
Chapter 4

Methods Applied in
Immunological Bioinformatics

A large variety of methods are commonly used in the field of immunological
bioinformatics. In this chapter many of these techniques are introduced. The
first section describes the powerful techniques of weight-matrix construction,
including sequence weighting and pseudocount correction. The techniques
are introduced using an example of peptide-MHC binding. In the following
sections the more advanced methods of Gibbs sampling, ANNs, and hidden
Markov models (HMMs) are introduced. The chapter concludes with a section
on performance measures for predictive systems and a short section introduc-
ing the concepts of representative data set generation.

4.1 Simple Motifs, Motifs and Matrices

In this section, we shall demonstrate how simple but reasonably accurate pre-
diction methods can be derived from a set of training data of very limited size.
The examples selected relate to peptide-MHC binding prediction, but could
equally well have been related to proteasomal cleavage, TAP binding, or any
other problem characterized by simple sequence motifs.

A collection of sequences known to contain a given binding motif can be
used to construct a simple, data-driven prediction algorithm. Table 4.1 shows
a set of peptide sequences known to bind to the HLA-A*0201 allele.

From the set of data shown in table 4.1, one can construct simple rules
defining which peptides will bind to the given HLA molecule with high affinity.
From the above example it could, e.g., be concluded that a binding motif must

67

68 Methods Applied in Immunological Bioinformatics

ALAKAAAAM
ALAKAAAAN
ALAKAAAAV
ALAKAAAAT
ALAKAAAAV
GMNERPILT
GILGFVFTM
TLNAWVKVV
KLNEPVLLL
AVVPFIVSV

Table 4.1: Small set of sequences of peptides known to bind to the HLA-A*0201 molecule.

be of the form
X1[LMIV]2X3X4X5X6X7X8[MNTV]9 , (4.1)

where Xi indicates that all amino acids are allowed at position i, and [LMIV]2
indicates that only the specified amino acids L, M, I, and V are allow at position
2. Following this approach, two peptides with T and V at position 9, respec-
tively, will be equally likely to bind. Since V is found more often than T at
position 9, one might, however, expect that the latter peptide is more likely to
bind. We will later discuss in more detail why positions 2 and 9 are of special
importance.

Using a statistical approach, such differences can be included directly in
the predictions. Based on a set of sequences, a probability matrix ppa can be
constructed, where ppa is the probability of finding amino acid a (a can be any
of the 20 amino acids) on position p (p can be 1 to 9 in this example) in the
motif. In the above example p9V = 0.4 and p9T = 0.2. This can be viewed as
a statistical model of the binding site. In this model, it is assumed that there
are no correlations between the different positions, e.g., that the amino acid
present on position 2 does not influence which amino acids are likely to be
observed on other positions among binding peptides.

The probability [also called the likelihood p(sequence|model)] of observing
a given amino acid sequence a1a2 . . . ap . . . given the model can be calculated
by multiplying the probabilities for observing amino acid a1 on position 1, a2
on position 2, etc. This product can be written as

Y

p
ppa . (4.2)

Any given amino acid sequence a1a2 . . . ap . . . may also be observed in a ran-
domly chosen protein. Furthermore, long sequences will be less likely than

Simple Motifs, Motifs and Matrices 69

short ones. The probability p(sequence|background model) of observing the
sequence in a random protein, can be written as

Y

p
qa, (4.3)

where qa is the background frequency of amino acid a on position p. The
index p has been left out on qa since it is normally taken to be equal on all
positions.

The ratio of these two likelihoods is called the odds ratio O,

O =
Q
p ppaQ
p qa

=
Y

p

ppa
qa

. (4.4)

The background amino acid frequencies qa define a so-called null model. Dif-
ferent null models can be used: the amino acid distribution in a large set of
proteins such as the Swiss-Prot database [Bairoch and Apweiler, 2000], a flat
distribution (all amino acid frequencies qa are set to 1/20), or an amino acid
distribution estimated from sequences known not to be binders (negative ex-
amples). If the odds ratio is greater than 1, the sequence is more likely given
the model than given the background model.

The odds ratio can be used to predict if a peptide is likely to bind. Mul-
tiplying many probabilities may, however, result in a very low number that
in computers are rounded off to zero (numerical underflow). To avoid this,
prediction algorithms normally use logarithms of odds ratios called log-odds
ratios.

The score S of a peptide to a motif is thus normally calculated as the sum
of the log-odds ratio

S = logk

0
@Y

p

ppa
qa

1
A =

X

p
logk

ppa
qa

!
, (4.5)

where ppa as above is the probability of finding amino acid a at position p
in the motif, qa is the background frequency of amino acid a, and logk is
the logarithm with base k. The scores are often normalized to half bits by
multiplying all scores by 2/ logk(2). The logarithm with base 2 of a number x
can be calculated using a logarithm with another base n (such as the natural
logarithm with base n = e or the logarithm with base n = 10) using the simple
formula log2(x) = logn(x)/ logn(2). In half-bit units, the log-odds score S is
then given as

S = 2
X

p
log2

ppa
qa

!
. (4.6)

70 Methods Applied in Immunological Bioinformatics

4.2 Information Carried by Immunogenic Sequences

Once the binding motif has been described by a probability matrix ppa, a num-
ber of different calculations can be carried out characterizing the motif.

4.2.1 Entropy

The entropy of a random variable is a measure of the uncertainty of the ran-
dom variable; it is a measure of the amount of information required to describe
the random variable [Cover and Thomas, 1991]. The entropy H (also called the
Shannon entropy) of an amino acid distribution p is defined as

H(p) = �
X

a
pa log2(pa) , (4.7)

where pa is the probability of amino acid a. Here the logarithm used has the
base of 2 and the unit of the entropy then becomes bits [Shannon, 1948]. The
entropy attains its maximal value log2(20) ' 4.3 if all amino acids are equally
probable, and becomes zero if only one amino acid is observed at a given
position. We here use the definition that 0 log(0) = 0. For the data shown in
table 4.1 the entropy at position 2 is, e.g., found to be ' 1.36.

4.2.2 Relative Entropy

The relative entropy can be seen as a distance between two probability distri-
butions, and is used to measure how different an amino acid distribution p is
from some background distribution q. The relative entropy is also called the
Kullback-Leibler distance D and is defined as

D(pkq) =
X

a
pa log2(

pa
qa
) . (4.8)

The background distribution is often taken as the distribution of amino acids
in proteins in a large database of sequences. Alternatively, q and p can be the
distributions of amino acids among sites that are known to have or not have
some property. This property could, e.g., be glycosylation, phosphorylation,
or MHC binding.

The relative entropy attains its maximal value if only the least probable
amino acid according to the background distribution is observed. The relative
entropy is non-negative and becomes zero only if p = q. It is not a true metric,
however, since it is not symmetric (D(pkq) 6= D(qkp)) and does not satisfy the
triangle inequality (D(pkq) 6< D(pkr)+D(rkq)) [Cover and Thomas, 1991].

