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ABSTRACT
Motivation: Prediction of which peptides will bind a spe-
cific major histocompatibility complex (MHC) constitutes an
important step in identifying potential T-cell epitopes suitable
as vaccine candidates. MHC class II binding peptides have a
broad length distribution complicating such predictions. Thus,
identifying the correct alignment is a crucial part of identifying
the core of an MHC class II binding motif. In this context, we
wish to describe a novel Gibbs motif sampler method ideally
suited for recognizing such weak sequence motifs.The method
is based on the Gibbs sampling method, and it incorporates
novel features optimized for the task of recognizing the binding
motif of MHC classes I and II. The method locates the bind-
ing motif in a set of sequences and characterizes the motif
in terms of a weight-matrix. Subsequently, the weight-matrix
can be applied to identifying effectively potential MHC binding
peptides and to guiding the process of rational vaccine design.
Results: We apply the motif sampler method to the complex
problem of MHC class II binding. The input to the method
is amino acid peptide sequences extracted from the public
databases of SYFPEITHI and MHCPEP and known to bind
to the MHC class II complex HLA-DR4(B1*0401). Prior iden-
tification of information-rich (anchor) positions in the binding
motif is shown to improve the predictive performance of the
Gibbs sampler. Similarly, a consensus solution obtained from
an ensemble average over suboptimal solutions is shown to
outperform the use of a single optimal solution. In a large-
scale benchmark calculation, the performance is quantified
using relative operating characteristics curve (ROC) plots and
we make a detailed comparison of the performance with that
of both the TEPITOPE method and a weight-matrix derived
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using the conventional alignment algorithm of ClustalW. The
calculation demonstrates that the predictive performance of
the Gibbs sampler is higher than that of ClustalW and in most
cases also higher than that of the TEPITOPE method.
Contact: mniel@cbs.dtu.dk

INTRODUCTION
Only a small fraction of the possible peptides that can be gener-
ated from proteins of pathogenic organisms actually generate
an immune response. In order to be presented to CD8+ cyto-
toxic T lymphocytes (CTLs), a precursor peptide must be
generated by the proteasome and transported to the endoplas-
mic reticulum (ER) by the transporter associated with antigen
processing (TAP) before it can bind to a major histocompat-
ibility complex class I (MHC I) molecule (Serwold et al.,
2002). Hereafter, it is transported to the cell surface, where
it may induce a CTL response that can kill infected cells.
Whereas MHC I molecules mainly sample peptides from the
cytosol, MHC II samples peptides derived from endocytosed
proteins. Unfolded polypeptides bind MHC II in the endocytic
organelles [reviewed by Castellino et al. (1997)]. Peptides
presented by MHC II in turn activate CD4+ helper T lymph-
ocytes (HTLs) to stimulate cellular and humoral immunity
against the appropriate microorganism.

The most selective step in antigen presentation is the binding
to the MHC molecule (Yewdell et al., 1999). The specificity of
this binding and that of some of the other processes involved
in antigen presentation can be predicted from the amino acid
sequence. Such predictions can be used to select epitopes for
use in rational vaccine design and to increase the understand-
ing of the role of the immune system in infectious diseases,
autoimmune diseases and cancers.
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Both MHC I and MHC II are highly polymorphic (vari-
able at each gene locus), and the specificity of the alleles
(variants) is often very different. Thus different individuals
will typically react to a different set of peptides from a given
pathogen. This high polymorphism has large implications for
vaccine design. Each of the MHC molecules has a potential
different specificity, and if a vaccine needs to contain a unique
peptide for each of these molecules, it will need to comprise
thousands of peptides. Moreover, the task of deriving MHC
prediction algorithms would be immense. Nevertheless, many
MHC alleles have very similar binding specificities, and it is
therefore often possible to find promiscuous peptides that bind
to a series of MHC variants. This has two important implic-
ations. First, it limits the number of epitopes needed to be
included in a vaccine design. Second, it allows high accur-
acy predictions for MHC alleles also in situations where the
binding motif is poorly characterized (Brusic et al., 2002)

The core binding motif of both MHC I and MHC II is
approximately nine amino acids long (Rammensee et al.,
1999, http://www.uni-tuebingen.de/uni/kxi/). Whereas the
peptide binding groove in the MHC I molecule tends to be
closed at either end and MHC I rarely binds peptides much
longer than nine amino acids, the ends of the MHC II binding
groove are open. Consequently, MHC class II can accom-
modate much longer peptides—possibly even whole proteins
(Sette et al., 1989a; Castellino et al., 1997). This difference
has important implications for the development of algorithms
predicting binding. The specificity of an MHC I molecule can
be derived by extracting the motif from a set of 9mer pep-
tides known to bind to a given allele. In contrast, a set of
peptides binding MHC II will typically be of different length,
and therefore they need to be aligned correctly before the nine
amino acid long core-binding motif can be identified.

