
Chapter 3

Sequence Analysis in
Immunology

3.1 Sequence Analysis

The concept of protein families is based on the observation that, while there
are a huge number of different proteins, most of them can be grouped, on
the basis of similarities in their sequences, into a limited number of families.
Proteins or protein domains belonging to a particular family generally share
functional attributes and are derived from a common ancestor, and will most
often be the result of gene duplication events.

It is apparent, when studying protein sequence families, that some regions
have been more conserved than others during evolution. These regions are
generally important for the function of a protein and/or the maintenance of
its three-dimensional structure, or other features related to its localization or
modification. By analyzing constant and variable properties of such groups of
similar sequences, it is possible to derive a signature for a protein family or
domain, which distinguishes its members from other unrelated proteins. Here
we mention some examples of such domains that are essential to the immune
response.

The immunoglobulin-like (Ig-like) protein domain is a domain of approxi-
mately 100 residues with a fold which consists of seven to nine antiparallel �
strands. These � strands form a �-sandwich structure, consisting of three or
four antiparallel � strands on each side of the barrel, connected by a sulfide
bridge. The Ig-like domain is of special importance for the immune system. In
addition to immunoglobulin, T cell receptor and MHC molecules carry Ig-like
domains, i.e., the main players of the adaptive immune system have all Ig-like
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domains. This is not a coincidence: the unique structure of this domain allows
for maximum flexibility to interact with other molecules. This property makes
the Ig-like domain one of the most widespread protein modules in the animal
kingdom. This module has been observed in a large group of related proteins
that function in cell-cell interactions or in the structural organization and reg-
ulation of muscles. The proteins in the Ig-like family consist of one or more of
these domains.

Toll-like receptors (TLRs) are a family of pattern recognition receptors that
are activated by specific components of microbes and certain host molecules.
They constitute the first line of defense against many pathogens and play a
crucial role in the function of the innate immune system.

That the field of immunology is almost as big, dispersed, and complicated
as all the rest of the biology put together is exemplified by the fact that all
the different fields of bioinformatics and sequence analysis are applied to im-
munological problems. Sequence alignment, structural biology, machine learn-
ing and predictive systems, pattern recognition, DNA microarray analysis, and
integrative systems biology are all important tools in the research of the dif-
ferent aspects of the immune system and its interaction with pathogens.

3.2 Alignments

Sequence alignment is the oldest but probably the single most important tool
in bioinformatics. Being one of the basic techniques within sequence analysis,
alignment is, though, far from simple, and the analytic tools (i.e., the computer
programs) are still not perfect. Furthermore, the question of which method
is optimal in a given situation strongly depends on which question we want
the answer to. The most common questions are: How similar (different) are
this group of sequences, and which sequences in a database are similar to a
specific query sequence. The reasoning behind the questions might, however,
be important for the choice of algorithmic solution. Why do we want to know
this? Are we searching for the function of a protein/gene, or do we want to
obtain an estimate of the evolutionary history of the protein family? Issues like
the size of database to search, and available computational resources might
also influence our selection of a tool.

3.2.1 Ungapped Pairwise Alignments

From the early days of protein and DNA sequencing it was clear that sequences
from highly related species were highly similar, but not necessarily identical.
Aligning very closely related sequences is a trivial task and can be done manu-
ally (figure 3.1 A). In cases where genes are of different sizes and the similarity
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A

10 20 30 40 50 60 70
humanD MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

::::::.::::::::::::::::::::.::::::::::::::::::::::::::::::::::::::::::
gi|457 MSEKKQTVDLGLLEEDDEFEEFPAEDWTGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
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humanD ----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

....:...:::::::::::::::::::::..:::..........::....:..::..........
Anophe MSDKENKDKPKLDLGLLEEDDEFEEFPAEDWAGNKEDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK-----
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Figure 3.1: A) The human proteasomal DSS1 subunit aligned against the zebra fish homolog
using the identity matrix. B) The human proteasomal DSS1 subunit aligned to the mosquito
homolog.

is less, alignments become more difficult to construct. In such cases it is also
of great value to have a graduation of how related sequences are, i.e., a scoring
scheme. The simplest scoring is the relative amount of identical entities, also
called % identity, or %ID. This simple approach is actually too simple as ,e.g.,
amino acids share many physical-chemical properties, which means that they
can more easily be exchanged than very unrelated amino acids. This means
that a scoring system that scores different substitutions differently, a substi-
tution matrix, is a much better approach. The most useful concept has been
to estimate how often a given amino acid is exchanged for another in already
aligned similar sequences. The most used are the percentage accepted mu-
tations (PAM) matrix [Dayhoff et al., 1978] and the blocks substitution matrix
(BLOSUM) [Henikoff and Henikoff, 1992].Mutations between different types of
nucleotides or amino acids is not the only changes that appears in sequences
during the evolution. The sequences can also loose or gain sequence entities
(deletions or insertions, respectively). This also must affect a similarity score,
but for simplicity these complications are left to later sections. The simplest
way to calculate an alignment score is to make all the possible overlaps be-
tween two sequences, and sum the number of identical amino acids in the two
sequences (ungapped alignment, figure 3.1 B).

Sequence alignment is essential to the comparative immunology field. The
main research line in this field (so far) is to discover origins of the adaptive
immune system. Thanks to the homology assessments using sequence align-
ments with mammalian equivalents of T cell receptors, MHC genes, cytokines,
and antibodies, we now know that the adaptive immune system is well devel-
oped in the oldest jawed vertebrates, the sharks [Pasquier and Flajnik, 1999].
However, whether or not jawless invertebrates were in possession of such
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adaptive immunity remains unresolved. The lamprey, which along with its
cousin, the hagfish, is the only surviving jawless vertebrate, give immunolo-
gists a chance to pinpoint crucial aspects of the origin of the adaptive immune
system. So far the search for antibodies, T cell receptors, and genes coding
for MHC molecules has failed in these organisms. Recently, however, Pancer
et al. [2004] have identified a set of uniquely diverse proteins that are only
expressed by lamprey lymphocytes and named them variable lymphocyte re-
ceptors (VLRs). The sequence analysis of these proteins has revealed that the
VLRs consist of multiple leucine-rich repeat (LRR) modules and an invariant
stalk region that is attached to the lymphocyte plasma membrane. The re-
markable VLR diversity derives from the variation in sequence and number
of the LRR modules. The mature VLRs are thus generated through a process
of somatic DNA rearrangement in lymphocytes. These results suggest a novel
mechanism that does not involve recombinant-activating genes to generate the
large diversity that an adaptive immune system is based upon.

3.2.2 Scoring Matrices

Dayhoff et al. [1978] calculated the original PAM matrices using a database of
changes in groups of closely related proteins. From these changes they derived
the accepted types of mutations. Each change was entered into a matrix listing
all the possible amino acid changes. The relative mutability of different amino
acids was also calculated, i.e., how often a given amino acid is changed to any
other. The information about the individual kinds of mutations, and about the
relative mutability of the amino acids were then combined into one “mutation
probability matrix.”