Information Carried by Immunogenic Sequences 71

4.2.3 Logo Visualization of Relative Entropy

To visualize the characteristics of binding motifs, the so-called sequence logo
technique [Schneider and Stephens, 1990] is often used. The information con-
tent at each position in the sequence motif is indicated using the height of a
column of letters, representing amino acids or nucleotides. For proteins the
information content is normally defined as the relative entropy between the
amino acid distribution in the motif, and a background distribution where all
amino acids are equally probable. This gives the following relation for the
information content:

I =
X

a
pa log2

pa
1/20

= log2(20)+
X

a
pa log2 pa . (4.9)

The information content is a measure of the degree of conservation and has a
value between zero (no conservation; all amino acids are equally probable) and
log2(20) ' 4.3 (full conservation; only a single amino acid is observed at that
position). In the logo plot, the height of each letter within a column is propor-
tional to the frequency pa of the corresponding amino acid a at that position.
When another background distribution is used, the logos are normally called
Kullback-Leibler logos, and letters that are less frequent than the background
are displayed upside down.

In logo plots, the amino acids are normally colored according to their prop-
erties:

• Acidic [DE]: red

• Basic [HKR]: blue

• Hydrophobic [ACFILMPVW]: black

• Neutral [GNQSTY]: green

But other color schemes can be used if relevant in a given context. An example
of a logo can be seen in Figure 4.1.

4.2.4 Mutual Information

Another important quantity used for characterizing a motif is the mutual in-
formation. This quantity is a measure of correlations between different po-
sitions in a motif. The mutual information measure is in general defined as
the reduction of the uncertainty due to another random variable and is thus
a measure of the amount of information one variable contains about another.
Mutual information between two variables is defined as

I(A;B) =
X

a

X

b
pab log2(

pab
papb

) , (4.10)

72 Methods Applied in Immunological Bioinformatics

Figure 4.1: Logo showing the bias for peptides binding to the HLA-A*0201 molecule. Positions 2
and 9 have high information content. These are anchor positions that to a high degree determine
the binding of a peptide [Rammensee et al., 1999]. See plate 4 for color version.

where pab is the joint probability mass function (the probability of having
amino acid a in the first distribution and amino acid b in the second distribu-
tion) and

pa =
X

b
pab , pb =

X

a
pab . (4.11)

It can be shown that [Cover and Thomas, 1991],

I(A;B) = H(A)�H(A|B) (4.12)

where H is the entropy defined in equation(4.7). From this relation, we see that
uncorrelated variables have zero mutual information since H(A|B) = H(A)
for such variables. The mutual information attains its maximum value, H(A),
when the two variables are fully correlated, since H(A|B) = 0 in this case.
The mutual information is always non-negative. Mutual information can be
used to quantify the correlation between different positions in a protein, or
in a peptide-binding motif. Mutations in one position in a protein may, e.g.,
affect which amino acids are found at spatially close positions in the folded
protein. Mutual information can be visualized as matrix plots [Gorodkin et al.,
1999]. Figure 4.2 gives an example of a mutual information matrix plot for
peptides binding to MHC alleles within the A2 supertype. For an explanation
of supertypes, see chapter 13.

Sequence Weighting Methods 73

Figure 4.2: Mutual information plot calculated from peptides binding to MHC alleles
within the A2 supertype. The plot was made using MatrixPlot [Gorodkin et al., 1999]
(http://www.cbs.dtu.dk/services/MatrixPlot/).

4.3 Sequence Weighting Methods

In the following, we will use the logo plots to visualize some problems one
often faces when deriving a binding motif characterized by a probability matrix
ppa as described in section 4.1.

The values of ppa may be set to the frequencies fab observed in the align-
ment. There are, however, some problems with this direct approach. In figure
4.3, a logo representation of the probability matrix calculated from the pep-
tides in table 4.1 is shown. From the plot, it is clear that alanine has a very
high probability at all positions in the binding motif. The first 5 sequences in
the alignment are very similar, and may reflect a sampling bias, rather than an
actual amino acids bias in the binding motif. In such a situation, one would
therefore like to downweight identical or almost identical sequences.

74 Methods Applied in Immunological Bioinformatics

Figure 4.3: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201.

Different methods can be used to weight sequences. One method is to
cluster sequences using a so-called Hobohm algorithm [Hobohm et al., 1992].
The Hobohm algorithm (version 1) takes an ordered list of sequences as input.
From the top of the list sequences are placed on an accepted list or discarded
depending on whether they are similar (share more than X% identify to any
member on the accepted list) or not. This procedure is repeated for all se-
quences in the list. After the Hobohm reduction, the pairwise similarity in the
accept list therefore has a maximum given by the threshold used to generate
it.

This method is also used for the construction of the BLOSUM matrices
normally used by BLAST. The most commonly used clustering threshold is
62%. After the clustering, each peptide k in a cluster is assigned a weight
wk = 1/Nc , where Nc is the number of sequences in the cluster that contains
peptide k. When the amino acid frequencies are calculated, each amino acid in

Pseudocount Correction Methods 75

sequence k is weighted by wk. In the above example the first 5 peptides will
form one cluster, and each of these sequences thus contributes with a weight
of 1

5 to the probability matrix. The frequency of A at position p1 will then
be p1A = 2/6 = 0.33 as opposed to 6/10 = 0.6 found when using the raw
sequence counts.

In the Henikoff and Henikoff [1994] sequence weighting scheme, an amino
acid a on position p in sequence k contributes a weight wkp = 1/rs, where r
is the number of different amino acids at a given position (column) in the align-
ment and s the number of occurrences of amino acid a in that column. The
weight of a sequence is then assigned as the sum of the weights over all posi-
tions in the alignment. The Henikoffs’ method is fast as the computation time
only increases linearly with the number of sequences. For the Hobohm cluster-
ing algorithm, on the other hand, computation time increases as the square of
the number of sequences (depending on the similarity between the sequences).
Performing the sequence weighting using clustering generally leads to more ac-
curate results, and clustering is the suggested choice of method if the number
of sequences is limited and the calculation thus computationally feasible.

Figure 4.4 shows a logo representation of the probability matrix calculated
using clustering sequence weighting. From the figure it is apparent that the
strong alanine bias in the motif has been removed.

4.4 Pseudocount Correction Methods

Another problem with the direct approach to estimating the probability matrix
ppa is that the statistics often will be based on very few sequence examples (in
this case 10 sequences). A direct calculation of the probability p9I for observ-
ing an isoleucine on position 9 in the alignment, e.g., gives 0. This will in turn
mean that all peptides with an isoleucine on position 9 will score minus infin-
ity in equation (4.5), i.e., be predicted not to bind no matter what the rest of the
sequence is. This may be too drastic a conclusion based on only 10 sequences.
One solution to this problem is to use a pseudocount method, where prior
knowledge about the frequency of different amino acids in proteins is used.
Two strategies for pseudocount correction will be described here: Equal and
BLOSUM correction, respectively. In both cases the pseudocount frequency
gpa for amino acid a on position p in the alignment is estimated as described
by Altschul et al. [1997],

gpa =
X

b

fpb
qb

qab =
X

b
fpb qa|b . (4.13)

Here, fpb is the observed frequency of amino acid b on position p, qb is the
background frequency of amino acid b, qab is the frequency by which amino

76 Methods Applied in Immunological Bioinformatics

Figure 4.4: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using the clustering sequence
weighting method.

acid a is aligned to amino acid b derived from the BLOSUM substitution matrix,
and qa|b is the corresponding conditional probability. The equation shows how
the pseudo-count frequency can be calculated. The pseudocount frequency for
isoleucine at position 9 in the example in table 4.1 would, e.g., be

g9I =
X

b
f9b qI|b = 0.3 qI|V + 0.2 qI|T . . .0.1 qI|L ' 0.09 , (4.14)

where here, for simplicity, we have used the raw count values for f9b. In
real applications the sequence-weighted probabilities are normally used. The
qa|b values are taken from the BLOSUM62 substitution matrix [Henikoff and
Henikoff, 1992].