Many different methods have been applied to predict
peptide–MHC binding, including simple binding motifs,
quantitative matrices, hidden Markov models and artificial
neural networks. For class I, these gap- and alignment-free
methods can readily be applied since the binding motif is well
characterized and most natural peptides that bind MHC class I
are of close to equal length (Parker et al., 1994; Brusic et al.,
1994; Rammensee et al., 1999; Buus et al., 2003; Nielsen
et al., 2003). However, the situation for MHC class II bind-
ing is quite different due to the great variability in the length
of natural MHC binding peptides. This length variability
makes alignment a crucial and integrated part of estimat-
ing the MHC binding motif and predicting peptide binding.
Quantitative matrices estimated from experimentally derived
position specific binding profiles have given reasonable per-
formance in prediction of MHC class II binding (Sette et al.,
1989b; Hammer et al., 1994; Marshall et al., 1995; Sturniolo
et al., 1999). However, such matrices are very costly to derive,
and more importantly they lack the flexibility of data driven
machine-learning methods to be refined in an iterative man-
ner when more data become available. Brusic et al. (1998a)

have described a hybrid method for predicting peptide–MHC
class II binding. They handle the alignment problem using
an evolutionary algorithm and subsequently apply artificial
neural networks to classify peptides as binding/non-binding.

The advanced motif sampler method described here is
based on the Gibbs sampling method described by Lawrence
et al. (1993). The Gibbs sampler method has earlier been
used extensively for location of transcription factor binding
sites (Thompson et al., 2003) and in the analysis of protein
sequences (Lawrence et al., 1993; Neuwald et al., 1995).
The method attempts to find an optimal local alignment of
a set of N sequences by means of Monte Carlo Metropolis
(Metropolis et al., 1953) sampling of the alignment space. The
scoring-function guiding the Monte Carlo search is defined
in terms of fitness (information content) of a log-odds mat-
rix calculated from the alignment. The general problem to
be solved by the motif sampler is to locate and character-
ize a pattern contained within a set of N amino acids (or
DNA) sequences. In situations where the sequence pattern
is very subtle and the motif weak, this is a highly complex
task, and conventional multiple sequence alignment programs
will typically fail. In the following, we describe a novel
implementation of the Gibbs sampler method specialized and
optimized to locate and characterize the motif of MHC class I
and class II binding. The method applies the advanced tech-
niques of sequence weighting and pseudo-count correction for
low counts as well as differential position specific weighting
(C. Lundegaard et al., unpublished data) and generation of
consensus weight-matrices to estimate the binding motifs.

MATERIALS AND METHODS
Weight-matrix calculation
A central part of the motif sampler algorithm is the weight-
matrix calculation, including pseudo-count correction for
low counts and sequence weighting, from a given sequence
alignment. In order to optimize pseudo-count correction and
sequence weighting parameters of the prediction method, we
first use the Gibbs sampler to calculate weight-matrices from
pre-aligned sequences restricted to a series of MHC class I
molecules.

MHC class I binding data
Peptides known to bind MHC class I molecules were extracted
from the databases of SYFPEITHI (Rammensee et al., 1999,
http://syfpeithi.bmi-heidelberg.com/) and MHCpep (Brusic
et al., 1998b, http://wehih.wehi.edu.au/mhcpep/). Only pep-
tides of length 9 were included. The peptides were clustered
into the nine supertypes (A1, A2, A3, A24, B7, B27, B44,
B58 and B62) as described by Sette and Sidney (1999). These
peptides constitute the training set for the MHC class I binding
weight-matrices. Datasets of peptides for which the bind-
ing affinity to the MHC had been measured as described by
Sylvester-Hvid et al. (2002) were available to us for four of
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Table 1. Data for the training and evaluation of the HLA class I binding
predictions

Supertype N Allele N Nbind

A1 92 HLA-A*0101 283 27
A2 626 HLA-A*0204 528 144
A3 228 HLA-A*0301 212 5
B7 201 HLA-B*0702 154 24

The first column gives the supertype names included in the calculation, the second
column the number of unique 9mer peptides in the training set, the third column the
HLA allele name for the evaluation set data, and the fourth and fifth columns the total
number of peptides and the number of binders in the evaluation set, respectively. Binders
were determined using a threshold of 500 nM.

the nine supertypes (A1, A2, A3 and B7). These datasets
were used to evaluate the prediction accuracy of the corres-
ponding weight-matrix. To avoid over-training, any peptide
found in the training set was removed from the evaluation
set. In Table 1 we provide the number of unique peptides in
the training set, the number of peptides in the evaluation set,
the corresponding allele names and the number of binding
peptides (affinity stronger than 500 nM) for each of the four
supertypes, respectively.