The rows and columns of this matrix represent amino acid substitution
pairs, i.e., the probability that the amino acid of the column will be replaced
by the amino acid of the row after a given evolutionary interval. A matrix with
an evolutionary distance of 0 PAMs would have only 1s on the main diagonal
and 0s elsewhere. A matrix with an evolutionary distance of 1 PAM would
have numbers very close to 1 in the main diagonal and small numbers off
the main diagonal. One PAM would correspond to roughly a 1% divergence in
a protein (one amino acid replacement per hundred). Assuming that proteins
diverge as a result of accumulated, uncorrelated, mutations a mutational prob-
ability matrix for a protein sequence that has undergone N percent accepted
mutations, a PAM-N matrix, can be derived by multiplying the PAM-1 matrix
by itself N times. The result is a whole family of scoring matrices. Dayhoff
et al. [1978], imperically, found that for weighting purposes a 250 PAM matrix
works well. This evolutionary distance corresponds to 250 substitutions per
hundred residues (each residue can change more than once). At this distance
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A

A R N D C Q E G H I L K M F P S T W Y V B Z X
A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0 0 0 0
R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2 -1 0 -1
N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 2 1 0
D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 3 3 -1
C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 -4 -5 -3
Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2 1 3 -1
E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 3 3 -1
G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1 0 0 -1
H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2 1 2 -1
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4 -2 -2 -1
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 -3 -3 -1
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2 1 0 -1
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2 -2 -2 -1
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1 -4 -5 -2
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 -1 0 -1
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1 0 0 0
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0 0 -1 0
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6 -5 -6 -4
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2 -3 -4 -2
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 -2 -2 -1
B 0 -1 2 3 -4 1 3 0 1 -2 -3 1 -2 -4 -1 0 0 -5 -3 -2 3 2 -1
Z 0 0 1 3 -5 3 3 0 2 -2 -3 0 -2 -5 0 0 -1 -6 -4 -2 2 3 -1
X 0 -1 0 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 0 0 -4 -2 -1 -1 -1 -1

B

A R N D C Q E G H I L K M F P S T W Y V B Z X
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1

Figure 3.2: Substitution matrices. A) PAM250. B) BLOSUM62.

only one amino acid in five remains unchanged so the percent divergence has
increased to roughly 80%. To avoid working with very small numbers the ma-
trices actually used in sequence comparisons is logodds matrices. The odds
matrix is constructed by taking the elements of the previous matrix and divide
each component by the frequency of the replacement residue. In this way each
component now gives the odds of replacing a given amino acid with another
specified amino acid. Finally the log of this matrix is used as the weights in
the matrix. In this it is now possible to sum up the scores for all positions to
obtain the final alignment score. The PAM250 matrix is shown in Figure 3.2.
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A
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humanD -----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
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humanD ----MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS

....:...:::::::::::::::::::::..:::..........::....:..::..........
Anophe MSDKENKDKPKLDLGLLEEDDEFEEFPAEDWAGNKEDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK-----
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Figure 3.3: (A) The human proteasomal subunit aligned to the mosquito homolog using the
BLOSUM50 matrix. (B) The human proteasomal subunit aligned to the mosquito homolog using
identity scores.

The BLOSUM matrix, described by Henikoff and Henikoff [1992], is another
widely used amino acid substitution matrix. To calculate this, only very related
blocks of amino acid sequences (conserved blocks) are considered. Originally
these were taken from the BLOCKS database of prealigned sequence families
[Henikoff and Henikoff, 1991]. Now the blocks are split up further in clusters,
each containing the parts of the alignments that are more than X% conserved.
The use of these clusters leads to a BLOSUMX matrix. That is, using clusters
of down to 50% identities gives a BLOSUM50 matrix, and so forth. For every
sequence in each cluster each position is compared to the corresponding po-
sition in each sequence in every other cluster. Since it is the pairwise number
of frequencies that is calculated, the sum of all the substitutions is divided by
the number of comparisons. In this way the result is the weighted probability
that a given amino acid is exchanged for every other amino acid. In the final
matrix, actually, the log ratio of the probability is further scaled so that the
BLOSUM50 matrix is in thirds of bits, and the BLOSUM62 matrix is given in
half-bits. The BLOSUM62 matrix is shown in figure 3.2.

Since the initial PAM1 matrix is made by very similar sequences, the evo-
lutionary distances between those are very short, and most changes captured
will be single base mutations leading to particular types of amino acid sub-
stitutions, while substitutions requiring more than one base mutation will be
very rare. Even the calculations made to expand this matrix to longer evolu-
tion time cannot compensate for this [Gonnet et al., 1992] and therefore the
BLOSUM matrices perform better when used for further distance alignment.
The matrices are in a format where you can sum up the scores for each match
to obtain a total alignment score, and the alignment resulting in the highest
score is then the optimal one.
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3.2.3 Gap Penalties

Using the BLOSUM50 matrix to align mosquito and human proteasomeal sub-
units (figure 3.3A) gives a slightly different alignment than just using amino
acid identities (figure 3.3B). These two different alignments also reveal that
there are two parts of the proteins with a high number of identical amino
acids, but without inserting or deleting letters in one of the sequences they
cannot be aligned simultaneously. This leads obviously to the necessity of
inserting gaps in the alignments.

A gap in one sequence represents an insertion in the other sequence. First,
to avoid having gaps all over the alignment these have to be penalized just
like unmatching amino acids. This penalty (i.e., the probability that a given
amino acid will be deleted in another related sequence) cannot be derived from
the database alignments used to create the PAM and BLOSUM matrices, since
these are ungapped alignments. Instead, a general gap insertion penalty is de-
termined, usually empirically, and is often lower than the lowest match score.
Having only one score for any gap inserted is called a linear gap cost, and
will lead to the same total penalty for three single gaps at three different po-
sitions in the alignment as having a single stretch of three gaps. This does
not make sense biologically, however, since insertions and deletions often in-
volve a longer stretch of DNA in a single event. For this reason two different
gap penalties are usually included in the alignment algorithms: one penalty
for having a gap at all (gap opening penalty), and another, smaller penalty,
for extending already opened gaps. This is called an affine gap penalty and is
actually a compromise between the assumption that the insertion, or deletion,
is created by one or more events. Furthermore, it is possible to let gaps ap-
pended at the ends of the sequences not to have a penalty, since insertions at
the ends will have a much greater chance of not disrupting the function of a
protein. For a more careful discussion of how to set gap penalties, see Vingron
and Waterman [1994].

3.2.4 Alignment by Dynamic Programming

Introducing gaps greatly increases the number of different comparisons be-
tween two sequences and in the general case it is impossible to do them all.
To compensate for that, several shortcut optimization schemes have been
invented. One of the earliest schemes was developed by Needleman and
Wunsch [1970] and works for global alignments, i.e., alignments covering all
residues in both sequences. As an example, it is here described how to align
two very short sequence stretches taken from our previous proteasome align-
ment. For simplicity, we will use the identity matrix (match=1, mismatch=-1)
and a linear gap penalty of �2. Using the Needleman-Wunsch approach
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Score matrix

Trace Matrix

Figure 3.4: Dynamic programming, global alignment. Step 1.
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Score matrix

Trace Matrix

Figure 3.5: Dynamic programming, global alignment. Step 2.
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Score matrix

Trace Matrix

Figure 3.6: Dynamic programming, global alignment. Step 3.
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Score matrix

Trace Matrix

Figure 3.7: Dynamic programming, global alignment, final matrices (Needleman-Wunsch).
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[Needleman and Wunsch, 1970], we first define two identical matrices with
the same number of columns as residues in sequence 1 and as many rows
as residues in sequence 2 One matrix is used to keep track of the scores and
another to keep track of our route (see figures 3.4-3.7).

• Step 1 (figure 3.4): In the upper left field of the score matrix is written
the score 0. This is the score before having aligned anything. From this
field we can move in three directions: Down corresponds to inserting a
gap in sequence 1, left to inserting a gap in sequence 2 and diagonal to
making a match. Accordingly, a step to the right is �2, a step down is
�2, and a diagonal step is +1 if the residues are identical, otherwise �1.

• Step 2 (figure 3.5): With the limits of the steps, we can easily fill in the
first row and the first column of the matrix, since these fields can only be
reached from one direction. So in the score matrix we write �2 in field
0,1, since this step corresponds to inserting a gap. In the trace matrix
we then write up in field 0,1 since this was the direction we were coming
from. In field 1,0 we write �2 in the score matrix and left in the trace
matrix.

• Step 3 (figure 3.6): Now we would like to calculate the score of field
1,1. Coming from the left we had �2 in the previous field (0,1) and will
have to add �2 for making a move to the right, inserting a gap in the
other sequence, resulting in a score of �4. We do likewise if we would
come down from field 1,0. We can now also make a diagonal move which
means a match between the two first residues. In this example they are
not identical and the match will have the score �1. Since we came from
0,0 with the score 0 the match case will result in �1. So we have the
possibility to make three different moves resulting in a score of �4, �4,
or �1, respectively. We now select the move resulting in the highest score
(i.e., �1), and we write this score in field 1,1 in the score matrix. In the
trace matrix we write diagonal in field 1,1 since this was the type of move
made to reach this score.

