

PathogenFinder

Johanne Ahrenfeldt PhD Student johah@cbs.dtu.dk

DTU Bioinformatics Department of Bio and Health Informatics

Who am I

Johanne Ahrenfeldt

johah@cbs.dtu.dk

- PhD student in Genomic Epidemiology
- Graduate engineer in Bioinformatics and Systems Biology from DTU – 2014
- Mainly work with Whole Genome based
 Phylogeny

Bacterial pathogenecity and virulence

- **Pathogenicity.** This is the potential capacity of certain species of microbes to cause an infectious process.
- **Virulence.** signifies the degree of pathogenicity of the given strain. Virulence, therefore, is an index of the qualitative individual nature of the pathogenic microorganism.

Microbes and humans

Student activation

- Give an example on a strict pathogen
- Give an example on an opportunistic pathogen
- Give an example on a non-pathogen

How do we know that a given pathogen causes a specific disease?

- Koch's postulates
 - the pathogen must be present in every case of the disease
 - the pathogen must be isolated from the diseased host & grown in pure culture
 - the specific disease must be reproduced when a pure culture of the pathogen is inoculated into a healthy susceptible host
 - the pathogen must be recoverable from the experimentally infected host

DTU Bioinformatics, Tech

Use 2 minutes to discuss in small groups how you would conquer the island.

Include:

• How to get on to and how to stay on the island Back-paddle, throw an anchor, use a rope, swim from the boat (might require more than one swimmer!!)

• How to avoid being detected by the island defense Camouflage, hide, dig-in, costume

• How to eliminate the island defense

Poison, weapon, scare to perform suicide

Coordinated attack

Gene regulation – A tool for a coordinated attack

Purpose

The main purpose of PathogenFinder is to predict the pathogenecity of a given bacteria, based on the whole genome sequence or the proteome.

Method

- PathogenFinder identifies and divides the genes after protein families
- The genes are the clustered using CD-hit
- After clustering it is determined whether a group of genes is more pathogenic or non-pathogenic

Pathogenic gene families

Pathogenic gene families

Table 1. 10 top scoring pathogenicity families, and functionof their members.

Rank	Z-score	Ρ	Ν	Function of proteins in the family
1	8.29	42	4	Mutarotases, YjhT proteins
2	8.25	33	1	Fimbrial proteins, putative adhesins
3	8.12	38	3	Proteins of unknown function
4	8.02	40	4	Cytochrome b ₅₆₂
5	7.89	39	4	Proteins of unknown function
6	7.86	36	3	Methyltransferases
7	7.82	30	1	Fimbrial proteins, pilin proteins
8	7.56	25	0	Heat shock proteins, DNA-repair
9	7.46	36	4	5-carboxymethyl-2-hydroxymuconate isomerase
10	7.06	25	1	Type III secretion proteins, path. island proteins

Predicting pathogenicity

The following 4 steps describe the process that leads to the prediction:

- I Compare the input proteins to the PathogenFinder Database of protein families
- II Filter hits based on the identity threshold
- III Calculate final score summing the Z values associated to the matched PFs
- IV Compare the final score to the model's Zthr threshold and give the final prediction

https://cge.cbs.dtu.dk/services/PathogenFinder/

PathogenFinder 1.1

View the version history of this server.

Choose the phylum or class of your organism:

Choose 'All' if you want to use the model created using all bacteria Automatic Model Selection

\$

Sequencing Platform

Select the sequencing platform used to generate the uploaded reads. (Note: Select 'Assembled Genome' if you are uploading preassembled reads)

Proteome

Isolate File			
Name	Size	Progress	Status
Outpload			

CITATIONS

For publication of results, please cite:

 PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PLoS ONE 8(10): e77302.
 PMID: <u>24204795</u> doi: <u>10.1371/journal.pone.0077302</u>

16 **DTU Bioinformatics, Technical University of Denmark**

Results

The input organism was predicted as human pathogen

Probability of being a human pathogen0.888Input proteome coverage (%)6.42Matched Pathogenic Families308

Matched Not Pathogenic Families 17

Sequences	5062
Total bpp	1608055
Longest seq	31 <mark>6</mark> 4
Shortest seq	30
Avg seq lenght	317.0

1

Input Sequence	NODE_157_length_219841_cov_31.485369_86 # 101449 # 103950 # 1 # ID=118_86;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5- 10bp;gc_cont=0.604									
-	PROJECT ID	ACCESSION ID	ORGANISMS	CLASS	PROTEIN FUNCTION	PROTEIN ID	%IDENTITY			
Matched Family	<u>21069</u>	<u>AP006725</u>	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	Gammaproteobacteria	phosphoenolpyruvate-protein phosphotransferase	<u>BAH62713</u>	100.0			
Input Sequence	NODE_159_length_245710_cov_33.035236_14 # 16609 # 19041 # 1 # ID=120_14;partial=00;start_type=ATG;rbs_motif=GGAG/GAGG;rbs_spacer=5- 10bp;gc_cont=0.599									
_	PROJECT ID	ACCESSION ID	ORGANISMS	CLASS	PROTEIN FUNCTION	PROTEIN ID	%IDENTITY			
Matched Family	<u>21069</u>	<u>AP006725</u>	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	Gammaproteobacteria	putative formate acetyltransferase 3	<u>BAH62550</u>	100.0			
Input Sequence	NODE_14_length_236341_cov_29.808062_145 # 140782 # 142776 # -1 # ID=14_145;partial=00;start_type=ATG;rbs_motif=GGA/GAG/AGG;rbs_spacer=5-10bp;gc_cont=0.566									
	PROJECT ID	ACCESSION ID	ORGANISMS	CLASS	PROTEIN FUNCTION	PROTEIN ID	%IDENTITY			
Matched Family	<u>21069</u>	<u>AP006725</u>	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	Gammaproteobacteria	phosphoglycerate transport system sensor protein	BAH63424	100.0			