Optimization of parameters for deriving
amino acid frequencies
The Gibbs sampler has a series of free parameters defining
how a weight-matrix is calculated from a multiple alignment.
The optimal parameter setting for the parameters is determ-
ined in a large-scale benchmark calculation using the above
datasets. The most important parameters are

(i) Sequence weighting method.

(ii) Null model.

(iii) Pseudo-count correction method.

(iv) Weight on pseudo-count correction.

(v) Position specific weighting.

(i) Two different strategies for sequence weighting
were tested: sequence clustering and sequence weighting as
described by Henikoff and Henikoff (1994). For sequence
clustering, we use a Hobohm 1-like (Hobohm et al., 1992)
algorithm with ungapped alignment and sequence identity of
62% as cluster threshold. After the clustering, each peptide in
a cluster is assigned a weight equal to 1/Nc, where Nc is the
cluster size. In the Henikoff and Henikoff sequence weighting
scheme an amino acid is assigned a weight w = 1/rs, where r

is the number of different amino acids at a given position in the
alignment and s the number of occurrences of the amino acid.
The weight of a sequence is then assigned as the sum of the
amino acid weights. The method of Henikoff and Henikoff
is fast as the computation time only increases linearly with
the number of sequences. For the clustering algorithm on the

other hand, the computation time increases as the square of
the number of sequences.

(ii) To estimate the significance of a given alignment, the
Gibbs sampler compares the information content with a null
model. The null model is defined in terms of background
amino acid frequencies. Three distinct null models were
tested: the amino acid distribution in the SWISS-PROT data-
base (Bairoch and Apweiler, 2000), a flat distribution and an
amino acid distribution estimated from the raw counts of the
peptides in the input to the Gibbs sample.

(iii) Two strategies for pseudo-count correction were tested:
Equal and Blosum correction. In both cases the pseudo-count
frequency is estimated as described by Altschul et al. (1997).
For the Equal correction, a substitution matrix with identical
frequencies for all amino acid substitutions is applied. For
Blosum correction, a Blosum62 (Henikoff and Henikoff,
1992) substitution matrix is applied.

(iv) The effective amino acid frequency is calculated as
(Altschul et al., 1997)

f = α · f ′ + β · g

α + β
.

Here f ′ is the observed frequency, g the pseudo-count fre-
quency, α the effective sequence number and β the weight on
the pseudo-count correction. When the sequence weighting
is performed using clustering, the effective sequence number
is equal to the number of clusters. When sequence weighting
as described by Henikoff and Henikoff (1992) is applied, the
mean number of different amino acids in the alignment gives
the effective sequence number.

(v) In many situations, prior knowledge about the import-
ance of the different positions in the binding motif exists. Such
prior knowledge can be included with success in the search
for binding motifs (Lundegaard et al., unpublished data).

Gibbs sampling
The algorithm samples possible alignments of the N

sequences. For each alignment a log-odds weight matrix is cal-
culated as log(pi,j /qi), where pi,j is the frequency of amino
acid i at position j in the alignment and qi the background
frequency of that amino acid. The values of pi,j are estim-
ated using sequence weighting and pseudo-count correction
for low counts. Sequence weighting is performed using either
the method described by Henikoff and Henikoff (1994) or
a clustering algorithm, and the pseudo-count correction for
low counts is performed using a Blosum weighting scheme
(Altschul et al., 1997).

The fitness (energy) of an alignment is calculated as

E =
∑
i,j

pij · log
p′

ij

qi

, (1)

where pij is the occupancy number of amino acid i at posi-
tion j in the alignment, p′

ij is the pseudo-count and sequence
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weight corrected amino acid frequency of amino acid i at posi-
tion j in the alignment. Finally, qi is the background frequency
of amino acid i. E is equal to the sum of the relative entropy or
the Kullback–Leibler distance (Kullback and Leibler, 1951)
in the window.

The set of possible alignments is even for a small dataset
very large. For a set of 50 peptides of length 10, the num-
ber of different alignments with a core of nine amino acids
is 2050 ∼ 1015. This number is clearly too large to allow a
sampling of the complete alignment space. Instead, we apply
the Metropolis Monte Carlo algorithm (Metropolis et al.,
1953) to perform an effective sampling of the alignment space.