• Final steps: Steps 2 and 3 are repeated until both matrices are filled out
(figure 3.7). In the case that two different moves to a field result in the
same score, we select the move coming from the highest previous score
to write in the trace matrix. At any field, we will finally have a score. This
score is then the maximal alignment score you can get coming from the
upper left diagonal and to the position in the sequences matching that
field.

When the matrices are all filled out, the final alignment score is in the lower
right corner of the score matrix. In the above example the final alignment score



Alignments 45

is then �1. The score matrix has now served its purpose and is discarded, and
the alignment is reconstructed using the trace matrix. To reconstruct the align-
ment start in the lower right corner of the final trace matrix (figure 3.7). Fol-
lowing the directions written in the fields, the alignment is now reconstructed
backward. Here diagonal means a match between the two last residues in each
sequence (W match W), and a move diagonal up-left. Next field: diagonal, i.e.,
V match V and a move diagonal up-left. The present field value is now up: This
means that we introduce a gap in the first sequence to match S in the second
sequence and then move one field up in the trace matrix. The rest of the trace
is all diagonal, which means no gaps, and the resulting alignment will be

DEDEDAH-VW
KEDEEELSVW

This way to produce an alignment is called dynamic programming, and is still
used in major alignment software packages (e.g., the ALIGN tool in the FASTA
package uses the Needleman-Wunsch algorithm for global alignments). To il-
lustrate that there are differences in the resulting alignments according to
which scoring scheme is used, the above alignment using the BLOSUM62 ma-
trix in figure 3.2 and a linear gap penalty of �9 results in the following align-
ment

DEDEDA-HVW
KEDEEELSVW

So the optimal alignment is only optimal using the chosen substitution scores
and gap penalties, and there is no exact way to tell in a particular example if
one set of scores gives a more “correct” alignment than another set of scores.

3.2.5 Local Alignments and Database Searches

The global alignment scheme described above is very good for comparing and
analyzing the relationship between two selected proteins. Proteins, however,
are often comprised of different domains, where each domain may be evo-
lutionarily related to a different set of sequences. Thus when it comes to
searching for sequences it is more beneficial to only look at the parts of the
sequences that actually are related. A search is actually to make pairwise align-
ment of your query sequence to all the sequences in the database, and order
the resulting alignments by the alignment score. For this purpose Smith and
Waterman [1981] further developed the dynamic programming approach. The
Smith-Waterman algorithm is like Needleman-Wunsch, except that the traces
only continue as long as the scores are positive, Whenever a score becomes
negative it is set to 0 and the corresponding trace is empty. Using the BLO-
SUM62 substitution matrix and a linear gap penalty of �9, the score and trace
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Score matrix

Trace Matrix

Figure 3.8: Dynamic programming, local alignment, final matrices (Smith-Waterman).
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matrices will appear as in Figure 3.8. Now the backtrace of the optimal local
alignment starts in the field with the highest score. There might be several
equally good alignments, and there are several ways to deal with that, depend-
ing on what the goal is. If the two equally good alignments differ in length,
one might, e.g., chose the longer. In this example the highest score is 26. This
is accidentally again in the lower right corner so the backtrace will begin here.
The backtrace will reveal that the local alignment look like this:

DEDEDAHVW
EDEEELSVW

BLAST The dynamic programming algorithm has the strength that it ensures
that the optimal alignment, will always be found, given specific gap penalties
and substitution scores. However, even with present-day computerpower this
algorithm is far too slow to search the ever-increasing sequence databases
of today. For this reason several shortcuts have been made, and one of the
most successful is implemented in the widely-used alignment package, BLAST
[Altschul et al., 1990, 1997, Altschul and Gish, 1996].

The basic BLAST algorithm consists of 3 steps:

1. Make a list of words: A list of neighbor words that have a score of at least
T (default 11 for proteins) is made for each n-mer in the query sequence.
Per default n=3 for proteins and n=11 for DNA. Any word in the query
sequence that scores positive with itself may also be included.

2. Search the database for the words on the list: The database is scanned
for hits to any of the N words on the list.

3. Extend hits: The first version of BLAST extended every hit it found. The
newer version requires two nonoverlapping hits within a distance A (de-
fault 40) of each other before it extends a hit. The extension is only
made until the score has dropped X (default 7) below the best score seen
so far. This corresponds to saying this route looks so bad that there is
no point in continuing in this direction. The locally optimal alignments
are called high-scoring segment pairs (HSPs). If the score of an HSP is
above a threshold Sg (default 22 bits) a gapped extension is attempted
using dynamic programming. To speed the calculations this phase is only
continued until the score falls Xg below the best score seen so far.

3.2.6 Expectation Values

When aligning two sequences it is not clear if a given score is really significant
(i.e., might occur by chance by a certain probability). Such a measure can be
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Figure 3.9: Distributions of scores, when aligning a sequence to a database of unrelated se-
quences.

obtained by aligning a great number of random sequences to the original se-
quence and from the resulting score distribution calculate the probability that
a random sequence would result in a given score. This number is called the
expectation-value, or E-value. The random sequences is obtained by shuffling
the elements (nucleotides or amino acids) of the original sequence. In this way
the score distribution will not be biased by a skewed amino acid distribution
of the original sequence.

When searching through databases the question also arises whether a given
alignment score confers a relationship between the two aligned regions or not.
If we align a sequence to a database of all unrelated sequences and plot the
alignment score against how many alignments will have that score we will get
a curve like that in figure 3.9. This is called an extreme value distribution.
We can from this distribution find out how often a given alignment-score will
arise by chance. Thus the E-value is the theoretically expected number of false
hits per sequence query, and a lower E-value means a more significant hit.
Importantly, the E-value is dependent on the size of the database searched as
the chance of getting a false hit rises as the database grows.

Different alignment programs use different approaches to calculate the
E-value of a given database hit. FASTA actually makes all possible alignments,
and returns a real distribution curve (figure 3.10) and calculates the E-value



Alignments 49

opt E()
< 20 0 0:

22 0 0: one = represents 23 library sequences
24 0 0:
26 0 0:
28 0 3:*
30 0 16:*
32 7 64:= *
34 75 173:==== *
36 240 354:=========== *
38 569 586:=========================*
40 1127 817:===================================*=============
42 1379 999:===========================================*================
44 1277 1102:===============================================*========
46 1183 1122:================================================*===
48 914 1074:======================================== *
50 733 980:================================ *
52 753 862:================================= *
54 661 736:============================= *
56 516 615:======================= *
58 536 505:=====================*==
60 365 409:================ *
62 335 328:==============*
64 273 261:===========*
66 188 206:========*
68 168 162:=======*
70 126 127:=====*
72 133 99:====*=
74 88 77:===*
76 68 60:==*
78 56 47:==*
80 41 36:=*
82 41 28:=*
84 34 22:*=
86 16 17:*
88 13 13:* inset = represents 1 library sequences
90 12 10:*
92 6 8:* :====== *
94 4 6:* :==== *
96 3 5:* :=== *
98 4 4:* :===*

100 2 3:* :==*
102 0 2:* : *
104 0 2:* : *
106 1 1:* :*
108 2 1:* :*=
110 0 1:* :*
112 2 1:* :*=
114 0 0: *
116 0 0: *
118 0 0: *

>120 0 0: *
4113207 residues in 11951 sequences

Expectation_n fit: rho(ln(x))= 5.3517+/-0.00135; mu= -2.1992+/- 0.077;
mean_var=60.8388+/-13.111, Z-trim: 5 B-trim: 3 in 1/55
Kolmogorov-Smirnov statistic: 0.0520 (N=29) at 46

Figure 3.10: Distributions of scores, from FASTA alignments of a given sequence to all sequences
in a specific database.

making a fit to this curve. BLAST, however, uses a premade empirical curve to
assign E-values to each alignment returned from a database search.

