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Who am I  
Johanne Ahrenfeldt 
johah@cbs.dtu.dk 
 

• PhD student in Genomic Epidemiology 

• Graduate engineer in Bioinformatics and 

Systems Biology from DTU – 2014 

• Mainly work with Whole Genome based 

Phylogeny 
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Bacterial pathogenecity and virulence  

• Pathogenicity. This is the potential capacity of certain 
species of microbes to cause an infectious process.  

 

• Virulence. signifies the degree of pathogenicity of the given 
strain. Virulence, therefore, is an index of the qualitative individual 
nature of the pathogenic microorganism. 
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Microbes and humans 
Very few microbes are

always pathogenic

Many microbes are
potentially pathogenic

Most microbes are
never pathogenic

“Opportunistic pathogens”

“Strict pathogens”

“Non-pathogenic”
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Student activation 
•  Give an example on a strict pathogen 

 
•  Give an example on an opportunistic pathogen 

 
•  Give an example on a non-pathogen 
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How do we know that a given 
pathogen causes a specific 
disease? 

• Koch's postulates 
–  the pathogen must be present in every case of the 

disease 
–  the pathogen must be isolated from the diseased 

host & grown in pure culture 
–  the specific disease must be reproduced when a pure 

culture of the pathogen is inoculated into a healthy 
susceptible host 

–  the pathogen must be recoverable from the 
experimentally infected host 
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Use 2 minutes to discuss in small groups how 
you would conquer the island. 

Include: 
 
•  How to get on to and how to stay on the island 
Back-paddle, throw an anchor, use a rope, swim from the 
boat (might require more than one swimmer!!) 
 
•  How to avoid being detected by the island defense 
Camouflage, hide, dig-in, costume  
 
•  How to eliminate the island defense 
Poison, weapon, scare to perform suicide 
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Coordinated attack 
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Gene regulation – A tool for a coordinated attack  

I
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Purpose 

The main purpose of PathogenFinder is to predict 
the pathogenecity of a given bacteria, based on 
the whole genome sequence or the proteome. 
 

11 
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Method 
• PathogenFinder identifies and divides the genes after 
protein families 

 
• The genes are the clustered using CD-hit 

• After clustering it is determined whether a group of genes 
is more pathogenic or non-pathogenic 

12 
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Pathogenic gene families 

contained in these families determines its prediction as either
pathogenic or non-pathogenic.

Predictions on the complete set
The protein families method was optimized to achieve the

maximal Matthews correlation coefficient (MCC) in cross-
validation, obtaining MCC = 0.748 with 87% of the organisms
correctly classified. A value of MCC = 1 indicates a perfect
prediction, and a value of MCC = 0 a random prediction. The
method was also tested on an independent evaluation set (one fifth
of the dataset that was left out in the training phase), and assigned
here correctly 16 pathogens out of 17 and 10 non-pathogenic
bacteria out of 14, with MCC = 0.682 (84% correctly classified).

Distribution of predictions across the taxonomy
Fig. 2 shows how the predictions are distributed relatively to

taxonomy. Some genera seem much easier to predict, namely those
that in this dataset are only composed of pathogens (like Yersinia or
Legionella) or non-pathogens (like Buchnera, Xanthomonas). Others show
a more variegated picture and are also the most difficult to assign.
Whereas for e.g. Shewanella virulent and avirulent strains are
correctly separated, the results for Escherichia are very poor: the
method predicts all 10 strains as pathogenic although 4 of them are
not. This is most likely due to the high degree of sequence similarity
between the E. coli genomes in the dataset, making the large number
of features they have in common overcome the few ones that
discriminate the pathogenic strains from the others, even though the
method tries to only detect the latter.

By retraining the method only on the members of the
Enterobacteriaceae (which comprises E. coli), more subtle differences
between the proteomes can be detected. Whereas all the other
predictions for Enterobacteriaceae remained unchanged, 2 of the
wrongly assigned E. coli were corrected using the reduced dataset.
The correlation coefficient on this set was MCC = 0.676 in cross-
validation, and MCC = 0.770 on the test-set. Restricting the
analysis to a branch of the complete dataset is possible only when a
sufficient number of organisms is present in the subset to train the
method on. The minimum size of a subset was estimated by
running the predictor on reduced sets of Enterobacteriaceae from the
original dataset of 58 organisms. The performance in cross-
validation drops to MCC = 0.455 with 40 organisms, 0.275 with
30 organisms, and becomes close to random with 20 organisms
(MCC = 0.135).