In the Equal correction, a substitution matrix with identical frequencies for
all amino acids (1/20) and all amino acid substitutions (1/400) is applied. In
this case gpa = 1/20 at all positions for all amino acids.

Weight on Pseudocount Correction 77

4.5 Weight on Pseudocount Correction

From estimated pseudocounts, and sequence-weighted observed frequencies,
the effective amino acid frequency can be calculated as [Altschul et al., 1997]

ppa =
↵fpa + �gpa

↵+ � . (4.15)

Here fpa is the observed frequency (calculated using sequence weighting), gpa
the pseudocount frequency, ↵ the effective sequence number minus 1, and
� the weight on the pseudocount correction. When the sequence weighting
is performed using clustering, the effective sequence number is equal to the
number of clusters. When sequence weighting as described by Henikoff and
Henikoff [1992] is applied, the average number of different amino acids in the
alignment gives the effective sequence number. If a large number of different
sequences are available ↵ will in general also be large and a relative low weight
will thus be put on the pseudocount frequencies. If, on the other hand, the
number of observed sequences is one, ↵ is zero, and the effective amino acid
frequency is reduced to the pseudocount frequency gpa. If we calculate the
log-odds score S, for a G, as given by equation (4.5), G gets the score:

SG = log
gpG
qG

= log
qGG
qGqG

, (4.16)

where we have used equation (4.13) for gpa. The last log-odds score is the
BLOSUM matrix score for G�G, and we thus find that the log-odds score for a
single sequence reduces to the BLOSUM identical match score values.

Figure 4.5 shows the logo plot of the probability matrix calculated from
the sequences in table 4.1, including sequence weighting and pseudocount
correction. The figure demonstrates how the pseudocount correction allows
for probability estimates for all 20 amino acids at all positions in the motif.
Note that I is the fifth most probable amino acid at position 9, even though
this amino acid was never observed at the position in the peptide sequences.

4.6 Position Specific Weighting

In many situations prior knowledge about the importance of the different po-
sitions in the binding motif exists. Such prior knowledge can with success be
included in the search for binding motifs [Lundegaard et al., 2004, Rammensee
et al., 1997]. In figure 4.6, we show the results of such a position-specific
weighting. The figure displays the probability matrix calculated from the 10
sequences and a matrix calculated from a large set of 485 peptides. It demon-
strates how a reasonably accurate motif description can be derived from a very

78 Methods Applied in Immunological Bioinformatics

Figure 4.5: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using both the methods of se-
quence weighting and pseudocount correction.

limited set of data, using the techniques of sequence weighting, pseudocount
correction, and position-specific weighting.

4.7 Gibbs Sampling

In previous sections, we have described how a weight matrix describing a se-
quence motif can be calculated from a set of peptides of equal length. This ap-
proach is appropriate when dealing with MHC class I binding, where the length
of the binding peptides are relatively uniform. MHC class II molecules, on the
other hand, can bind peptides of very different length, and the weight-matrix
methods described up to now are hence not directly applicable to characterize
this type of motif. Here we describe a motif sampler suited to deal with such
problems.

The general problem to be solved by the motif sampler is to locate and

Gibbs Sampling 79

Figure 4.6: Left: Logo representation of the probability matrix calculated from 10 9mer peptides
known to bind HLA-A*0201. The probabilities are calculated using the methods of sequence
weighting, pseudocount correction, and position-specific weighting. The weight on positions 2
and 9 is 3. Right: Logo representation of the probability matrix calculated from 485 peptides
known to bind HLA-A*0201.

characterize a pattern embedded within a set of N amino acids (or DNA) se-
quences. In situations where the sequence pattern is very subtle and the mo-
tif weak, this is a highly complex task, and conventional multiple sequence
alignment programs will typically fail. The Gibbs sampling method was first
described by Lawrence et al. [1993] and has been used extensively for location
of transcription factor binding sites [Thompson et al., 2003] and in the anal-
ysis of protein sequences [Lawrence et al., 1993, Neuwald et al., 1995]. The
method attempts to find an optimal local alignment of a set of N sequences

80 Methods Applied in Immunological Bioinformatics

by means of Metropolis Monte Carlo sampling [Metropolis et al., 1953] of the
alignment space. The scoringfunction guiding the Monte Carlo search is de-
fined in terms of fitness (information content) of a log-odds matrix calculated
from the alignment.

The algorithm samples possible alignments of the N sequences. For each
alignment a log-odds weight matrix is calculated as log(ppa/qa), where ppa
is the frequency of amino acid a at position p in the alignment and qa is the
background frequency of that amino acid. The values of ppa can be estimated
using sequence weighting and pseudocount correction for low counts as de-
scribed earlier in this chapter.

The fitness (energy) of an alignment is calculated as

E =
X

p,a
Cpa log

ppa
qa

, (4.17)

where Cpa is the number of times amino acid a is observed at position p in
the alignment, ppa is the pseudocount and sequence weight corrected amino
acid frequency of amino acid b and position p in the alignment. Finally, qa
is the background frequency of amino acid a. E is equal to the sum of the
relative entropy or the Kullback-Leibler distance [Kullback and Leibler, 1951]
in the window.

The set of possible alignments is, even for a small data set, very large. For
a set of 50 peptides of length 10, the number of different alignments with
a core window of nine amino acids is 250 ' 1015. This number is clearly
too large to allow for a sampling of the complete alignment space. Instead,
the Metropolis Monte Carlo algorithm is applied [Metropolis et al., 1953] to
perform an effective sampling of the alignment space.

Two distinct Monte Carlo moves are implemented in the algorithm: (1) the
single sequence move, and (2) the phase shift move. In the single sequence
move, the alignment of a sequence is shifted a randomly selected number of
positions. In the phase shift move, the window in the alignment is shifted a
randomly selected number of residues to the left or right. This latter type of
move allows the program to efficiently escape local minima. This may, e.g.,
occur if the window overlaps the most informative motif, but is not centered
on the most informative pattern.