Two distinct Monte Carlo moves are implemented in the
algorithm: (1) single sequence move and (2) phase shift move.
In the single sequence move, a new starting point for the align-
ment of a sequence is selected at random. In the phase shift
move, the entire alignment is shifted a random number of
residues to the left or right. This last move allows the program
to escape efficiently local minima. This may for example occur
if the window overlaps the most informative motif but is not
centred on the most informative pattern.

The probability of accepting a move in the Monte Carlo
sampling is defined as

P = min

[
1, exp

(
dE

T

)]
, (2)

where dE is the difference in energy between the end and start
configurations and T a scalar. Note that we seek to optimize
the energy function; hence the positive sign for dE in the
equation. T is a scalar that is lowered during the calculation.
Equation (2) gives us the result that moves that increase E

will always be accepted (dE > 0). On the other hand, only
a fraction, given by edE/T , of the moves that decrease E will
be accepted. For high values of the scalar T (T � dE), this
probability is close to 1; however, as T is lowered during the
calculation, the probability of accepting unfavorable moves
will be reduced, forcing the system into a state of high fitness
(energy).

MHC class II binding data
We extracted peptides binding to the MHC class II molecule
HLA-DR4(B1*0401) from the SYFPEITHI (Rammensee
et al., 1999) and MHCPEP (Brusic et al., 1998a) databases.
The dataset consists of 532 unique peptides sequences. Pep-
tides that did not allow a hydrophobic residue at the P1 position
in the binding motif were removed (Brusic et al., 1998a). That
is, a peptide was removed if no hydrophobic residues were
present at the first N − L + 1 positions, where N is the pep-
tide length and L is the motif length. The hydrophobic filter
removed 28 peptides. Furthermore, the dataset was reduced to
remove unnatural peptide sequences with an extreme amino
acid content by removing peptides with more than 75% alan-
ine. The final training set had 456 unique peptides. The length
distribution in the training set ranges from 9 to 30 residues,

with the majority of peptides having a length of 13 amino
acids.

HMMER weight-matrices
To evaluate the performance of the Gibbs sampler method,
we estimate the amino acid frequencies and corresponding
weight-matrices using the HMMER (Eddy, 1998) pack-
age program hmmbuild with the following command line
options: --fast --pam BLOSUM62; here Blosum62 is
the Blosum62 score matrix (Henikoff and Henikoff, 1992).

RESULTS
Weight-matrix parameter settings from
aligned class I binding peptides
We applied the Gibbs sampler to the MHC class I binding
motif problem in order to estimate the optimal setting for the
parameters that determine the generation of weight-matrices
from fixed alignments. For each parameter setting, we estim-
ate weight-matrices for the four supertypes A1, A2, A3 and
B7 using the peptides in the training sets and subsequently
evaluate the predictive performance on the corresponding
evaluation set. The predictive performance is calculated
using both the Pearson correlation coefficient between the
log-transformed affinities and the weight-matrix predictions
(Nielsen et al., 2003), and the non-parametric Aroc measures
[the area under the relative operating characteristics (ROC)
curve (Swets, 1988)]. By applying the same parameter setting
to all four supertypes, we minimize the risk of over-fitting.
As a comparison, we evaluate the predictive performance
of weight-matrices derived using the HMMER package (see
Materials and methods section) on the four evaluation sets.

In all situations, the use of a Blosum62 matrix (Blosum
correction) for estimating the pseudo-counts gave better pre-
dictive performance than using an equal matrix (Equal correc-
tion). The background distribution of amino acids estimated
from SWISS-PROT also gave a consistently higher predictive
performance than those of both a flat distribution and a dis-
tribution estimated from the sequence input to the algorithm.
In the rest of the analysis, we hence use the Gibbs sampler
with the pseudo-count estimated as Blosum correction and
the background amino acid distribution estimated from the
SWISS-PROT database.

Figure 1 shows the prediction accuracy estimated in terms of
the Pearson correlation coefficient and the Aroc value, respect-
ively, for the two different sequence-weighting schemes for
a series of pseudo-count weights (β) for four supertypes. As
a comparison, the prediction accuracy of the weight-matrices
estimated using HMMER as well as the prediction accuracy
using the SYFPEITHI prediction method is shown. It is clear
that the two sequence-weighting schemes have similar pre-
dictive performance and that the optimal performance is found
for a value of the pseudo-count weight β close to 50 for the
Henikoff and Henikoff (1994) sequence weighting and for
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Fig. 1. Predictive performance of the Gibbs sampler for the two
schemes of sequence weighting of Henikoff and Henikoff and
sequence clustering, respectively. The figure compares the predictive
performance in terms of the Pearson correlation coefficient (upper
plot) and Aroc (lower plot) for the four supertypes A1, A2, A3 and
B7 as well as the average of the four. The ROC curves were cal-
culated using a threshold of 500 nM to define binders/non-binders.
For the Henikoff and Henikoff sequence-weighting scheme, the per-
formance is given for pseudo-count weights of 20, 50 and 100. For
clustering, performance is shown for pseudo-count weights of 50,
100 and 200, respectively. For each supertype, the last two columns
give the performance of the HMMER package and the SYFPEITHI
Web site predictor, respectively.