PSI-BLAST As described earlier, the scoring matrices used somehow rep-
resent the general evolutionary trends for mutations. However, in reality,
allowed mutations are very much dependent on, and constrained by their
physical context. As an example, it could be possible to insert, delete, or
exchange a number of different amino acids in a flexible loop on the surface of
a protein and still preserve the overall structure and function of the protein.
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A R N D C Q E G H I L K M F P S T W Y V
1 I -2 -4 -5 -5 -2 -4 -4 -5 -5 6 0 -4 0 -2 -4 -4 -2 -4 -3 4
2 K -1 -1 -2 -2 -3 -1 3 -3 -2 -2 -3 4 -2 -4 -3 1 1 -4 -3 2
3 E 5 -3 -3 -3 -3 3 1 -2 -3 -3 -3 -2 -2 -4 -3 -1 -2 -4 -3 1
4 E -4 -3 2 5 -6 1 5 -4 -3 -6 -6 -2 -5 -6 -4 -2 -3 -6 -5 -5
5 H -4 2 1 1 -5 1 -2 -4 9 -5 -2 -3 -4 -4 -5 -3 -4 -5 1 -5
6 V -3 0 -4 -5 -4 -4 -2 -3 -5 1 -2 1 0 1 -4 -3 3 -5 -3 5
7 I 0 -2 -4 1 -4 -2 -4 -4 -5 1 0 -2 0 2 -5 1 -1 -5 -3 4
8 I -3 0 -5 -5 -4 -2 -5 -6 1 2 4 -4 -1 0 -5 -2 0 -3 5 -1
9 Q -2 -3 -2 -3 -5 4 -1 3 5 -5 -3 -3 -4 -2 -4 2 -1 -4 2 -2

10 A 2 -4 -4 -3 2 -3 -1 -4 -2 1 -1 -4 -3 -4 1 2 3 -5 -1 1
11 E -1 3 1 1 -1 0 1 -4 -3 -1 -3 0 3 -5 4 -1 -3 -6 -3 -1
12 F -3 -5 -5 -5 -4 -4 -4 -1 -1 1 1 -5 2 5 -1 -4 -4 -3 5 2
13 Y 3 -5 -5 -6 3 -4 -5 -2 -1 0 -4 -5 -3 3 -5 -2 -2 -2 7 1
14 L -1 -3 -4 -2 1 5 1 -1 -1 -1 1 -3 -3 1 -5 -1 -1 -2 3 -2
15 N -1 -4 4 1 5 -3 -4 2 -4 -4 -4 -3 -2 -4 -5 2 0 -5 0 0
16 P -2 4 -4 -4 -5 0 -3 3 2 -5 -4 0 -4 -3 0 1 -2 -1 5 -3
17 D -3 -2 1 5 -6 -2 2 2 -1 -2 -2 -3 -5 -4 -5 -1 2 -6 -3 -4

Figure 3.11: Example of a PSSM.

The corresponding number of allowed substitutions would very probably be
much more limited in the core — or in a secondary structure, rich — region
of the protein. So if a general substitution matrix works well, a matrix repre-
senting the specific evolutionary trend for a given position in a given protein
should work even better. As described by Altschul et al. [1997], this is actually
the case.

In the PSI-BLAST approach, first an ordinary BLAST search on the basis of
the BLOSUM62 matrix is performed against the database. Second, a position-
specific scoring matrix (PSSM) is calculated as described in chapter 4. The ma-
trix is calculated by considering the substitutions observed in pairwise align-
ments made between the query sequence and the hits that have an expectation
value below a selected threshold. Now the calculated matrix (figure 3.11), as
a representation of the query sequence, is used to search the database again.
So when the alignment score matrix is filled out, we now look in the PSSM for
a given position to find the match score between the PSSM and that particular
amino acid in the database sequence. For example, if we want to match posi-
tion 3 in the search sequence, a glutamic acid, to an alanine, the match score is
5. However, if we want to match position 4, also a glutamic acid, to an alanine,
the match score is �4. This should illustrate the higher specificity of a PSSM
as compared to ordinary substitution matrices.

3.3 Multiple Alignments

When looking at several related sequences, it is often useful and informative
to look at all the sequences in one alignment (multiple alignment). The sim-
plest approach is to align all the sequences, one by one, with a single selected
“master sequence,” and this is what can be obtained by programs like BLAST.
However, these programs make only local alignments, and often gaps and in-
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A

Drosophila_melanogaster MSAPDKEKEKEKEETNNKSEDLGLLEEDDEFEEFPAEDFRVGDDEEELNVWEDNWDDDNVEDDFSQQLKAHLESKKMET
Anopheles_gambiae ----------DKENKDKPKLDLGLLEEDDEFEEFPAEDWAGneDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKHK---
Zebrafish -----------------QTVDLGLLEEDDEFEEFPAEDWTGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
HUMAN --------------------DLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
MOUSE --------------------DLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELE------
Xenopus_laevis --------------------DLGLLEEDDEFEEFPTEDWTGFDEDEDTHVWEDNWDDDNVEDDFSNQLRAELE------
Saccharomyces_cerevisiae ------------------------LEEDDEFEDFPIDTWANGETIkqTNIWEENWDDVEVDDDFTNELKAELDRYKRE-
Neurospora_crassa. ----DAKSTEPKPEQPVTEKKTAVLEEDDEFEDFPVDDWEAEDTeeAKHLWEESWDDDDTSDDFSAQLKEELK------

B

Drosophila_melanogaster ----MSAPDKE----KEKEKEETNNKSEDLGLLEEDDEFEEFPAEDFRVG
Anopheles_gambiae ----MS--DKEN---KDKPK-------LDLGLLEEDDEFEEFPAEDWAGN
HUMAN ----MS----------EKKQ------PVDLGLLEEDDEFEEFPAEDWAGL
MOUSE ----MS----------EKKQ------PVDLGLLEEDDEFEEFPAEDWAGL
Zebrafish ----MS----------EKKQ------TVDLGLLEEDDEFEEFPAEDWTGL
Xenopus_laevis ---MSS----------DKKP------PVDLGLLEEDDEFEEFPTEDWTGF
Neurospora_crassa. ----MASTQPKNDAKSTEPKPEQPVTEKKTAVLEEDDEFEDFPVDDWEAE
Saccharomyces_cerevisiae MSTDVAAAQAQSKIDLTKKKNE----EINKKSLEEDDEFEDFPIDTWANG

: : . ********:** : :

Drosophila_melanogaster ------DDEEELNVWEDNWDDDNVEDDFSQQLKAHLESK--KMET-
Anopheles_gambiae K-----EDEEELSVWEDNWDDDNVEDDFNQQLRAQLEKH--K----
HUMAN ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
MOUSE ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Zebrafish ------DEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Xenopus_laevis ------DEDEDTHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS
Neurospora_crassa. DTEAAKGNNEAKHLWEESWDDDDTSDDFSAQLKEELKKVEAAKKR-
Saccharomyces_cerevisiae ETIKS-NAVTQTNIWEENWDDVEVDDDFTNELKAELDRY--KRENQ

:**:.*** :..***. :*: .*.