The probability of accepting a move in the Monte Carlo sampling is defined
as

P = min(1, edE/T) , (4.18)

where dE is difference in (fitness) energy between the end and start configu-
rations and T is a scalar. Note that we seek to maximize the energy function,
hence the positive sign for dE in the equation. T is a scalar that is lowered
during the calculation. The equation implies that moves that increase E will

Gibbs Sampling 81

Figure 4.7: Example of an alignment generated by the Gibbs sampler for the DR4(B1*0401)
binding motif. The peptides were downloaded from the MHCPEP database [Brusic et al., 1998a].
Top left: Unaligned sequences. Top right: Logo for unaligned sequences. Bottom left: Sequences
aligned by Gibbs sampler. Bottom right: Logo for sequences aligned by the Gibbs sampler.
Reprinted, with permission, from Nielsen et al. [2004]. See plate 5 for color version.

always be accepted (dE > 0). On the other hand, only a fraction given by
edE/T of the moves which decrease E will be accepted. For high values of the
scalar T (T � dE) this probability is close to 1, but as T is lowered during the
calculation, the probability of accepting unfavorable moves will be reduced,
forcing the system into a state of high fitness (energy). Figure 4.7 shows a set
of sequences aligned by their N-terminal (top left) and the corresponding logo
(top right). The lower panel shows the alignment by the Gibbs sampler and the
corresponding logo. The figure shows how the Gibbs sampler has identified a
motif describing the binding to the DR4(B1*0401) allele. For more details on
the Gibbs sampler see Chapter 8.

82 Methods Applied in Immunological Bioinformatics

4.8 Hidden Markov Models

The Gibbs sampler and other weight-matrix approaches are well suited to de-
scribe sequence motifs of fixed length. For MHC class II, the peptide binding
motif is in most situations assumed to be of a fixed length of 9 amino acids.
This implies that the scoringfunction for a peptide binding to the MHC com-
plex can be written as a linear sum of 9 terms. In many situations this simple
motif description is, however, not valid. In the previous chapter, we described
how protein families, e.g, often are characterized by conserved amino acid re-
gions separated by amino acid segments of variable length. In such situations
a weight matrix approach is poorly suited to characterize the motif. HMMs, on
the other hand, provide a natural framework for describing such interrupted
motifs.

In this section, we will give a brief introduction to the HMM framework.
First, we describe the general concepts of the HMM framework through a sim-
ple example. Next the Viterbi and posterior decoding algorithms for aligning
a sequence to a HMM are explained, and finally the use of HMMs in some se-
lected biological problems is described. A detailed introduction to HMMs and
their application to sequence analysis problems may be found, e.g., in Durbin
et al. [1998] and Baldi and Brunak [2001].

4.8.1 Markov Model, Markov Chain

A Markov model consists of a set of states. Each state is associated with a
probability distribution assigning probability values to the set of possible out-
comes. A set of transition probabilities for switching between the states is
assigned. In a Markov model (or Markov chain) the outcome of an event de-
pends only on the preceding state.

An example of such a model is a B cell epitope model. Regions in the
sequence with many hydrophobic residues are less likely to be exposed on
the surface of proteins and it is therefore less likely that antibodies can bind
to these regions. In this model, we divide positions in a protein in two states:
epitopes E and non-epitopes N. We divide the 20 different amino acids in three
groups. Hydrophobic [ACFILMPVW] , uncharged polar [GNQSTY] and charged
[DEHKR]. This model is displayed in Figure 4.8. Even though this model is
highly simplified and does only capture the most simple, of the very complex,
features describing the B cell epitopes, it serves the purpose of introducing
the important concepts of an HMM.

Hidden Markov Models 83

Figure 4.8: B cell epitope model. The model has two states: Epitope E and non epitope N. In
each state, three different types of amino acids can be found Hydrophobic (H), uncharged polar
(U) and charged (C). The transition probabilities between the two states are given next to the
arrows, and the probability of each of the three types of amino acids are given for each of the
two states.

4.8.2 What is Hidden?

What is hidden in the HMM? In biology HMMs are most often used to assign a
state (epitope or non-epitope in this example) to each residue in a biological
sequence (3 types of amino acids in this example). An HMM can, however, also
be used to construct artificial sequences based on the probabilities in it. When
the model is used in this way, the outcome (often called the emissions) is a
sequence like HHHUHHCH It is not possible from the observed sequence
to establish if the model for each letter was in the epitope state or not. This
information is kept hidden by the model.

4.8.3 The Viterbi Algorithm

Even though the list of states used by the HMM to generate the observed se-
quence is hidden, it is possible to obtain an accurate estimate of the list of
states used. If we have an HMM like the one described in figure 4.8, we can
use a dynamic programming algorithm like the one described in chapter 3 to
align the observed sequence to the model and obtain the path (list of states)
that most probably will generate the observations. The dynamic programming
algorithm doing the alignment of a sequence to the HMM is called the Viterbi
algorithm.

If the highest probability Pk(xi) of a path ending in state k with observation
xi is known for all states k, then the highest probability for observation xi+1
in state l, can be found as

Pl(xi+1) = pl(xi+1)max
k
(Pk(xi)akl) , (4.19)

84 Methods Applied in Immunological Bioinformatics

where pl(xi+1) is the probability of observation xi+1 in state l, and akl is the
transition probability from state k to state l.

By using this relation recursively, one can find the path through the model
that most probably will give the observed sequence. To avoid underflow in
the computer the algorithm normally will work in log-space and calculate
logPl(xi+1) instead. In log-space the recursive equation becomes a sum, and
the numbers remain within a reasonable range.

An example of how the Viterbi algorithm is applied is given in figure 4.9.
The figure shows how the optimal path through the HMM of figure 4.8 is
calculated for a sequence of NGSLFWIA. By translating the sequence into
the three states defining hydrophobic, neutral and charged residues, we get
HHHUUUUU . In the example, we assume that the model is the non-epitope
state at the first H, which implies that is PE(H1) = �1. The value for assign-
ing H to the state N is PN(H1) = log(0.55) = �0.26. For the next residue, the
path must come from the N state. We therefore find, PN(H2) = log(0.55) +
log(0.9) � 0.26 = �0.57, and PE(H2) = log(0.4) + log(0.1) � 0.26 = �1.66,
since aNN0.9, and aNE = 0.1. The backtracking arrows are for both the E and
the N state placed to the previous N state. For the third residue the path to
the N state can come from both the N and the E states. The value PN(H3) is
therefore found using the relation

PN(H3) = log(0.55)+max{log(0.9)� 0.57, log(0.1)� 1.66} = �0.88 (4.20)

and likewise the value PE(H3) is

PE(H3) = log(0.4)+max{log(0.1)� 0.57, log(0.9)� 1.66} = �1.97 (4.21)

In both cases the max function selects the first argument, and the backtracking
arrows are therefore for both the E and the N state assigned to the previous
N state. This procedure is repeated for all residues in the sequence, and we
obtain the result shown in Figure 4.9. With the arrows, it is indicated which
state was selected in the maxk function in each step in the recursive calcula-
tion. Repeating the calculation for all residues in the observed sequence, we
find that the highest score �4.08 is found in state E. Backtracking through
the arrows, we find the optimal path to be EEENNNNN (indicated with solid
arrows). Note that the most probable path of the sequence HHHUUUU would
have ended in the state N with a value of �3.48, and the corresponding path
would hence have been NNNNNNN. Observing a series of uncharged amino
acids thus does not necessarily mean that the epitope state was used.