a value close to 200 for the clustering sequence weighting,
respectively. Since the sequence-weighting scheme, based on
sequence clustering, has slightly better performance, we will
in the following use this sequence-weighting scheme, and con-
sequently we set the pseudo-count weight to 200. Moreover,
from the table it is clear that the predictive performance of the
Gibbs sampler is comparable with those of both HMMER and
the SYFPEITHI prediction method.

As stated previously, prior knowledge regarding the import-
ance of the different positions in the binding motif exists. This
is for example the case for the MHC class I binding motif,
where the binding for most alleles is largely determined by
the fitness of the peptide to the binding pockets at positions
2 and 9 in the motif. Such prior knowledge can be included
in the search for binding motifs (Lundegaard et al., unpub-
lished data). Figure 2 shows the predictive performance of
the weight-matrix for class I binding when such position spe-
cific weighting is included in the motif search. The position
specific weighting scheme is determined as the set of anchor
residues defined in the SYFPEITHI database, extended with
auxiliary anchors if they occur at position 2 or 9. For the A1
supertype, positions 3 and 9 are specified as anchor positions,
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Fig. 2. Prediction performance of the Gibbs sampler for different
position specific weight values. The upper figure gives the perform-
ance in terms of the Pearson correlation and the lower figure the
Aroc values for a relative weight of 1, 2, 3, 5 and 9, respectively, on
the selected positions. The ROC curves were calculated as described
in Figure 1. The last set of bars in each figure give the average
performance over the four supertypes.

whereas positions 2 and 7 are auxiliary anchor positions. This
means that positions 2, 3 and 9 are included as positions with
high weight in the motif search for this supertype. For the
other supertypes of A2, A3 and B7, the motif positions with
higher weight are positions 2 and 9.

From the results shown in the table, it is clear that a pos-
ition specific weighting of 2–3 gives the highest predictive
performance.

Alignment of MHC class II binding peptides and
weight-matrix extraction
We applied the Gibbs sampler to estimate the bind-
ing motif and corresponding weight-matrix for the HLA-
DR4(B1*0401) molecule. We applied the Gibbs sampler with
the parameter settings described earlier. In order to ensure
that only hydrophobic residues were present at the P1 posi-
tion in the motif, we restricted the single sequence move in the
Monte Carlo procedure to only select from the set of hydro-
phobic amino acids. The scalar T was initialized to 0.15 and
lowered to 0.001 in 10 uniform steps. At each value of T ,
5000 Monte Carlo moves were performed. The acceptance
of a move was determined using Equations (1) and (2). The
motif length was fixed at nine amino acids. The alignment
space has a very large number of local maxima with close to
identical energy. In order to achieve an effective sampling
of these local maxima, we repeated 100 MC calculations
with different initial configurations. In Figure 3, we show the
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Fig. 3. Predictive performance as a function of the Kullback–Leibler
distance. A total of 100 weight-matrices were estimated from dis-
tinct Monte Carlo calculations. The different weight-matrices were
evaluated on the set of 105 peptides described in the text, and the
predictive performance in terms of an Aroc value is plotted as a func-
tion of the Kullback–Leibler distance. A least-square straight-line fit
is shown in red. The correlation coefficient is 0.53.

predictive performance for the 100 weight-matrix solutions
as a function of the Kullback–Leibler distance [Equation (1)]
estimated from the final sequence alignment. The predictive
performance is evaluated on a set of 105 peptides described
by Geluk et al. (1998).

Figure 3 demonstrates clearly that the Kullback–Leibler
distance correlates to some extent with the predictive per-
formance. However, the correlation is not perfect, and the
optimal solution is not the one with the optimal predict-
ive performance. Wanting to obtain an effective sampling of
the suboptimal solutions, we calculated a consensus weight-
matrix as the average over the top five highest scoring
weight-matrices (averages over five, 10 and 20 top scoring
matrices, respectively, gave similar results).