C

HUMAN 1 ---------- ---------- ------MSEK KQPVDLGLLE EDDEFEEFPA
MOUSE 1 ---------- ---------- ------MSEK KQPVDLGLLE EDDEFEEFPA
Zebrafish 1 ---------- ---------- ------MSEK KQTVDLGLLE EDDEFEEFPA
Drosophila_m 1 ----MSapDK Ek-------E KEKEET-NNK SE--DLGLLE EDDEFEEFPA
Neurospora_c 1 ----MA--ST QPKNDAKSTE PKPEQpVTEK KTAV----LE EDDEFEDFPV
Xenopus_laev 1 m--------- ---------- -----S-SDK KPPVDLGLLE EDDEFEEFPT
Saccharomyce 1 mstdVA--AA QAQSKIDLTK KKNEEI-NKK S-------LE EDDEFEDFPI
Anopheles_ga 1 ----MS--DK ENKD------ ---------- KPKLDLGLLE EDDEFEEFPA

HUMAN 25 EDWAGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
MOUSE 25 EDWAGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
Zebrafish 25 EDWTGLDE-- ----DED-AH VWEDNWDDDN VEDDFSNQLR AELEK----H
Drosophila_m 37 EDFRVGDD-- ----EEE-LN VWEDNWDDDN VEDDFSQQLK AHLES----K
Neurospora_c 41 DDWEAEDtEA AKGNNEA-KH LWEESWDDDD TSDDFSAQLK EELKKveaaK
Xenopus_laev 26 EDWTGFDE-- ----DED-TH VWEDNWDDDN VEDDFSNQLR AELEK----H
Saccharomyce 41 DTWAng--ET IKSNavtqTN IWEENWDDVE VDDDFTNELK AELDR----Y
Anopheles_ga 29 EDWAGNKE-- ----DEEeLS VWEDNWDDDN VEDDFNQQLR AQLEK----H

HUMAN 64 GYKMETS
MOUSE 64 GYKMETS
Zebrafish 64 GYKMETS
Drosophila_m 76 --KMET-
Neurospora_c 90 --Kr---
Xenopus_laev 65 GYKMETS
Saccharomyce 85 --KRENQ
Anopheles_ga 69 --K----

Figure 3.12: Multiple alignments of the proteasome DSS1 subunit from different organisms
using A) PSI-BLAST, B) ClustalW, and C) DIALIGN. Lower case letters means a part of the sequence
that is not significantly aligned.
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sertions will be placed differently in the master sequence depending on which
other sequence it is aligned with. Another approach is to align all sequences
pairwise with all other sequences and establish the difference between every
pair. Such a map is called a distance matrix, and from this it is possible to ob-
tain an estimate of which sequences are most related (a cluster), and aligning
those first, and then align all the prealigned clusters against each other. This is
basically what is implemented in the most used multiple alignment program,
ClustalW alias ClustalX [Thompson et al., 1994]. First is calculated a score for
the alignment between each pair of the sequences. These scores are then used
to calculate phylogenetic tree, or a dendrogram, using the clustering method
UPGMA (see Chapter 5). Having calculated the dendrogram, the sequences
are aligned in larger and larger groups. Each of these alignments consists of
aligning 2 alignments, using profile alignments, which are the alignment of 2
groups of already aligned sequences. The method is an extension of the profile
method of Gribskov et al. [1987] for aligning a single sequence with an aligned
group of sequences. With a sequence-to-sequence alignment, a weight matrix
such as BLOSUM62 is used to obtain a score for a particular substitution be-
tween the pairs of aligned residues. In profile alignments, however, each of
the two input alignments are treated as a single sequence, but you calculate
the score at aligned positions as the average substitution matrix score of all
the residues in one alignment vs. all those in the other, e.g., if you have 2
alignments with I and J sequences respectively the score at any position is the
average of all the I times J scores of the residues compared separately. Any
gaps that are introduced are placed in all of the sequences of an alignment at
the same position. However, all gaps in the ends of the sequences are free.
This might give some artifacts, especially when sequences of different length
are aligned. Newer multiple alignment algorithms implemented in programs
such as T-Coffee [Notredame et al., 2000] and DIALIGN [Morgenstern, 1999]
handle these problems much better, but the algorithms behind them will not
be described in this book. Figure 3.12 is an example of the differences in the
results, using different alignment algorithms/programs. Note that PSI-BLAST
will only return local alignments, and that the result is based on pairwise align-
ments to the query sequence, i.e., no clustering has been involved.

3.4 DNA Alignments

Untill now only protein alignments have been described. The basic algorithms
and programs used for DNA alignment, however, are the same as for proteins.
DNA alignments are much more difficult since at each position, we can have
one of only four different bases as opposed to one of twenty in peptide align-
ments. So we will not have a specific substitution matrix like BLOSUM or PAM
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but rather take a step back and use a general substitution score for any match
or mismatch but still using affine gap penalties. This makes the probabil-
ity of any given substitution equally high, and so the significance of the final
alignment will be lower. Some nucleotide matrices, however, do have differ-
ent substitution scores for transitions (Dealing with DNA/RNA sequences from
coding regions, however, gives an opportunity to shortcut the alignment by ac-
tually aligning the translation products, rather than the actual DNA sequences.
This approach has been implemented in most alignment software packages, in-
cluding FASTA (tfasta [Pearson and Lipman, 1988, Pearson, 1996]) and BLAST
(tblast [Altschul et al., 1990, Altschul and Gish, 1996]). In this basic but strong
approach, gaps in the aligned DNA sequences will only occur in multiples of
triplets. This will, however, not catch examples correctly where frameshifts
have actually happened, leading to major changes of larger or smaller parts of
the translated protein. For such investigations the programs GenA1 [Hein and
Støvlbaek, 1994, 1996] and COMBAT [Pedersen et al., 1998] can be used, but
only for pairwise alignments. For multiple alignments an automatic method
exists that will translate DNA to peptide, do the multiple alignment using DI-
ALIGN [Morgenstern, 1999], and return the final alignment at the DNA level
[Wernersson and Pedersen, 2003]. Multiple DNA alignments are especially use-
ful for investigating the evolution on the molecular level (molecular evolution).
With such alignments it is possible to examine exactly which positions in the
DNA are more or less likely to undergo mutations that survive and are trans-
ferred to the progeny. We can also calculate the chance that a given codon will
only allow mutations that will not lead to an amino acid change (silent muta-
tions or synonymous mutations) and compare it to the chance that a substitu-
tion leads to an amino acid change (nonsynonymous mutations). This ratio is
called dN/dS and an example of such a calculation is given in chapter 7.

3.5 Molecular Evolution and Phylogeny

Phylogenies reveal evolutionary relationships between organisms and specific
sequences. In recent years molecular phylogenies have started to play a ma-
jor role in epidemiological studies of pathogens. These studies provide in-
formation about where and when a virulent strain can arise. Not only hu-
man pathogens but also viral and bacterial disease-causing agents of livestock
are of importance, as such outbreaks can cause great economic loss, as well
as increase the chance of a possible cross-species infection. Recent develop-
ments of new methods for isolating, amplifying, and sequencing RNA isolated
from small samples of blood or tissue have made the molecular phylogeny of
pathogens a rapidly expanding research field. Moreover, since many pathogens
can mutate at much higher rates than eukaryotes, it is possible to obtain the
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phylogeny of sequences that diverged only recently.
One interesting application of molecular phylogeny is represented by anal-

ysis of the origins of HIV epidemics. Exactly when simian immunodeficiency
virus (SIV) was transmitted from nonhuman primates to humans, giving rise
to the human immunodeficiency virus (HIV), is still under investigation. Ko-
rber et al. [2000] used a phylogenetic analysis of the viral sequences with a
known date of sampling to estimate the year of origin for the main group of
HIV viruses (HIV-1 M), the principal cause of acquired immunodeficiency syn-
drome (AIDS). AIDS is caused by two divergent viruses, HIV-1 and HIV-2. HIV-1
is responsible for the global pandemic, while HIV-2 has, until recently, been re-
stricted to West Africa and appears to be less virulent in its effects. SIV viruses
related to HIV have been found in many species of nonhuman primates. By an-
alyzing the molecular divergence of the envelope gene, and applying a model
which assumes constant mutation rates through time and across lineages, Kor-
ber et al. [2000] estimated that the last common ancestor of the HIV-1 M group
appeared in 1931 (with a confidence interval of 1916–1941). Using a different
molecular clock analysis, where the mutation rate is allowed to change at split-
ting events, and also when analyzing a different protein, the same estimates
were obtained. This approach only identifies when the common ancestor be-
gan to diversify; it does not identify the exact time of transmission. Still, given
this estimate, one is able to come up with more precise hypotheses about the
transmission event.

