1) In equation $p=\left(a^{*} f+b^{*} g\right)(a+b)$ what is a and b, and how do you estimate their value. Likewise what is f and g?
2) How does the formula reduce if you only have one sequence from which to make the calculation
3) What is the step to calculate the weigh-matrix (PSSM) elements from the values of p ?
4) How do you score a peptide to the constructed PSSM
5) What is sequence weighting?
6) What are r and s in the equation $1 /\left(r^{*} s\right)$, and how do you calculate the weight of a peptide using this equation?
Alignment
7) Why is the O 3 algorithm slower than the O ?
8) To fill out the D matrix in the O3 algorithm, you only need to calculate and compare 3 values? Correct or false
9) What information is stored in the P and Q matrices of the O 2 algorithm
10) What part of the O 3 and O 2 algorithms should be updated to implement an sequence profile scoring scheme rather than the current Blosum scheme?
Hobohm and data redundancy
11) When is it important to deal with data redundancy?
12) How do the two Hobohm algorithms work?
13) Which of the two algorithms is faster, and why?
14) In what situation will the time for running Hobohm1 be comparable to that of Hobohm2?

GibbsSampling

1) In the equation $p=\min (1, \exp (d E / T))$, what is $d E$ and T ?
2) What is the effect of having a value of $T>0$?
3) Is GibbsSampling guaranteed to find the optimal solution to a problem?

HMM

1) What answers do you get when you apply the Viterbi algorithm to score a sequence to an HMM?
2) What answers do you get when you apply the Forward algorithm to score a sequence to an HMM?
3) What answers do you get when you apply the posterior decoding algorithm to score a sequence to an HMM?

Cross validation and training of data driven prediction methods

1) What is Cross-validation?
2) What is the single most important issue to deal with when making cross-validation partitions?
3) What is early stopping?
4) If you use early stopping, why can you not use the test data to report the model performance? And how do you the in the case make a setup so that you can estimate the model performance
SMM
5) What is the effect of the second term in the Error function $E=1 / 2^{*}(O-t)^{\wedge} 2+$ sum lambda* $w^{\wedge} 2$
6) What is gradient descent, and how do you use it to find the optimal model parameters?
7) Explain the equation $w^{\prime}=w-$ epsilon $* d E / d w$
8) How do you calculate $\mathrm{dE} / \mathrm{dw} 1$ if O has the form $\mathrm{O}=11^{*} \mathrm{w} 1+12^{*} \mathrm{w} 2+13^{*} \mathrm{w} 3$?