From the SYFPEITHI database, the anchor positions in the
binding motif were estimated to be located at positions 1, 4, 6,
7 and 9, respectively. Anchor positions estimated from a logo-
plot of a weight-matrix calculated using the Gibbs sampler
with equal weights on all positions confirmed this weighting
scheme at all positions except position 7 (Fig. 4, right panel).
Hence, we used positions 1, 4, 6 and 9 with an increased
weight to guide the Gibbs sampling.

As an estimate of how other conventional alignment meth-
ods perform on the motif detection problem, we aligned the
sequences in the training set using the ClustalW package
(Chenna et al., 2003) with a high gap opening penalty to ensure
ungapped alignment since initial experiments showed that this
resulted in the best performance. Furthermore, we generated
a control by placing the sequences in a random alignment
with hydrophobic amino acids at the P1 position. From the
alignments, we estimated the amino acids frequencies in the

nine amino acid long core-region and made logo-plots from
these frequency estimates (Fig. 4).

Figure 4 demonstrates that the identification of the binding
motif from the training data is indeed a complex and difficult
task. The ability of the Gibbs sampler method to detect the
subtle sequence motif in a set of peptide sequences is apparent
from the figure. The algorithm of ClustalW is on the other hand
unable to detect any motif signal except from the strong hydro-
phobic amino acid preference at position P1. In Figure 5, we
show a part of the alignment obtained by the Gibbs sampler for
the HLA-DR4(B1*0401) binding motif recognition. Figures 4
and 5 demonstrate how the Gibbs sampler, through the Monte
Carlo moves, is able to place the sequences in a register and
move from an initial random configuration with close to zero
information content to a final alignment configuration with
high information content describing the peptide binding motif
in detail.

Benchmark calculations
The predictive performance of the Gibbs sampled weight-
matrix was benchmarked on 10 datasets and compared with
that of the TEPITOPE method (Sturniolo et al., 1999) as well
with the weight-matrix derived from the ClustalW alignment.
The 10 datasets are the eight datasets described by Raghava
(MHC-Bench, http://www.imtech.res.in/raghava/mhcbench)
and two experimental datasets described by Southwood et al.
(1998) and Geluk et al. (1998). The binding of a peptide was
calculated as the score of the highest scoring 9mer subpeptide.
We used the non-parametric Aroc measure (Swets, 1988) to
compare the accuracy of the different prediction methods. In
order to calculate a ROC curve, one must classify the data-
set into binders and non-binders. For the eight MHCbench
datasets, peptides with an associated binding value of zero
were assigned to be non-binding, and all other peptides were
binders. For the datasets of Southwood and Geluk, datasets,
an affinity of 1000 nM was taken as the threshold for pep-
tide binding (Southwood et al., 1998) (similar results were
obtained for threshold values in the range 500–10 000 nM).
Wanting to reduce the chance of over-fitting by evaluating the
prediction performance on data points included in the training,
we repeated the benchmark calculation on homology-reduced
datasets. The homology reduction was performed so that no
data point in the evaluation sets had a match in the training
set with sequence identity >90% over an alignment length of
at least nine amino acids. Table 2 gives a brief description of
both the original and the homology-reduced benchmark data-
sets in terms of the number of peptides and the number of
binders, respectively.

In Figure 6A we show the results of the benchmark calcula-
tion. From the figure it is clear that the Gibbs sampled weight-
matrix has comparable or better predictive performance than
those of both TEPITOPE and the ClustalW weight-matrix.
In all cases, the ClustalW weight-matrix has a performance
that is lower than that of the Gibbs sampled matrix. In order
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Fig. 4. Logo-plots of amino acid frequencies in three distinct alignments of the peptides in the training set. The alignments were performed
using the methods of ClustalW, a random placement and the Gibbs motif sampler, respectively. The height of a column in the logo is
proportional to the information content in the sequence motif, and the letter height is proportional to the amino acid frequency (Schneider and
Stephens, 1990).

Fig. 5. An alignment generated by the Gibbs sampler for the DR4(B1*0401) binding motif. In the left panel are shown the unaligned
sequences, and in the right panel the aligned sequences. The core motif is shown underlined and in italic.

to estimate the significance of the difference in performance
between the Gibbs sampler and the TEPITOPE methods, we
performed a bootstrap experiment (Press et al., 1993). For
each of the datasets, we generate M = 1000 datasets by
extracting N data points with replacement. Here, N is the
number of data points in the original dataset. The performance
of both the Gibbs and the TEPITOPE methods was evaluated
on each of the datasets, and the p-value for the hypothesis
that the TEPITOPE method performs better than the Gibbs
sampler is estimated as the fraction of experiments where
TEPITOPE has the better performance of the two. The results
of this calculation demonstrated that for 5 of the 10 data-
sets (the Southwood set, set 1, set 2, set 4A and set 4B) the
Gibbs sampler method had a performance that is significantly
higher than that of TEPITOPE (p < 0.05). Only for one
dataset (set 5B), did the TEPITOPE method perform better
than the Gibbs sampler (p = 0.96). For the remaining four

datasets, the difference in predictive performance was found
to be insignificant (0.05 < p < 0.95).