3.5.1 Phylogenetic Methods

The starting point of any phylogenetic work is a collection of sequences that
might be evolutionarily related. Such a set could be extracted from public
databases using some of the tools described previously, or it could be data
from one’s own work. These sequences must now be aligned by the use of
multiple alignment software, such as ClustalW. ClustalW also calculates a dis-
tance matrix of your sequences, i.e., the relation of each of your sequences to
the other sequences in your alignment. A way to visualize the distances in a
distance matrix is a tree-like drawing where the distances along the branches
correlates with the distances in the distance matrix. Such a drawing is called a
phylogenetic tree. One important point about trees is that they are only useful
if the described system has been under vertical evolution (i.e., no horizontal
gene transfers and recombination), otherwise a simple tree makes no sense.
To calculate the grouping and the branch lengths of such a tree, two major
approaches are applicable. One approach is optimization methods that will
find the tree that gives the optimal fit to the matrix, e.g., the minimal sum of
squared errors. Another approach is clustering methods that is related to the
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optimization methods, but is much faster. The clustering methods, however,
do not guarantee the optimal solution.

Two major types of trees exist: rooted and unrooted trees. With rooted
trees a common ancestor point is used as the origin of the tree, no matter if
this is really scientific sane with the given data. In rooted trees the horizontal
distance from the leaves to the origin is directly proportional to the amount
of changes. Unrooted trees are used to show relations where no common an-
cestor is given, and only the evolutionary distance between the leaves can be
inferred. In both rooted and unrooted trees, the leaves are grouped in clusters.
This grouping depends heavily on the algorithm used. Some algorithms just
give one of potentially many, more or less equally probable, outputs. Other ap-
proaches actually calculate many different solutions and give the most proba-
ble outcome with some indication of how reliable a particular solution is.

As a simple example, we will investigate the phylogenetic relationship be-
tween HIV and SIV using a set consisting of 27 different gp120 protein se-
quences from isolates of HIV-1, HIV-2, chimpanzee SIV, and macaque monkey
SIV. The gp120 protein of HIV is crucial for binding of the virus particle to
target cells. It is the specific affinity of gp120 for the CD4 protein that targets
HIV to those cells of the immune system that express CD4 on their surface
(e.g., helper T lymphocytes, monocytes, and macrophages). ClustalW is used
to align the sequences (figure 3.13) and, as mentioned earlier, ClustalW also
clusters the most related sequences. The information from this clustering can
subsequently be used to produce a phylogenetic tree (figure 3.14).

The phylogenetic tree from the analysis (see figure 3.14) shows two sep-
arate clusters. One contains SIV from chimpanzee (SIVCZ) together with the
HIV-1 sequences, while the other contains SIV from macaque/sooty mangabey
together with HIV-2. This indicates that HIV-1 originated from one event where
the virus was transmitted from (presumably) chimpanzee to human, while HIV-
2 originated from a second, independent event where the virus was transmit-
ted from (presumably) macaque to human.

3.6 Viral Evolution and Escape: Sequence Variation

Coexistence of pathogens with their hosts imposes an evolutionary pressure
both for the host immune systems and the pathogens. The coexistence de-
pends on a delicate balance between the replication rate of the pathogen and
the clearance rate by the host immune response. Throughout the animal and
plant kingdoms we see several quite different strategies developed by the
host immune systems to defend themselves against intruders. Similarly, the
pathogens have developed an array of immune evasion mechanisms to escape
their elimination by the host’s immune system.
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u08972   ILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSQNISDNAKIIIVHLNESVEINCTRPNNNTRKSINI
u08973   ILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSQNISDNAKIIIVHLNESVEINCTRPNNNTRKSINI
af042101 ILKCKDEKFNGKGLCTNVSTVQCTHGIRPVVSTQLLLNGSLAEGEVIIRSENITNNAKTIIVQLKDPVEINCTRPNNNTRKSIHI
u16372   ILKCRDTKFNGTGESMNVSTVQCTHGIRPVVSTQLLLNGSLAEEEAVIRSENFTNNIKPIIVLLKEAVAINCTRPSNNTRKSINM
u16374   ILKCRDTKFNGTGECMNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVMIRSENFTNNIKPIIVQLKESVEINCTRPSNNTRKSINM
u16375   ILKCRDTKFNGAGKCENVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKPIIVQLKKAVEINCTRPSNNTRKSINM
u16373   ILKCRDKRFNGTGPCRNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTDNVKAIIVQLNESVEINCTRPNNNTRRSIHI
af042100 ILKCRDKKFNGTGPCKGVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLNEAIAINCTRPSNSTGQSIRI
u16376   ILKCNNKTFSGKGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16382   ILKCNNKTFSGKGPCNNVSTVQCTHGIRPVVSTQLLLIGSLAEEEVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16381   ILKCNHKTFSGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16383   ILKCNNKTFSGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEEVAVIRSENFTNNAKTIIVQLKKPVEINCTRPNNNTRKDIHI
u16385   ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16386   ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16377   ILRCNNKTFNETGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEGKVVIRSENFTNDAKTIIVQLKEPVEISCTRPNNNTRKSIPI
u16379   ILRCNNKTFNGKGPCNNISTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPSNNTRKSIPI
u16380   ILKCNNKTYNGTGPCNNVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSENFTNNAKTIIVQLKEPVEISCTRPSNNTRKSIPI
l22088   ILRCNDKKFNGTGPCTNVSTVQCTHGIKPVVSTQLLLNGSLAEEEVVIRSENFTNNAKTIIVQLNGSVVINCTRPSNNTRKSIHL
ay037270 ILKCNDKNFNGTGPCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEIVIKSENFTDNAKTIIVQLNKSISINCTRPNNNTRKSINI
af331424 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331423 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331425 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331430 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331431 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331432 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331433 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331427 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331428 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331429 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSDNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
af331426 LLKCNNETFDGKGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEKEIIIRSDNFSNNAKVIIVQLTKSIKINCTRPNNNTRKSIHI
u16387   ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSPQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
u16388   ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
u16378   ILKCKNKTFNGKGECNPVSTVQCTHGIRPVVSTQLLLNGSLAEGKVVIRSDNFTDNAKTIIVQLKDPVNITCVRPNNNTRRSIHI
af042104 LLKCNNKTFNGKGPCTYVSTVQCTHGVKPVVSTQLLLYGSLAEEEVVIRSDNFTDNAKTIIVQLRDPVQINCTRPANNTRESIHI
af042102 ILKCNEKGFNGKGPCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIKSDNFTNNAKTIIVQLNTSVEITCVRPNNNTRRSIPI
af042106 ILKCKDKRFNGKGPCTSVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSDNFTNNAKTIIVQLSKSVEITCVRPNNNTRKSITM
af146728 ILKCNNKTFNGKGPCANISTVQCTHGIRPVVSTQLLLNGSLAEKEIVIRSDNFTDNAKSIIVQLNESVEIHCMRPNNNTRKGIYV
af042103 ILKCKDKKFNGKGLCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSDNFTNNAKTIIVQLKESVKINCTRPNNNTRKSITI
u08975   ILKCNDKKFNGTGFCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEDIVIKSENFSDNAKTIIVQLNETVKIDCIRPNNNTRKGIHM
af042105 ILKCREEDFNGTGLCKNVSTVQCTHGIRPVVSTQLLLNGSLAEKEVAIRSANFMDSNKNIIVQLNESVKISCIRPNNNTRKSMTL
         1........10........20........30........40........50........60........70........80....