4.8.4 The Forward-Backward Algorithm and Posterior Decoding

Many different paths through an HMM can give rise to the same observed se-
quence. Where the Viterbi algorithm gives the most probable path through an

Hidden Markov Models 85

Figure 4.9: Alignment of sequence HHHUUUUU to the B cell epitope model of figure 4.8. The
upper part of the figure shows the log-transformed HMM. The probabilities have been trans-
formed by taking the logarithm with base 10. The model is assumed to start in the non-epitope
state at the first H. The table in the lower part gives the logPl(xi+1) values for the different
observations in the N (non epitope), and E (epitope) states, respectively. The arrows show the
backtracking pointers. The solid arrows give the optimal path, the dotted arrows denote the
suboptimal path. The upper two rows in the table give the amino acid and three letter trans-
formed sequence, respectively . The lower row gives the most probable path found using the
Viterbi algorithm.

HMM given the observed sequence, the so-called forward algorithm calculates
the probability of the observed sequence being aligned to the HMM. This is
done by summing over all possible paths generating the observed sequence.
The forward algorithm is a dynamic programming algorithm with a recursive
formula very similar to the Viterbi equation, replacing the maximization step
with a sum [Durbin et al., 1998]. If fk(xi�1) is the probability of observing the
sequence up to and including xi�1 ending in state k, then the probability of
observing the sequence up to and including xi ending in state l can be found
using the recursive formula

fl(xi) = pl(xi)
X

k
fk(xi�1)akl . (4.22)

Here pl(xi) is the probability of observation xi in state l, and akl is the transi-
tion probability from state k to state l.

86 Methods Applied in Immunological Bioinformatics

Another important algorithm is the posterior decoding or forward-
backward algorithm. The algorithm calculates the probability that an ob-
servation xi is aligned to the state k given the observed sequence x. The
term “posterior decoding” refers to the fact that the decoding is done af-
ter the sequence is observed. This probability can formally be written as
P(⇡i = k|x) and can be determined using the so-called forward-backward
algorithm [Durbin et al., 1998].

P(⇡i = k|x) =
fk(i)bk(i)
P(x)

. (4.23)

The term fk(i) is calculated using the forward recursive formula from before,

fk(i) = pk(xi)
X

l
fl(xi�1)alk , (4.24)

and bk(i) is calculated using a backward recursive formula,

bk(xi) =
X

l
aklpl(xi+1)bl(i+ 1) . (4.25)

From these relations, we see why the algorithm is called forward-backward.
fk(i) is the probability of aligning the sequence up to and including xi with
a path ending in state k, and bk(i) is the probability of aligning the sequence
xi+1 . . . xN to the HMM starting from state k. Finally P(x) is the probability of
aligning the observed sequence to the HMM.

One of the most important applications of the forward-backward algorithm
is the posterior decoding. Often many paths through the HMM will have prob-
abilities very close to the optimal path found by the Viterbi algorithm. In such
situations posterior decoding might be a more adequate algorithm to extract
properties of the observed sequence from the model. Posterior decoding gives
a list of states that most probably generate the observed sequence using the
equation

⇡posteriori = max
k
P(⇡i = k|x) , (4.26)

where P(⇡i = k|x) is the probability of observation xi being aligned to state
⇡k given the observed sequence x. Note that posterior decoding is different
from the Viterbi decoding since the list of states found by posterior decoding
need not be a legitimate path through the HMM.

4.8.5 Higher Order Hidden Markov Models

The central property of the Markov chains described until now is the fact that
the probability of an observation only depends on the previous state and that

Hidden Markov Models 87

the probability of an observed sequence, X, thus can be written as

P(X) = P(x1)P(x2|x1)P(x3|x2) · · ·P(xN|xN�1) (4.27)

where P(xi) denotes the probability of observing x at position i.
In many situations, this approximation might not be valid since the proba-

bility of an observation might depend on more than just the preceding state.
However by use of higher order Markov models, such dependences can be cap-
tured. In a Markov model of n’th order, the probability of an observation xi is
given by

P(xi) = P(xi|xi�1, . . . , xi�n) (4.28)

A second order hidden Markov model describing B cell epitopes may thus
consist of two states each with 9 possible observations HH, HU , HC , UH,
UU , UC , CH, CU , and CC . By assigning different probability values to for
instance the observationsHU , UU and CU , the model can capture higher order
correlations.

An n’th order Markov model over some alphabet is thus equivalent to a first
order Markov chain over an alphabet of n-tuples.

4.8.6 Hidden Markov Models in Immunology

Having introduced the HMM framework through a simple example, we now
turn to some relevant biological problems that are well described using HMMs.
The first is highly relevant to antigen processing, and describes how an
HMM can be designed to characterize the binding of peptides to the human
transporter associated with antigen processing (TAP). The second example
addresses a more general use of HMMs in characterizing similarities between
protein sequences, the so-called profile HMMs.

TAP Transport of the peptides into the endoplasmic reticulum is an essen-
tial step in the MHC class I presentation pathway. This task is done by TAP
molecules and a detailed description of the function of the TAP molecules is
given in chapter 7. The peptides binding to TAP have a rather broad length dis-
tribution, and peptides up to a length of 18 amino acids can be translocated
[van Endert et al., 1994]. The binding of a peptide to the TAP molecules is to
a high degree determined by the first three N-terminal positions and the last
C-terminal position in the peptide. Other positions in the peptide determine
the binding to a lesser degree. The binding of a peptide to the TAP molecules
is thus an example of a problem where the binding motif has variable length,
and hence a problem that is well described by a HMM. Figure 4.10 shows an
HMM describing peptide TAP binding. The figure highlights the important
differences and similarities between a weight matrix and an HMM. If we only

88 Methods Applied in Immunological Bioinformatics

Figure 4.10: HMM for peptide TAP binding. The model can describe binding of peptides of
different lengths to the TAP molecules. The binding motif consists of 9 amino acids. The first
three N-terminal amino acids, and the last C-terminal amino acids must be part of the binding
motif. Each state is associated with a probability distribution of matching one of the 20 amino
acids. The arrow between the states indicates the transition probabilities for switching between
the states. The amino acid probability distributions for each state are estimated using the
techniques of sequence weighting and pseudocount correction (see section 4.4).

consider alignment of 9mer peptides to the HMM, we see that no alignment
can go through the insertion states (labeled as I in the figure). In this situation
the alignment becomes a simple sum of the amino acid match scores from
each of the 9 states N1-N3, P1-P5, and C9, and the HMM is reduced to a sim-
ple weight matrix. However, if the peptide is longer than nine amino acids,
the path through the HMM must pass some insertion state, and it is clear that
such a motif could not have been characterized well by a weight matrix.

Profile Hidden Markov Models Profile HMMs are used to characterize se-
quence similarities within a family of proteins. As described in chapter 3 a
multiple alignment of protein sequences within a protein family can reveal im-
portant information about amino acids conservation, mutability, active sites,
etc.