Investigation of the species bias
Within the same class of bacteria, one can find a wide range of

organisms causing diverse diseases in different hosts, as well as
many non-virulent ones. However, it is also true that they do not
distribute evenly across the taxonomy, and some clades are highly
homogeneous and composed mainly of pathogens or mainly of
avirulent strains (see Supplementary Fig. S1 online). These
subgroups are the easiest for the predictor to assign correctly, as
they have many proteins in common and are easily clustered
together. The task is more complex on clades that comprise both
pathogenic and non-pathogenic organisms, because the predictor
should be able to only individuate the features that characterize
virulence, and separate the organisms upon the presence or
absence of these features.

The extent of the species bias can be estimated by comparing
our method to one solely based on taxonomy. Such a model
simply determines whether the closest relatives (in terms of
taxonomy classes, see Materials and Methods) of the query organism
in the dataset are pathogenic or not, and classifies the query
accordingly. The performance of this method on 10,000
bootstrapped datasets was MCC = 0.571, with standard deviation
SD = 0.047. On the same datasets the protein families method
yielded MCC = 0.722 (SD = 0.038), thus outperforming the
taxonomy-based predictor with p = 0.002. Our method was also
compared to one based on global sequence similarity, using the
BLAST alignment bitscores as illustrated in Materials and Methods.
In the same way the performance of the protein family-based
method resulted significantly better than the alignment-based
predictor with p = 0.014 (MCC = 0.620, SD = 0.045).

Global relatedness and position in the taxonomy are clearly
important factors in the distribution of pathogens. On the other hand
we have here shown that pathogenicity is often characterized by a
relatively small number of genes, so that two organisms can have
similar genomes at a global sequence level and only differ for these
few key features that discriminate virulent and avirulent bacteria. In
the case of E. coli, for instance, the acquisition of a single pathogenicity
island can be enough to transform a symbiotic strain into a virulent
one [3]. The classification of E. coli strains into pathogenic and non-
pathogenic suggests that the predictions are strongly dependent on
the taxonomic level used in the training (in this case, class vs. family),
and that finding the correct level is of major importance to detect
subtle differences between very similar genomes, and separate the
pathogenic from the non-pathogenic ones.

Figure 1. A schematic representation of genomic features shared by pathogenic (P1-Pn) and non-pathogenic (N1-Nn) organisms.
Some proteins are only specific of certain strains (A, F), others are shared by different bacteria regardless of their being virulent or not (B, C, H).
Proteins that are only (G) or mostly (E) present in pathogenic bacteria (or non-pathogenic bacteria (D)) can be used to discriminate between these
two classes, and they might have a role in determining virulence.
doi:10.1371/journal.pone.0013680.g001

Pathogenicity Prediction

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13680
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Pathogenic gene families 
retains a good number of genomic regions from its human-
infecting ancestor, including many of the Salmonella pathogenicity
islands [31]. Probably the presence of these features misleads the
predictor into considering the organism as a pathogen in human.

Another evaluation set was composed of organisms that were
initially excluded from the analysis, as NCBI Genome Project does
not annotate them as either pathogenic or non-pathogenic. The
set contains 27 organisms, with a prevalence of the genera
Shewanella (10 strains) and Escherichia (6 E. coli strains), and a variety
of other species belonging to the c-Proteobacteria class. Firstly,
using the complete dataset for training, all the E. coli in this dataset
are predicted as pathogenic. As observed previously, subtler
differences can be detected by restricting the dataset to the family
level, if enough genomes are available for a particular family. This
is the case of the Enterobacteriaceae group, which contains 58
different organisms in the main dataset. Thus, the analysis was
repeated only using the Enterobacteriaceae dataset for the training,
and the same parameters that were found to be optimal in cross-
validation. With this approach, the 7 Enterobacteriaceae were now
separated into pathogenic and non-pathogenic, with 5 falling into
the first category and 2 into the latter. The two bacteria predicted
as non-pathogenic are two serovars of E. coli K-12 (W3110, PID
16351 and ATCC 8739, PID 18083), a strain widely used in
laboratory experiments for its safety and easiness to grow. It is
normally avirulent, as are also two other strains of K-12 in the
main dataset (MG1655, PID 225 and DH10B, PID 20079).

Analysis of the protein families
A very interesting by-product of the method is the set of protein

families that is built for the prediction. These families are
composed of proteins that discriminate pathogenic from non-
pathogenic organisms, and might point out interesting genomic
features that are related to virulence.

If a particular gene is consistently present in pathogens but
absent in non-pathogenic strains (or conversely, consistently
present in non-pathogenic bacteria but absent in pathogens), then
there is a high probability that this particular gene is involved in
processes that are typical of the lifestyle of a pathogen (or non-
pathogen). The strength of this approach is that it potentially does
not only identify toxins or other strict virulence factors, but also
genes that are connected to their regulation in some way, and a
thorough analysis of the protein families might potentially reveal
some unknown relationships of this sort.