u08972   GPGRAFYATGDIIGDIRQAYCNISRAQWNNTLEQIAIKLGEQFKN-KKIAFNQSSGGDPEIVMHTFNCGGEFFYCNSTELFKG
u08973   GPGRAFYATGDIIGDIRQAYCNISRAQWNNTLEQIAIKLGEQFKN-KKIAFTQSSGGDPEIVMHTFNCGGEFFYCNSTELFKG
af042101 GPGRAFYATGDIIGNIRQAYCTLNRARWNDTLKQIAEKLGEQFKN-KTIVFNQSSGGDPEIVMHSFNCGGEFFYCNSTQLFNG
u16372   GPGSAIYATGAIIGDIRQAHCNISRAKWNNTLKQIAEKLREQFN--KTIVFNRSSGGDPEIV-HSFNCGGEFFYCNSTQLFNS
u16374   GPGSAIYATGAIIGDIRQAHCNISRAKWNTTLKQI-EKLREQFN--KTIVFNRSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
u16375   GPGSAIYATGAIIGDIRQVHCNISRAKWNDTLKQIAEKLREQFN--KTIAFNRSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
u16373   GPGSAFYATGDIIGDIRQAHCNVNRAKWNNTLKQIVEKLREQFEN-KTIVFNQSSGGDPEIVMHSFNCGGEFFYCNSTQLFNS
af042100 GQRRAFYATGKIIGDIRHAHCNISGAKWDNTLQQIVNFLKEQFGNYKTIVFNQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
u16376   GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16382   GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16381   GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16383   GPGRAIFRTGEIIGDIRQAHCNVSGTKWNDTLKQIVIKLREQFK-NKTIVFNRSSGGDPEIVMHSFNCGGEFFYCNTTKLFNS
u16385   GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16386   GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16377   GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGKFFYCNSTKLFNS
u16379   GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNQSSGGDPEIEMHSFNCGGEFFYCNSTKLFNS
u16380   GPGRAFWTTGEIIGNIRQAHCKVNETKWKDTLRQIAEKLREQFK-NKTIIFNRSSGGDPEIVMHSFNCGGEFFYCNSTKLFNS
l22088   GFGRALYATGEIIGDIRQAHCILNGTEWNKTLNQIAIKLREQFGGNKTIVFNQSSGGDPEIVMHSFNCGGEFFYCNTTQLFSG
ay037270 GPGRALYATGEIIGNIRQAHCNISATEWNNTLEQIVTKLGEQFGVNKTIIFNQSSGGDPEIVMHSFNCGGEFFYCNTTELFNS
af331424 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331423 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331425 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331430 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331431 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331432 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331433 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331427 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331428 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331429 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
af331426 APGRAFYATGEIIGDIRKAHCNISRTEWNDTLKQVAEKLRVQFGN-KTIAFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNS
u16387   GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGELFYCNTTQLFNS
u16388   GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGELFYCNTTQLFNS
u16378   GPGRAFYATGDIIGDIRQAHCNLSREDWHKALEQIAGKLREQF-NNKTIVFNRSSGGDLEVVVHTFNCGGEFFYCNTTQLFNS
af042104 GPGRAFYAT-DIIGDIRQAHCNSSRAEWIKTLQQVVTKLKKQFGNNKTIVFNPSSGGDPEIVMHIFNCGGEFFYCNSTQLFNS
af042102 GPGRAFYTTE-IIGDIRQAYCNITKANWTDTLQKVAIKLREQFN--KTIAFKPSSGGDPEIVTHSFNCGGEFFYCNSTQLFNG
af042106 GPGRAFYTTE-IIGDIRQAYCNISKANWTDTLEQIARKLREQFEN-KTIVFKPSSGGDPEIVTHSFNCGGEFFYCNSTQLFNG
af146728 GPGRHIYATEKIVGDIRQAHCNISRTNWTSVLRQIAVKLRERFKN-KTIVFNHSSGGDPEIVRHSFNCGGEFFYCNSTQLFNS
af042103 GPGKAFYATXEIIGDIRQAHCNLSRVDWNETLRQIAIKLGEQFKKN-TIVFNPSSGGDPEIVMHSFNCGGEFFYCDSTRLFNS
u08975   GWGRTFYATGRIIGDIRQAHCNLSKVAWNRTLERIAIKLRNQFNYNNDKNFNQSSGGDPEIVMHSFNCGGEFFYCDTTHLFNS
af042105 GPGKVFYTTG-ITGDIRKAHCNISRKEWNKTLERIAIKLGEQFKNK-TIVFKPSAGGDPEIKMHSFNCGGEFFYCNTTPLFNR
         ....90........100.......110.......120.......130.......140.......150.......160......

Figure 3.13: ClustalW alignment of 27 HIV/SIV gp120 sequences. The output is modified with
the BOXSHADE program.
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Figure 3.14: A rooted tree of 27 aligned HIV/SIV gp120 sequences. HV1XX=HIV-1 sequences,
HV2XX=HIV-2 sequences, SIVMX=SIV (macaque), SIVSX=SIV (sooty mangabey), SIVCZ=SIV (chim-
panzee).

We can divide the immune evasion mechanisms (mainly of viruses) broadly
into three categories that allow:

1. avoiding the humoral immune response,

2. interfering with the cellular immune response,

3. disrupting the immune effector functions, e.g., by expressing some cy-
tokines.
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The humoral response is impaired whenever the antibody binding sites on
a protein (often on the surface) mutate in such a way that binding is no longer
possible. Especially neutralizing antibodies, i.e., the antibodies that can block
infection of the cells by the pathogen, cause a high selection pressure on the
virus to mutate. The most straightforward way of identifying such mutants
is via sequence analysis of the pathogenic samples. The first step is to align
the sequences to pinpoint which regions of the pathogen are mutating. This
may be the region that is under the strongest selection pressure by the anti-
bodies. However, it could also be areas with no constrains. Such alignments
demonstrate that the most typical examples of escape from antibody response
occur in the influenza virus and HIV. The human body can rapidly mount neu-
tralizing antibodies against the major surface protein of the influenza surface
protein, hemagglutinin. The influenza virus evades this humoral response by
two mechanisms [Gorman et al., 1992]. First, using point mutations, the vi-
ral variants can escape neutralization, but this does not cause severe disease,
since there will still be some unaltered epitopes that can be recognized. Sec-
ond, if RNA segments are exchanged between different strains, the hemagglu-
tinin protein can gain a totally different structure. In such a case, the anti-
bodies made during previous infections are no longer functional and severe
pandemics can occur [Claas and Osterhaus, 1998]. Interestingly, the phyloge-
netic analysis of the hemagglutinin protein shows that the antigenic evolution
of the influenza virus is punctuated, i.e., some mutants cause epidemics for
almost eight consecutive years, while others last only for two or three years
[Smith et al., 2004]. Since the 1960s (when the first sequences were collected)
every viral mutant has been able to cause an epidemic for at least two years,
after which enough individuals will have acquired immunity to limit the spread
significantly (herd immunity).

Similarly, the cytotoxic T lymphocyte (CTL) response can be abrogated
whenever peptide binding of MHC molecules or binding of the T cell receptor
to the MHC-peptide complex is disturbed. It is relatively difficult to observe
such escapes, because they are different for each individual, depending on her
or his MHC background. Therefore many CTL escape variants can be circulat-
ing in a host population without one becoming the dominant mutant. Only in
chronic infections like HIV and hepatitis B is it possible to find these escape
mutants in a patient. Again, for HIV we have an extensive amount of data to
analyze CTL escape mutants. Using sequence analysis it is possible to see that
escape mutations are not spread all over the viral genome, because HIV is not
able to tolerate changes equally well in all proteins. HIV has very flexible pro-
teins like the envelope protein, gp160, where up to 35% of the sequence can
be different from the wild-type virus [Gaschen et al., 2002]. On the other hand,
for some proteins, like capsid protein p24, the surface cannot tolerate point
mutations without a severe loss of viral fitness [von Schwedler et al., 2003,
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Leslie et al., 2004].
An effective vaccine should be able to target the parts of a pathogenic

genome that are quite conserved even under the above-mentioned selection
pressures. For example, given that less than a 2% amino acid change can cause
a failure in cross-reactive immunity of the influenza vaccine [Korber et al.,
2001b], it is obvious that for an HIV vaccine to use the envelope protein would
be futile. One approach to deal with such large diversity is to use the consen-
sus or the ancestral virus sequence as a vaccine. Such sequences have the ad-
vantage of being central and most similar to circulating strains. Another, safer
approach would be to design epitope vaccines, which again requires choosing
the most conserved epitopes. But the selection of such epitopes also requires
computational analysis that goes beyond what simple sequence comparison
techniques can handle, as the binding specificities are influenced by correla-
tions between amino acids present at different peptide positions. A solution
to this problem is to use machine learning techniques (see chapter 5).

