### **Statistical Genotype-phenotype Correlation**

Leon Eyrich Jessen

36685 - Immunological Bioinformatics January 2018



Department of Bio and Health Informatics





### **Phenotype – What you "observe"**



05 January 2018





05 January 2018

### **Example of genotype-phenotype correlation**

• GWAS (Genome Wide Association Study)



Height Eye colour Hair colour Facial hair **Disease** Etc.



### Molecular level genotype-phenotype correlation

• Two variants of the <u>same</u> protein with two <u>different</u> phenotypes



- Clearly L10R has a significant impact on the phenotype
- But...

### **Molecular level genotype-phenotype correlation**

- What if you have 300 variants each with 10-20 mutations?
- How to figure out what's what in terms of genotypes and phenotypes?



### **Enter: SigniSite**

- Input: A multiple sequence alignment (MSA) with a numerical value to each sequence
- Algorithm:
  - 1. Form a MSA of different variants of the same protein
  - 2. Rank the associated numerical values
  - 3. Sort the sequences based on the ranks
  - 4. For each amino acid residue at each position:
    - 1. Calculate the mean observed rank
    - 2. Compare with the mean expected rank
    - 3. Derive z-score from comparison
  - 5. Form z-score matrix with number of rows corresponding to the number of positions in the MSA and number of columns corresponding to the number of proteogenic amino acids (20)
  - 6. Adjust z-scores for multiple comparisons (each z-score calculated is one test)
  - 7. The adjusted z-score matrix can now be viewed as a Position Specific Scoring Matrix and we can create sequence logo based on calculated adjusted z-scores

### Let us take a closer look

| $\bullet$ After forming an MSA and sorting the sequences, we have this observed amino acid distribution at $p_{13}$ | R<br>R | 1<br>2 |
|---------------------------------------------------------------------------------------------------------------------|--------|--------|
|                                                                                                                     | K      | 3      |
| $\bullet$ Do genotype arginine at $p_{13}$ significantly impact the phenotype?                                      | R      | 5      |
|                                                                                                                     | R      | 6      |
|                                                                                                                     | R<br>H | /<br>8 |
|                                                                                                                     | Ν      | 9      |
| H 8<br>N 9<br>S 10<br>M 11<br>W 12<br>N 13                                                                          |        |        |
|                                                                                                                     | W      | 12     |
|                                                                                                                     | Ν      | 13     |
|                                                                                                                     | N      | 14     |
|                                                                                                                     | п<br>D | 16     |
|                                                                                                                     | D      | 17     |
|                                                                                                                     | E      | 18     |
|                                                                                                                     | P<br>D | 20     |

DTU

# Do the GT R at p<sub>13</sub> significantly impact the PT?

• The test is rank based, so we want to test the observed mean rank with the expected mean rank and then test the hypothesis:

 $H_0: \quad \mu_{p,a}^{exp} = \overline{x}_{p,a}^{obs} \quad H_1: \quad \mu_{p,a}^{exp} \neq \overline{x}_{p,a}^{obs}$ 

R 5
R 6
R 7
H 8
N 9
S 10
M 11
W 12
N 13
N 14
H 15
D 16
D 17
E 18

P 19 D 20

R 1

R 2

К3 К4

9 **DTU Bioinformatics, Technical University of Denmark** 

05 January 2018





# Do the GT R at p<sub>13</sub> significantly impact the PT?

• The expected mean rank is

- I.e. "the middle" of all amino acids, where N is the number of sequences in the MSA
- In this example we get (20 + 1)/2 = 10.5

R 1

R 2 K 3 K 4

R 5 R 6 R 7 H 8

N 9

S 10

# Do the GT R at p<sub>13</sub> significantly impact the PT?

• The observed mean rank is

$$\overline{x}_{p,a}^{obs} = \frac{1}{n_{p,a}} \sum_{i=1}^{N} rank_{p,b_i} \cdot \delta(b_i, a)$$

- I.e. "the middle" of the observed amino acid, where n is the number of the particular amino acid were testing
- In this example we get (1 + 2 + 5 + 6 + 7) / 5 = 4.2