The average Aroc values for the Gibbs sampled matrix,
the TEPITOPE matrix and the ClustalW matrix methods are
0.744, 0.702 and 0.667 for the complete dataset and 0.673,
0.630 and 0.599 for the reduced datasets, respectively.

For 2 of the 10 datasets (set 5A and set 5B), the TEPITOPE
weight-matrix had a higher Aroc value than the Gibbs matrix.
For the set 5B, this difference is statistically significant (p =
0.96). In order to analyze why the Gibbs sampled weight-
matrix has poor performance on the two datasets, we estimated
the amino acid composition in the two sets as compared with
that of the other benchmark sets and the training set. In this
analysis we found that both sets had an extremely high content
of cysteines in the subset of peptides that bind MHC. In set 5B,
for instance, 45 of the 85 peptides contain at least one cysteine,
and 37 of these 45 bind MHC. These numbers stand in contrast
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Table 2. Description of the MHC class II benchmark datasets

Set Original Homology-reduced
N Nb N Nb

MHCbench 1 1017 694 496 226
MHCbench 2 673 381 416 161
MHCbench 3A 590 373 334 130
MHCbench 3B 495 279 325 128
MHCbench 4A 646 323 381 111
MHCbench 4B 584 292 375 120
MHCbench 5A 117 70 110 65
MHCbench 5B 85 48 84 47
Southwood 22 16 21 15
Geluk 105 22 99 19

The first column gives the name of the dataset, the second and third columns the number
of peptides and the number of peptides classified as binders for the complete sets, the
fourth and fifth columns the same numbers for the reduced datasets, respectively. For the
Southwood and Geluk datasets a threshold of 1000 nM and for the MHC-bench datasets
a threshold value of 0.5, was used to determine binders.
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Fig. 6. Prediction accuracy of the Gibbs sampled, the TEPITOPE
and the ClustalW weight-matrix methods, respectively, for the
datasets described in the text. (A) The result for the original
data. (B) Cysteine substituted benchmark where all occurrences of
cysteines are replaced with alanine. For each dataset, the first three
bars give the performance on the complete datasets, and the last three
bars the performance on the reduced datasets, respectively.

to the low cysteine content in the training set. Here, only 47 of
the 456 peptide sequences contain cysteine. The TEPITOPE
weight-matrix has a particular behavior for cysteines in that
the score for this amino acid at all positions is zero. To verify

whether the cysteine content could explain the poor behavior
of the Gibbs sampled matrix method as compared with the
TEPITOPE matrix method, we repeated the above benchmark
calculation substituting all occurrences of cysteine to alanine
in the benchmark datasets. The result of the calculation is
shown in Figure 6B.

From Figure 6B, it is clear that the Gibbs sampled weight-
matrix in the cysteine substituted benchmark calculation for
the reduced datasets also has better or comparable predict-
ive performance compared with that of the TEPITOPE matrix
method. In particular, one should note that the performance
on the two sets 5A and 5B is comparable for the two meth-
ods. Repeating the bootstrap experiment for set 5B applying
cysteine substitution gave a p-value of 0.5. This demonstrates
that it indeed was the unusual cysteine content that led to the
poor performance of the Gibbs sampler method for the two
datasets. Similarly, one should note that the performance of
the Gibbs sampled matrix method for the other eight datasets
is similar to that shown in Figure 4. The average Aroc values
for the Gibbs sampled matrix, TEPITOPE and the ClustalW
weight-matrix, respectively, are 0.755, 0.703 and 0.692 for
the complete datasets and 0.690, 0.630 and 0.637 for the
reduced datasets. One other striking observation from Figure 6
is the poor performance of the TEPITOPE method on the
Southwood dataset. A simple calculation outlines a possible
explanation for this poor performance. If one calculates the
odds (frequency/background) values for the amino acid com-
position at the possible P1 positions in the Southwood dataset,
one finds that the three amino acids with the highest odds ratios
are F, W and Y. This stands in contrast to the finding in the
other datasets, where no particular bias is found in the amino
acids with the highest odds. The amino acid composition bias
at the P1 position in the Southwood dataset originates from
the selection bias in the prediction algorithm used to select
the peptides for binding assay verification (Southwood et al.,
1998). In the TEPITOPE weight-matrix, the P1 position is
modeled in a very crude manner, in that all non-hydrophobic
amino acids have a value of −999 and the hydrophobic amino
acids have a value of either 0 (F, W and Y) or −1 (I, L, M and
V). In the Gibbs sampler matrix, this picture is more differ-
entiated. Here, the difference in weight-matrix score between
the common (I, L, M and V) and the rare amino acids (F, W
and Y) is on an average 10. The importance of this distinction
between the different amino acids allowed becomes clear if
one sets the P1 weight-matrix values for F, Y and W of the
TEPITOPE matrix to nine. Using the modified TEPITOPE
matrix, the Aroc value is increased to 0.80. The average per-
formance on the other datasets in the benchmark calculation
is comparable with that of the original TEPITOPE matrix.

