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Warning! | am no expert




What's up for today?
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Play with Pytorch Why is Pytorch smart? Other frameworks?
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How to build an Artificial
Neural Network?

* Invariant parameters
* Input dimension
e Qutput dimension
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* Semi-variable
e Loss-function
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* Variable
* # hidden layers

* # hidden neurons

‘ output layer
* Activation functions mpUt |ayer

* GD optimizations (learning rate, hidden layer 1 hidden layer 2
momentum, batch)

e Add-ons
* Normalization
* Regularization
* Dropout
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How do | build the best network?

You most
likely won’t




Hyper-parameter search

Methods
* Manual Search
e @Grid Search

from sklearn.model selection import GridSearchCV

e Random Grid Search

from sklearn.model selection import RandomizedSearchCV
Evaluation
e Evolutionary Algorithms

* Bayesian Hyper-parameter Evaluation
https://github.com/HIPS/Spearmint



https://github.com/HIPS/Spearmint

Load Data

Build Model

Getting Select Hyper-parameters

started Compile Model
Train Model

Evaluate Model




Dependent varible
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Build model Compile model

class Net (nn.Module) : net = Net(n features, N HIDDEN NEURONS)
def init (self, n features, n 11): optimizer = optim.SGD(net.parameters(),
o 1lr=LEARNING RATE)
super (Net, self). 1nit () -
, criterion = nn.MSELoss ()
self.fcl = nn.Linear(n features, n 11)
self.fc2 = nn.Linear(n_ 11, 1)

def forward(self, x):
x = F.relu(self.fcl(x))
x = self.fc2(x)

return x



Train Model

batch loss = 0

def train(): net.eval ()
train loss, valid loss = [], [] for x valid, y valid in valid loader:
pred = net(x valid)
early stopping = loss = criterion(pred, y valid)
FarlyStopping (patience=PATIENCE) batch loss += loss.data
valid loss.append (batch loss /
for epoch in range (EPOCHS) : - len(valid_loader))
net.train ()
pred = net(x train) 1E invoce(@gf%g—fggg%iT?: net,
loss = criterion(pred, y train) implement=False) :
optimizer.zero grad() load checkpoints ()
loss.backward/() break

optimizer.step ()

train loss.append(loss.data) return net, train loss, valid loss



Load data

- Training loss
—— Validation loss
=== Minimum Validation Loss
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Evaluate model

net.eval ()

pred

loss

net (x test)

criterion (pred, y test)



Dependent varible

Evaluate model

Target values
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True Positive Rate

Evaluate model

Lo Receiver Operating Characteristic
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Avoid overtitting

e L2 Regularization
optim.SGD (net.parameters (), lr=LEARNING RATE, weight decay=0)

* L1 Regularization

Manual implementation using nn.LlLoss

* Dropout
Def init (): self.drop layer = nn.Dropout (p=p)
Def Forward(): x = self.drop layer (x)

* Batch normalization

Def init () : self.batch norm = nn.BatchNormld(n neurons)

Def Forward(): x = self.batch norm(x)



Give it a go!