A profile HMM provides a natural framework for compiling such informa-
tion of a multiple alignment. In figure 4.11, we show an example of a profile
HMM. The architecture of a profile HMM is very similar to the model for pep-
tide TAP binding. The model is build from a set of match states (P1-P7). These
states describe what is conserved among most sequences in the protein fam-
ily. Some sequences within a family will have amino acid insertions; others will
have amino acid deletions with respect to the motif. To allow for such varia-
tion in sequence, the profile HMM has insertion and deletion states (labeled as
I and D in the figure, respectively). The model can insert amino acids between
match states using the insertion state, and a match state can be skipped using
the deletion states.

An example of a multiple alignment was given in figure 3.12C. From this
type of alignment, one can construct a profile HMM. If we consider positions

Artificial Neural Networks 89

Figure 4.11: Profile HMM with 7 match states. Match states are shown as squares, insertion state
as diamonds, and deletion states as circles. Each match and insertion state has an associated
probability distribution for matching the 20 different amino acids. Transitions between the
different states are indicated by arrows.

in the alignment with less than 40% gaps to be match states, then all other
positions are either insertions or deletions. In the example in figure 3.12 Neu-
rospora crassa and Saccharomyces cerevisiae hence contain an insertion in po-
sition 58-64, whereas positions 32-38 in Saccharomyces cerevisiae, and posi-
tions 35-38 in Neurospora crassa are deleted. Note that we count the positions
in the alignment, not the positions in the sequence. The figure demonstrates
that insertions and deletions are distributed in a highly nonuniform manner
in the alignment. Also, it is apparent from the figure that not all positions are
equally conserved. The W in position 72 is thus fully conserved in all species,
whereas the W in position 53 is more variable. These variations in sequence
conservation and in the probabilities for insertions and deletions are naturally
described by an HMM, and profile HMMs have indeed been applied success-
fully to the identification of new and remote homolog members of families
with well-characterized protein domains [Sonnhammer et al., 1997, Karplus
et al., 1998, Durbin et al., 1998].

4.9 Artificial Neural Networks

As stated earlier the weight-matrix approach is only suitable for prediction of
a binding event in situations where the binding specificity can be represented

90 Methods Applied in Immunological Bioinformatics

independently at each position in the motif. In many (in fact most) situations
this is not the case, and this assumption can only be considered to be an ap-
proximation. In the binding of a peptide to the MHC molecule the amino acids
might, e.g., compete for the space available in the binding grove. The mutual
information in the binding motif will allow for identification of such higher-
order sequence correlations. An example of a mutual information calculation
for peptides binding to the MHC class I complex is shown in figure 4.2.

Neural networks with a hidden layer are designed to describe sequence
patterns with such higher-order correlations. Due to their ability to handle
these correlations, hundreds of different applications within bioinformatics
have been developed using this technique, and for that reason ANNs have
been enjoying a renaissance, not only in biology but also in many other data
domains.

Neural networks realize a method of computation that is vastly different
from “rule-based techniques” with strict control over the steps in the calcula-
tion from data input to output. Conceptually, neural networks, on the other
hand, use “influence” rather than control. A neural network consists of a large
number of independent computational units that can influence but not con-
trol each other’s computations. That such a system, which consists of a large
number of unintelligent units, in their biological counterparts can be made to
exhibit “intelligent” behavior is not directly obvious, but one can with some
justification use the central nervous system in support of the idea. However,
the ANNs obviously do not to any extent match the computing power and so-
phistication of biological neural systems.

ANNs are not programmed in the normal sense, but must be influenced by
data — trained — to associate patterns with each other.

The neural network algorithm most often used in bioinformatics is similar
to the network structure described by Rumelhart et al. [1991]. This network
architecture is normally called a standard, feedforward multilayer perceptron.
Other neural network architectures have also been used, but will not be de-
scribed here. The most successful of the more complex networks involves dif-
ferent kinds of feedback, such that the network calculation on a given (often
quite short) amino acid sequence segment possibly can depend on sequence
patterns present elsewhere in the sequence. When analyzing nucleotide data
the applications have typically been used also for long sequence segments,
such as the determination of whether a given nucleotide belongs to a protein
coding sequence or not. The network can in such a case be trained to take
advantage of long-range correlations hundreds of nucleotide positions apart
in a sequence.

The presentation of the neural network theory outlined below is based on
the paper by Rumelhart et al. [1991], as well as the book by Hertz et al. [1991].
The training algorithm used to produce the final network is a steepest descent

Artificial Neural Networks 91

method that learns a training set of input-output pairs by adjusting the net-
work weight parameters such that the network for each input will produce a
numerical value that is close to the desired target output (either representing
disjunct categories, or real values such as peptide binding affinities). The idea
with the network is to produce algorithms which can handle sequence corre-
lations, and also classify data in a nonlinear manner, such that small changes
in sequence input can produce large changes in output. The hope is that the
network then will be able to reproduce what is well-known in biology, namely
that many single amino acid substitutions can entirely disrupt a mechanism,
e.g., by inhibiting binding.

The feedforward neural network consists of connected computing units.
Each unit “observes” the other units’ activity through its input connections.
To each input connection, the unit attaches a weight, which is a real number
that indicates how much influence the input in question is to have on that
particular unit. The influence is calculated as the weight multiplied by the
activity of the neuron delivering the input. The weight can be negative, so an
input can have a negative influence. The neuron sums up all the influence it
receives from the other neurons and thereby achieves a measure for the total
influence it is subjected to. From this sum the neuron subtracts a threshold
value, which will be omitted from the description below, since it can be viewed
as a weight from an extra input unit, with a fixed input value of �1. The linear
sum of the inputs is then transformed through a nonlinear, sigmoidal function
to produce its output. The input layer units does not compute anything, but
merely store the network inputs; the information processing in the network
takes place in the internal, hidden layer (most often only one layer), and in
the output layer. A schematic representation of this type of neural network is
shown in figure 4.12.

4.9.1 Predicting Using Neural Networks: Conversion of Input to Out-
put

Formally the calculation in a network with one hidden layer proceeds as fol-
lows. Let the indices i, j, and k refer to the output, hidden, and input layers,
respectively. The input neurons each receive an input Ik. The input to each of
the hidden units is

hj =
X

k
vjkIk, (4.29)

where vjk is the weight on the input k to the hidden unit j. The output from
the hidden units is

Hj = g(hj) (4.30)

92 Methods Applied in Immunological Bioinformatics

Figure 4.12: Schematic representation of a conventional feedforward neural network used in
numerous applications within bioinformatics.

where
g(x) = 1

1+ e�x (4.31)

is the sigmoidal function most often used. Note that

g0(x) = g(x)(1� g(x)) . (4.32)

Each output neuron receives the input

oi =
X

j
wijHj , (4.33)

wherewij are the weights between the hidden and the output units to produce
the final output

Oi = g(oi) . (4.34)

Different measures of the error between the network output and the de-
sired target output can be used [Hertz et al., 1991, Bishop, 1995]. The most
simple choice is to let the error E be proportional to the sum of the squared
difference between the desired output di and the output Oi from the last layer
of neurons:

E = 1
2

X

i
(Oi � di)2 . (4.35)

4.9.2 Training the Network by Backpropagation

One option is to update the weights by a back-propagation algorithm which
is a steepest descent method, where each weight is changed in the opposite

Artificial Neural Networks 93

direction of the gradient of the error,

�wij = �"
@E
@wij

and �vjk = �"
@E
@vjk

. (4.36)

The change of the weights between the hidden and the output layer can be
calculated by using

@E
@wij

= @E
@Oi

@Oi
@oi

@oi
@wij

= �iHj , (4.37)

where
�i = (Oi � di)g0(oi) . (4.38)

To calculate the change of weights between the input and the hidden layer we
use the following relations

@E
@vjk

= @E
@Hj

@Hj
@vjk

, (4.39)

and
@E
@Hj

=
X

i

@E
@oi

@oi
@Hj

=
X

i

@E
@oi

wij , (4.40)

and
@Hj
@vjk

= @Hj
@hj

@hj
@vjk

= g0(hj)Ik , (4.41)

and thus
@E
@vjk

= g0(hj)Ik
X

i
�iwij . (4.42)

In the equations described here the error is backpropagated after each presen-
tation of a training example. This is called online learning. In batch, or offline,
learning, the error is summed over all training examples and thereafter back-
propagated. However, this method has proven inferior in most cases [Hertz
et al., 1991].

In figure 4.13, we give a simple example of how the weights in the neural
network are updated using backpropagation. The figure shows two configu-
rations of a neural network with two hidden neurons. The network must be
trained to learn the XOR (exclusive or) function. That is the function with the
following properties:

fXOR(0,0) = fXOR(1,1) = 0 (4.43)

fXOR(1,0) = fXOR(0,1) = 1 .

This type of input-output association is the simplest example displaying
higher-order correlation, as the two input properties are not independently

94 Methods Applied in Immunological Bioinformatics

Figure 4.13: Update of weights in a neural network using backpropagation. The figure shows
the neural network before updating the weights (left) and the network configuration after one
round of backpropagation (right). The learning rate " in the example is equal to 0.5. Note that
this is a large value for ". Normally the value is of the order 0.05.

linked to the categories. The “1” category is represented by input examples
where only one of the two features are allowed to be present — not both
features simultaneously. The (1,1) example from the “0” category is therefore
an “exception,” and this small data set can therefore not be handled by a
linear network without hidden units. The example may seem very simple;
still it captures the essence of the sequence properties in many binding sites,
where the two features could be charge and side chain volume, respectively.
In actual application the number of input features is typically much higher.

In the example shown in figure 4.13, we have for simplicity left out the
threshold value normally subtracted from the input to each neuron. The fig-
ure shows the neural network before updating the weights and the network
configuration after one round of backpropagation. With the example (1,1),
the network output, O, from the network with the initial weights is 0.6. This
gives the following relation for �:

� = (0.6� 0)g0(o) = 0.6 ·O · (1�O) = 0.15 , (4.44)

where we have used equation (4.32) for g0(o).
The change of the weights from the hidden layer to the output neuron are

updated using equation (4.37):

�w1 = �" 0.15 · 0.5 = �0.075"

Artificial Neural Networks 95

�w2 = �" 0.15 · 0.88 = �0.13" . (4.45)

The change of the weights in the first layer are updated using equation (4.42)

�v11 = �" g0(h1) · 1 · � · (�1)
= " H1 (1�H1) · �
= 0.04"

�v21 = �" g0(h1) · 1 · � · (�1) = 0.04" (4.46)

�v12 = �" g0(h2) · 1 · � · 1 = �0.02"
�v22 = �" g0(h2) · 1 · � · 1 = �0.02" .

Modifying the weights according to these values, we obtain the neural network
configuration shown to the right of figure 4.13. The network output from the
updated network is 0.57. Note that the error indeed has decreased. When the
network is trained on all four patterns of the XOR function during a number
of training cycles (including the three threshold weights), the network will in
most cases reach an optimal configuration, where the error on all four patterns
is practically zero.

Figure 4.14 demonstrates how the XOR function is learned by the neural
network. If we construct a neural network without a hidden layer this data set
cannot be learned, whereas a network with two hidden neurons learns the four
examples perfectly.

When examining the weight configuration of the fully trained network it
becomes clear how the data set from the XOR function has been learned by
the network. The XOR function can be written as

fXOR(x1, x2) = (x1 + x2)� 2x1x2 = y � z , (4.47)

where y = x1 + x2 and z = 2x1x2. From this relation, we see that the hidden
layer allows the network to linearize the problem into a sum of two terms.
The two functions y and z are encoded by the network using the properties of
the sigmoid function. If we assume for simplicity that the sigmoid function is
replaced by a step function that emits the value 1 if the input value is greater
than or equal to the threshold value and zero otherwise, then the y and z
functions can be encoded having the weights vij = 1 for all values of i and
j and the corresponding threshold values 1 and 2 for the first and second
hidden neuron, respectively. With these values for the weights and thresholds,
the first hidden neuron will emit a value of 1 if either of the input values are
1, and zero otherwise. The second hidden neuron will emit a value of 1 only
if both the input neurons are 1. Setting the weights w1 = 1, and w2 = �1, the
network is now able to encode the XOR function.

96 Methods Applied in Immunological Bioinformatics

Figure 4.14: Neural network learning curves for nonlinear patterns. The plot shows the Pearson
correlation as a function of the number of learning cycles during neural network training. The
black curve shows the learning curve for the XOR function for a neural network without hidden
neurons, and the gray curve shows the learning curve for the neural network with two hidden
neurons.

4.9.3 Sequence Encoding

To feed the neural network with sequence data the amino acids must be trans-
formed into numerical values in the input layer. A large set of different encod-
ing schemes exists. The most conventionally used is the sparse or orthogonal
encoding scheme, where each amino acid is represented as a 20- or 21-bit bi-
nary string. Alanine is represented as 10000000000000000000 and cysteine as
01000000000000000000, · · ·, where the last digit is used to represent blank,
N- and C-terminal positions in a sequence window, i.e., when a window extends
one of the ends of the sequence. Other encoding schemes take advantage of
the physical and chemical similarities between the different amino acids. One
such encoding scheme is the BLOSUM encoding, where each amino acid is en-
coded as the 20 BLOSUM matrix values for replacing the amino acid [Nielsen
et al., 2003]. A summary of other sequence encoding schemes can be found in
[Baldi and Brunak, 2001].

Performance Measures for Prediction Methods 97

Predicted positive Predicted negative Total
Actual positive TP FN AP
Actual negative FP TN AN
Total PP PN N

Table 4.2: Classification of predictions. TP: true positives (predicted positive, actual positive);
TN: true negatives (predicted negative, actual negative); FP: false positives (predicted positive,
actual negative); FN: false negatives (predicted negative, actual positive).

4.10 Performance Measures for Prediction Methods

A number of different measures are commonly used to evaluate the perfor-
mance of predictive algorithms. These measures differ according to whether
the performance of a real-valued predictor (e.g., binding affinities) or a classi-
fication is to be evaluated.

