
ANNs with Pytorch
API

Algorithms in Bioinformatics



Who am I?

PhD student with Morten

Graduated in March 2019

Warning! I am no expert



What’s up for today?

Play with Pytorch Why is Pytorch smart? Other frameworks?



How to build an Artificial 
Neural Network?

• Invariant parameters
• Input dimension
• Output dimension

• Semi-variable
• Loss-function

• Variable
• # hidden layers
• # hidden neurons
• Activation functions
• GD optimizations (learning rate, 

momentum, batch)
• Add-ons

• Normalization
• Regularization
• Dropout



How do I build the best network?

You most 
likely won’t



Hyper-parameter search

Methods

• Manual Search

• Grid Search
from sklearn.model_selection import GridSearchCV

• Random Grid Search
from sklearn.model_selection import RandomizedSearchCV

Evaluation

• Evolutionary Algorithms
• Bayesian Hyper-parameter Evaluation

https://github.com/HIPS/Spearmint

https://github.com/HIPS/Spearmint


Getting 
started

Load Data

Build Model

Select Hyper-parameters

Compile Model

Train Model

Evaluate Model



Load data



Build model
class Net(nn.Module):

def __init__(self, n_features, n_l1):

super(Net, self).__init__()

self.fc1 = nn.Linear(n_features, n_l1)

self.fc2 = nn.Linear(n_l1, 1)

def forward(self, x):

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

net = Net(n_features, N_HIDDEN_NEURONS)

optimizer = optim.SGD(net.parameters(), 
lr=LEARNING_RATE)

criterion = nn.MSELoss()

Compile model



Train Model
def train():

train_loss, valid_loss = [], []

early_stopping =
EarlyStopping(patience=PATIENCE)

for epoch in range(EPOCHS):
net.train()
pred = net(x_train)
loss = criterion(pred, y_train)
optimizer.zero_grad()
loss.backward()

optimizer.step()
train_loss.append(loss.data)

batch_loss = 0

net.eval()
for x_valid, y_valid in valid_loader:

pred = net(x_valid)

loss = criterion(pred, y_valid)
batch_loss += loss.data

valid_loss.append(batch_loss /
len(valid_loader))

if invoce(early_stopping,
valid_loss[-1], net,
implement=False):

load_checkpoints()
break

return net, train_loss, valid_loss



Load data



Evaluate model

net.eval()

pred = net(x_test)

loss = criterion(pred, y_test)



Evaluate model



Evaluate model



Avoid overfitting

• L2 Regularization
optim.SGD(net.parameters(), lr=LEARNING_RATE, weight_decay=0)

• L1 Regularization
Manual implementation using nn.L1Loss

• Dropout
Def __init__(): self.drop_layer = nn.Dropout(p=p)

Def Forward(): x = self.drop_layer(x)

• Batch normalization
Def __init__(): self.batch_norm = nn.BatchNorm1d(n_neurons)

Def Forward(): x = self.batch_norm(x)



Give it a go!