On the current dataset, 381 families met the criteria of
‘‘pathogenicity family’’. The most common known functions of
members of these families are ‘‘exported proteins’’ (32 families)
and ‘‘membrane proteins’’ (30 families), but also other classical
virulence factors emerge as overrepresented in pathogenicity
families such as ‘‘secretion systems’’ (16 families) and ‘‘fimbrial’’
and ‘‘flagellar’’ proteins (respectively 11 and 6 families). On a
random sample of 381 protein families, the same functions were
found in the following number of families; 4 exported, 12
membrane proteins, 1 secretion system, 4 fimbrial, 3 flagellar.
The families were built with no prior knowledge about the known
function of their members, thus recovering a strong association of
well-established virulence factors with blindly-built pathogenicity
families supports the validity of the approach.

In Table 1 are listed the functions of the proteins that are found
in the 10 top-scoring families, ranked according to Z-scores as
described in Materials and Methods. Some of these 10 families contain
proteins that are clearly involved in pathogenicity. The members of
families rank 2 and 7 are fundamental for bacterial adherence, a
crucial step in the colonization of a new host. Pili and fimbriae are in
this class of proteins, and are hair-like appendices that provide

bacteria with an efficient mechanism to attach to host surfaces.
Other molecular attributes that can easily be linked to virulence are
type III secretion system components (family rank 10), used by
bacteria to secrete directly from the bacterial cell to the host, and
heat shock proteins (family rank 8), which can be important for the
survival of a bacterium right after it has entered its host.

Family rank 1 contains YjhT proteins, a family of proteins that are
present in many sialic acid utilizing pathogens. The presence of sialic
acid onto bacterial cell surfaces is thought to allow pathogens to
disguise themselves as host cells and elude immune response [32].
Family rank 4 groups cytochrome b562 proteins from various
different organisms. Cytochromes in bacteria are suggested to
provide some sort of protection against chemical attacks from
reactive species, such as reactive oxygen and nitrogen species, and
allow survival and growth in oxygen-limited conditions [33].
Methylation of DNA, operated by methyltransferases (family rank
6), is an important process in bacterial cells that affects the regulation
of transcription, chromosome replication, DNA segregation, mis-
match repair and transposition. Further, it is emerging from various
studies that DNA methylation has a role in regulating the expression
of various bacterial genes related to virulence in several pathogens
[34], and methyltransferase genes have been found on pathogenicity
islands [35]. 5-carboxymethyl-2-hydroxy-muconate isomerase (fam-
ily rank 9) is an enzyme that transposes C = C bonds and catalyzes
metabolic reactions [36]. There is no apparent reason why this
enzyme should be involved in pathogenicity.

Finally, two families (rank 3, and 5) are only composed of proteins
with unknown function. They are potentially even more interesting
than well-characterized virulence factors, such as toxins or fimbriae, as
they might turn out to be molecular components of bacterial virulence
apparatuses that are still completely unknown. A large number of
genes, in fact, still have unknown function even though they are highly
conserved among bacterial genomes [37]. Family rank 3 is entirely
composed of proteins with unknown function from 41 different
organisms, 38 of which (92.7%) are pathogens, and scrolling down the
list of families with lower but still significant rankings many others are
found only composed of uncharacterized proteins.

In terms of species composition of the protein families, we
observed that 32% of the families were constituted of proteins
from only one bacterial genus. However, all the largest and most
significant pathogenicity families contained proteins from two and
often more genera (Fig. 3), where also some interesting trends of

Table 1. 10 top scoring pathogenicity families, and function
of their members.

Rank Z-score P N Function of proteins in the family

1 8.29 42 4 Mutarotases, YjhT proteins

2 8.25 33 1 Fimbrial proteins, putative adhesins

3 8.12 38 3 Proteins of unknown function

4 8.02 40 4 Cytochrome b562

5 7.89 39 4 Proteins of unknown function

6 7.86 36 3 Methyltransferases

7 7.82 30 1 Fimbrial proteins, pilin proteins

8 7.56 25 0 Heat shock proteins, DNA-repair

9 7.46 36 4 5-carboxymethyl-2-hydroxymuconate
isomerase

10 7.06 25 1 Type III secretion proteins, path. island
proteins

doi:10.1371/journal.pone.0013680.t001

Pathogenicity Prediction
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Predicting pathogenicity 
The following 4 steps describe the process that leads to the 
prediction: 
 
I  Compare the input proteins to the PathogenFinder Database of 

 protein families 
 
II  Filter hits based on the identity threshold 
 
III  Calculate final score summing the Z values associated to 

 the matched PFs 
 
IV  Compare the final score to the model’s Zthr threshold and 

 give the final prediction 
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https://cge.cbs.dtu.dk/services/PathogenFinder/ 
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Results 
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