DISCUSSION
We have developed a refined and specialized Gibbs
sampling method for detecting the binding motif for MHC
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classes I and II. For the method to handle situations when
only very few data points are available and to limit any
sequence redundancy in the training dataset, we implemen-
ted sequence weighting and pseudo-count correction schemes.
The parameters in these schemes were optimized using sets
of pre-aligned sequences known to bind to MHC class I.
The best performance was found for a sequence-weighting
scheme based on sequence clustering. Pseudo-count correc-
tion for low counts with pseudo-count frequencies estimated
as described by Altschul et al. (1997) was found to improve the
prediction accuracy substantially. Prior knowledge of import-
ant positions in the sequence motif was also included to guide
the motif-search by allowing for differential weighting of
high information positions in the motif. A position specific
weighting scheme with a 3-fold increase in the weight of
high information position in the motif as compared with the
background was found to be optimal. The performance of
predictors based on these principles had for most of the eval-
uation sets better predictive performance than what could be
obtained using the HMMER and the SYFPEITHI prediction
methods.

Using these parameters, we developed a method for detect-
ing binding motifs in peptides known to bind to MHC II.
These peptides are typically longer than the core motif, and
correct alignment is key for obtaining good prediction per-
formance. The optimal Gibbs sampler solution (the one with
the highest information content) is not necessarily the optimal
predictor, and we showed that including suboptimal solutions
in an ensemble average increased the predictive performance
of the method. We compared the performance of our Gibbs
sampler with the TEPITOPE method and a ClustalW derived
weight-matrix in a large-scale benchmark calculation using 10
datasets. In all cases, the ClustalW weight-matrix has a per-
formance that is lower than that of the Gibbs sampled matrix.
Only for one of the 10 datasets does the TEPITOPE weight-
matrix have a predictive performance value that is significantly
higher than the Gibbs sampled matrix. This was found to be
due to a much higher cysteine content in the test set than in
our training set. The TEPITOPE method arbitrarily assigns a
zero weight to all cysteines. If we force the Gibbs sampler to
treat cysteines as alanines, we obtain a higher performance
than TEPITOPE for all test sets.

Prediction of class II MHC epitopes is a difficult task, and
the prediction accuracy of the method described is far from
perfect. At least two avenues exist where one can expect to
achieve higher accuracy prediction methods. One avenue is
the development of more sophisticated methods. Earlier, we
have shown for MHC class I that a combination of many artifi-
cial neural networks with different types of sequence encoding
leads to predictors of improved accuracy (Nielsen et al., 2003).
Using the Gibbs sampler as an alignment pre-processing as
described by Brusic et al. (1998a), a similar approach might
be beneficial for MHC class II predictions. A second avenue
to improved prediction algorithms is a generation of relevant

training data. For MHC class I, we have shown that the use
of quantitative binding data as opposed to classification data
leads to higher accuracy predictors (Buus et al., 2003; Nielsen
et al., 2003). Furthermore, we have demonstrated that a guided
iterative training process where new data points are selected
from experimental binding assay verification by the method
of query by committee (QBC) can in a highly cost and time-
efficient manner lead to high accuracy prediction methods
(Christensen et al., 2003). Likewise, we believe that a similar
approach can be applied to the MHC class II problem. The
weight matrix obtained by the Gibbs sampler can generate
first generation peptide predictions to be verified in binding
affinity assays. Subsequently, the QBC method can guide
the process of generating highly informative data that upon
experimental verification effectively can provide high-quality
prediction methods.

We have illustrated the use of the Gibbs sampler in the prob-
lem of identifying potential class I and class II MHC epitopes,
but it should be valid for other applications where the sequence
motif is weak and alignment is a crucial part of the motif
identification.
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