@




]s PhD student with Morten

WhO dm |? @ Graduated in March 2019

Warning! | am no expert




What's up for today?

@ &L

Play with Pytorch Why is Pytorch smart? Other frameworks?

<




How to build an Artificial
Neural Network?

* Invariant parameters
* Input dimension
e Qutput dimension

\
L

\
L

* Semi-variable
e Loss-function

)
¥

* Variable
* # hidden layers

* # hidden neurons

‘ output layer
* Activation functions mpUt |ayer

* GD optimizations (learning rate, hidden layer 1 hidden layer 2
momentum, batch)

e Add-ons
* Normalization
* Regularization
* Dropout

Va




How do | build the best network?

You most
likely won’t




Hyper-parameter search

Methods
* Manual Search
e @Grid Search

from sklearn.model selection import GridSearchCV

e Random Grid Search

from sklearn.model selection import RandomizedSearchCV
Evaluation
e Evolutionary Algorithms

* Bayesian Hyper-parameter Evaluation
https://github.com/HIPS/Spearmint



https://github.com/HIPS/Spearmint

Load Data

Build Model

Getting Select Hyper-parameters

started Compile Model
Train Model

Evaluate Model




Dependent varible

Load data

Target values

10 1

0.8 1

- == Binder threshold
« Train set

« Validation set

~

1000

L]

1500

Index of dependent variable

2000

2500




Build model Compile model

class Net (nn.Module) : net = Net(n features, N HIDDEN NEURONS)
def init (self, n features, n 11): optimizer = optim.SGD(net.parameters(),
o 1lr=LEARNING RATE)
super (Net, self). 1nit () -
, criterion = nn.MSELoss ()
self.fcl = nn.Linear(n features, n 11)
self.fc2 = nn.Linear(n_ 11, 1)

def forward(self, x):
x = F.relu(self.fcl(x))
x = self.fc2(x)

return x



Train Model

batch loss = 0

def train(): net.eval ()
train loss, valid loss = [], [] for x valid, y valid in valid loader:
pred = net(x valid)
early stopping = loss = criterion(pred, y valid)
FarlyStopping (patience=PATIENCE) batch loss += loss.data
valid loss.append (batch loss /
for epoch in range (EPOCHS) : - len(valid_loader))
net.train ()
pred = net(x train) 1E invoce(@gf%g—fggg%iT?: net,
loss = criterion(pred, y train) implement=False) :
optimizer.zero grad() load checkpoints ()
loss.backward/() break

optimizer.step ()

train loss.append(loss.data) return net, train loss, valid loss



Load data

- Training loss
—— Validation loss
=== Minimum Validation Loss

0.030 -

0.025

0.020

s

v

S 0015 1

0.010 -

0.005 -

W

0.000 -

0 500 1000 1500 2000 2500 3000
Epochs



Evaluate model

net.eval ()

pred

loss

net (x test)

criterion (pred, y test)



Dependent varible

Evaluate model

Target values

12 -

10

-0.2 A

-== Binder threshold

Prediction

Target

=

100

Index of dependent variable




True Positive Rate

Evaluate model

Lo Receiver Operating Characteristic

o
(o 4]

0.6 -

04

0.2

- AUC =094

00 02 04 06 08
False Positive Rate

10

Predicted

12 1

10 -

0.8 1

0.6 -

0.4 1

0.2 1

0.0 1

Matthews Correlation Coefficient

® MCC=074

1 L

0.0 0.2 04 06 08 10
Validation targets




Avoid overtitting

e L2 Regularization
optim.SGD (net.parameters (), lr=LEARNING RATE, weight decay=0)

* L1 Regularization

Manual implementation using nn.LlLoss

* Dropout
Def init (): self.drop layer = nn.Dropout (p=p)
Def Forward(): x = self.drop layer (x)

* Batch normalization

Def init () : self.batch norm = nn.BatchNormld(n neurons)

Def Forward(): x = self.batch norm(x)



Give it a go!