In almost all cases percentages of correctly predicted examples are not the
best indicators of the predictive performance in classification tasks, because
the number of positives often is much smaller than the number of negatives in
independent test sets. Algorithms that underpredict a lot will therefore appear
to have a high success rate, but will not be very useful.

We define a set of performance measures from a set of data with N pre-
dicted values pi and N actual (or target) values ai. The value pi is found using
a prediction method of choice, and the ai is the known corresponding target
value. By introducing a threshold ta, the N points can be divided into actual
positives AP (points with actual values ai greater than ta) and actual nega-
tives AN . Similarly, by introducing a threshold for the predicted values tp, the
points can be divided into predicted positives PP and predicted negatives PN .
These definitions are summarized in table 4.2 and will in the following be used
to define a series of different performance measures.

4.10.1 Linear Correlation Coefficient

The linear correlation coefficient, which is also called Pearson’s r , or just the
correlation coefficient, is the most widely used measure of the association be-
tween pairs of values [Press et al., 1992]. It is calculated as

c =
P
i(ai � a)(pi � p)qP

i(ai � a)2
qP

i(pi � p)2
, (4.48)

where the overlined letters denote average values. This is one of the best
measures of association, but as the name indicates it works best if the actual

98 Methods Applied in Immunological Bioinformatics

and predicted values when plotted against each other fall roughly on a line. A
value of 1 corresponds to a perfect correlation and a value of �1 to a perfect
anticorrelation (when the prediction is high, the actual value is low). A value
of 0 corresponds to a random prediction.

4.10.2 Matthews Correlation Coefficient

I f all the predicted and actual values only take one of two values (normally
0 and 1) the linear correlation coefficient reduces to the Matthews correlation
coefficient [Matthews, 1975]

c = TPTN � FPFNp
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

= TPTN � FPFNp
APANPPPN

. (4.49)

As for the Pearson correlation, a value of 1 corresponds to a perfect correla-
tion.

4.10.3 Sensitivity, Specificity

Four commonly used measures are calculated by dividing the true posi-
tives and negatives by the actual and predicted positives and negatives
[Guggenmoos-Holzmann and van Houwelingen, 2000],

Sensitivity Sensitivity measures the fraction of the actual positives which are
correctly predicted: sens = TP

AP .

Specificity Specificity denotes the fraction of the actual negatives which are
correctly predicted: spec = TN

AN

PPV The positive predictive value (PPV) is the fraction of the predicted posi-
tives which are correct: PPV = TP

PP .

NPV The negative predictive value (NPV) stands for the fraction of the negative
predictions which are correct: NPV = TN

PN .

4.10.4 Receiver Operator Characteristics Curves

One problem with the above measures (except Pearson’s r) is that a thresh-
old tp must be chosen to distinguish between predicted positives and neg-
atives. When comparing two different prediction methods, one may have a
better Matthews correlation coefficient than the other. Alternatively, one may
have a higher sensitivity or a higher specificity. Such differences may be due
to the choice of thresholds and in that case the two prediction methods may

Performance Measures for Prediction Methods 99

Rank Prediction Actual TPP FPP Area
1 0.1 1 0.33 0 0
2 0.3 0 0.33 0.5 0.17
3 0.35 1 0.66 0.5 0.17
4 0.7 1 1.00 0.5 0.17
5 0.88 0 1.00 1 0.67

0.0 0.2 0.4 0.6 0.8 1.0
False positive proportion (FPP)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 p
ro

po
rti

on
 (T

PP
)

Figure 4.15: Calculation of a ROC curve. The table on the left side of the figure indicates the
steps involved in constructing the ROC curve. The pairs of predicted and actual values must
first be sorted according to the predicted value. The value in the lower right corner is the AROC
value. In the right panel of the figure is shown the corresponding ROC curve.

be rendered identical if the threshold for one of the methods is adjusted. To
avoid such artifacts a nonparametric performance measure such as a receiver
operator characteristics (ROC) curve is generally applied.

The ROC curve is constructed by using different values of the threshold tp
to plot the false-positive proportion FPP = FP/AN = FP/(FP + TN) on the x-
axis against the true positive proportion TPP = TP/AP = TP/(TP + FN) on the
y-axis [Swets, 1988]. Figure 4.15 shows an example of how to calculate a ROC
curve and the area under the curve, AROC , which is a measure of predictive
performance. An AROC value close to 1 indicates again a very good correla-
tion; a value close to 0 indicates a negative correlation and a value of 0.5, no
correlation. A general rule of thumb is that an AROC value > 0.7 indicates a
useful prediction performance, and a value > 0.85 a good prediction. AROC
is indeed a robust measure of predictive performance. Compared with the
Matthews correlation coefficient, it has the advantage that it is independent of
the choice of tp. It is still, however, dependent on the choice of a threshold ta
for the actual values. Compared with Pearson’s correlation r it has the advan-
tage that it is nonparametric, i.e., that the actual value of the predictions is not
used in the calculations, only their ranks. This is an advantage in situations
where the predicted and actual values are related by a nonlinear function.

100 Methods Applied in Immunological Bioinformatics

4.11 Clustering and Generation of Representative Sets

When training a bioinformatical prediction method, one very important initial
step is to generate representative sets. If the data used to train, for instance, a
neural network have many very similar data examples, the network will not be
trained in an optimal manner. The reason for this is first of all that the network
will focus on learning the data that are repeated and thereby get a lower ability
to generalize. The other equally important point is that the performance of the
prediction method will be overestimated, since the data in the training and test
sets will be very alike.

Generating a representative set from a data set is therefore a very important
part of the development of a prediction method. The general idea behind
generation of representative sets is to exclude redundant data. In making a
representative set one also implicitly makes a clustering since all data points
which were removed because of similarity to another data point can be said to
define a cluster.

In sequence analysis a number of algorithms exist for selecting a represen-
tative subset from a set of data points. This is generally done by keeping only
one of two very similar data points. In order to do this a measure for similarity
must be defined between two data points. For sequences this can, e.g., be per-
centage identity, alignment score, or significance of alignment score. Hobohm
et al. [1992] have presented two algorithms for making a representative set
from a list of data points D.

Hobohm 1 Repeat for all data points on the list D:

• Add next data point in D to list of nonredundant data points N if it
is not similar to any of the elements already on the list.

Hobohm 2 Repeat until all sequences are removed from D:

• Add the data point S with the largest number of similarities to the
non redundant set N.

• Remove data point S and all sequences similar to S from D.

Before applying the Hobohm 1 algorithm, the data points can be sorted ac-
cording to some property. This will tend to maximize the average value of this
property in the selected set because points higher on the list have less chance
of being filtered out. The property can, e.g., be chosen to be the quality of the
experimental determination of the data point. The Hobohm 2 algorithm aims
at maximizing the size of the selected set by first removing the worst offend-
ers, i.e., those with the largest number of neighbors. Hobohm 1 is faster than
Hobohm 2 since it is in most cases not necessary to calculate the similarity
between all pairs of data points.

