

tion: “How many motifs are contained in my data?” Unfortunately 

the answer is not unambiguous, not so much for a fault of mathe-

matical and computational methods, rather for the ambiguity of the 

Figure 4: Sub-motifs of HLA-A*02:01 binding specificity. The peptides in 

the two clusters have similar affinity but differ significantly in stability. The 

sequence logo in the left panel is composed mainly of stable peptides 

(Th≈5.7 hours) whereas peptides in the second group have lower stability 

(Th≈2.1 hours). 
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question. The answer depends on the level of resolution that is 

expected for the particular problem at hand. If the goal is a rough 

classification of sequences based on global differences then the 

resulting number of clusters will be small. Conversely, more parti-

tions would be produced if we were searching for subtler distin-

guishing sequence characteristics. The “true” number of clusters is 

therefore not an objective answer but depends on the kind of bio-

logical question that is being asked. In the Gibbs clustering algo-

rithm, we introduce a parameter λ that aims to modulate the degree 

of resolution required by the user. High λ penalizes overlap be-

tween clusters, and tends to create coarser clusters, whereas low λ 

results in smaller and specialized clusters. For example, we 

showed that for a certain value of λ, we could accurately identify 

the number of MHC class I molecules contained in a data set of 

mixed specificities. In another example, we split one of these very 

same specificities into sub-motifs, and looked for subtle differ-

ences in a rather homogenous population of peptides. And these 

are not the extremes: one could conceive partitioning the data fur-

ther into more specialized sub-populations, as well as obtaining a 

coarser picture of similarities between alleles. The same data may 

have different levels of resolution depending on the aim of the 

analysis, and the investigator should keep this in mind when using 

a classification method like the one presented here. The Gibbs 

clustering method in its current form is limited to handle situations 

where motifs are of uniform length. Likewise, the method can only 

handle amino acid input data. The reason for this limitation is that 

most of its unique features like pseudo-count estimates from Blo-

sum substitution matrices and sequence weighting of are specific 

for amino acid data. 

In conclusion, we believe the Gibbs clustering method to be both a 

highly accurate and very user-friendly tool that will allow re-

searchers to interpret peptide data sets in terms of receptor speci-

ficities in a highly intuitive manner. Therefore, we expect it to 

become an important tool as large-scale peptide chip technologies 

grow to be a cost-effective and accessible platform for investiga-

tion of protein-ligand interactions. The method is highly custom-

izable and publicly available as an online web-server at 

http://www.cbs.dtu.dk/services/GibbsCluster. 
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