3.7 Prediction of Functional Features of Biological Sequences

During experimental analysis of the immune system, proteins of unknown
function are typically being identified as key players using high-throughput
gene expression or proteomics data. The functional assignment of such im-
mune system–related proteins also often requires sequence analysis that goes
beyond what can be solved by simple sequence alignment methods. In most
genomes no more than 40 to 60% of the proteins can be assigned a functional
role based on sequence similarity to proteins with known function. Tradi-
tionally, protein function has been related directly to the 3D structure of the
protein chain of amino acids, which currently, for an arbitrary sequence, is
quite hard (in the general case, impossible) to compute. As the sequence,
in a given biochemical context, determines the structure, functional informa-
tion between two sequences can be transferred by comparing the sequence of
amino acids by aligning the two against each other. This method is fast and
powerful, but only solves part of the problem: it is still impossible to deter-
mine that two quite different sequences encode proteins with essentially the
same biochemical function.

Several different methods have been developed which do not rely on di-
rect sequence similarity, but on features which go beyond sequence-wide sim-
ilarity, such as the gene position in the genome, or integration of local or
global protein features. One such method, ProtFun, does not, like sequence
alignment, compare any two sequences, but operates in the “feature” space
of all sequences. ProtFun is therefore complementary to methods based on
alignment and the inherent, position-by-position quantification of similarity
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between two sequences and their amino acids [Jensen et al., 2002, 2003]. This
particular method is still entirely sequence-based and does not require prior
knowledge of gene expression, gene fusion, or protein-protein interaction.

For any function assignment method, the ability to correctly predict the
functional relationship depends strongly on the function classification scheme
used. One would, e.g., not expect that a method based on coregulation of genes
will work well for a category like "enzyme," since enzymes and the genes cod-
ing for their substrates or substrate transporters often display strong coregu-
lation at the gene and protein levels.

The ProtFun approach to function prediction is based on the fact that a
protein is not alone when performing its biological task. It will have to oper-
ate using the same cellular machinery for modification and sorting as all the
other proteins do. Essential types of post-translational modifications (PTMs)
include glycosylation, phosphorylation, and cleavage of N-terminal signal pep-
tides controlling the entry to the secretory pathway, but hundreds of other
types of modification exist (a subset of these will be present in any given or-
ganism). Many of the PTMs are enabled by local consensus sequence motifs,
while others are characterized by more complex patterns of correlation be-
tween the amino acids close or far apart in the sequence.

This suggests an alternative approach to function prediction, as one may
expect that proteins performing similar functions would share some attributes
even though they are not at all related at the global level of amino acid se-
quence. As several powerful predictive methods for PTMs and localization
have been constructed, a function prediction method based on such attributes
can be applied to all proteins where the sequence is known.

3.7.1 The ProtFun Method

The ProtFun method integrates (using an artificial neural network approach;
see chapter 5 for a general introduction) many individual attribute predictions
and calculated sequence statistics (out of many more tested for discriminative
value) (see figure 3.15). The integrated method predicts functional categories
which can be defined in various ways. The method predicts, e.g., whether a se-
quence is likely to function as an enzyme, and if so, its category according to
the classes defined by the Enzyme Commission. The same scheme can be used
to predict any other set of functional classes, including highly specific ones,
such as "ligand gated ion channel." It can, for example, be used to identify hor-
mones, growth factors, receptors, and ion channels in the human genome as
defined by the Gene Ontology Consortium gene function classification scheme.
Obviously, even though such methods produce predictions with false positives
and false negatives, they can provide essential clues, e.g., to selecting an assay
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if the confidence scores are sufficiently high.
The method uses combinations of attributes as input to the neural network

for predicting the functional category of a protein. Combinations of attributes
can be selected by evaluating their discriminative value for a specific functional
category, say proteins involved in transcription or proteins being transporters.
Attributes useful for function prediction must not only correlate well with
the functional classification scheme, but must also be predictable from the
sequence with reasonable accuracy.

Interestingly, the combinations of attributes selected for a given category
also implicitly characterize a particular functional class in an entirely new way.
This type of method identifies, without any a priori ranking of their impor-
tance, the biological features relevant to a particular type of functionality, say
attributes which are discriminative for two different categories of ion channels.

The success of the method indicates that (even predicted) PTMs correlate
strongly with the functional categories and this fits well with general biologi-
cal knowledge. For proteins with “regulatory function” one of the most impor-
tant features turned out to be phosphorylation, consistent with the fact that
reversible phosphorylation is a well-known and widely used regulatory mecha-
nism. Glycosylation was also found to be a strong indicator for regulatory pro-
teins. The most important single feature for distinguishing between enzymes
and nonenzymes turned out to be predicted protein secondary structure. This
also makes sense, as enzymes are known to be overrepresented among all-
alpha proteins where the amino acid chain forms an alpha-helix structure, and
more rarely are found to be all-� proteins, where the structure is rich in �-
sheet.

3.7.2 Individual Sequence Prediction

The ProtFun method can be used to characterize the entire genome, but it is
perhaps best suited for obtaining functional hints for individual sequences for
later use in assay selection and design. As an example we can take the human
prion sequence which is being associated with the Creutzfeldt-Jacob disease.
The functionality of this protein, which seems to produce no phenotype when
knocked out in mice, was for a long time not fully understood. The ProtFun
method predicts (see figure 3.16) with high confidence that the human prion
sequence belongs to the transport and binding category, and also that it is very
unlikely to be an enzyme. Indeed, prions have now been shown to be able to
bind and transport copper, while no catalytic activity has ever been observed.
Interestingly, as the prion is a cell surface glycoprotein (expressed by neural
cells) it has a distinct pattern of post-translational modification, which most
likely contains information which can be exploited by the prediction method
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Figure 3.15: The ProtFun neural networks that predict the function of proteins in protein feature
space. Each sequence is converted into features and then the networks (NN) integrate these
features and provide a prediction for the affinity toward different functional categories. For
different categories different protein features will have discriminatory value. During training
(using experimentally characterized data) the most discriminative features are determined for
each category.
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######### ProtFun 1.1 predictions ##########

>PRIO_HUMAN

# Functional category Prob

Amino_acid_biosynthesis 0.020
Biosynthesis_of_cofactors 0.032
Cell_envelope 0.146
Cellular_processes 0.053
Central_intermediary_metabolism 0.130
Energy_metabolism 0.029
Fatty_acid_metabolism 0.017
Purines_and_pyrimidines 0.528
Regulatory_functions 0.013
Replication_and_transcription 0.020
Translation 0.035
Transport_and_binding => 0.831

# Enzyme/nonenzyme Prob
Enzyme 0.250
Nonenzyme => 0.750

# Enzyme class Prob
Oxidoreductase (EC 1.-.-.-) 0.070
Transferase (EC 2.-.-.-) 0.031
Hydrolase (EC 3.-.-.-) 0.057
Isomerase (EC 4.-.-.-) 0.020
Ligase (EC 5.-.-.-) 0.010
Lyase (EC 6.-.-.-) 0.017

Figure 3.16: The prediction output from the ProtFun method for the human prion protein,
PRIO_HUMAN. The method produces three types of output for functional categories: broad cel-
lular role, enzyme classes, and Gene Ontology categories, only the two first are included here for
reasons of space. The number of Gene Ontology categories predicted is growing and is currently
around 75. The numerical output can be used, for example, to select an assay, or the order in
which different assays should be selected, when confirming experimentally the function of an
uncharacterized protein. The ProtFun method is made available at www.cbs.dtu.dk/services.

for functional inference.

The neural network was not transferring functional information just by
identifying by sequence similarity from the nearest neighbor in sequence space
used to train the system, as the maximal similarity between the prion sequence
and the data set used to train and test the ProtFun method was only 14.8%
identity at the amino acid level to a proline-arginine-rich repeat protein. Pre-
dictions like these are very useful when resolving protein function, because
they can be used to generate specific hypotheses and direct laboratory experi-
ments for sequences where no information at all can be obtained by alignment.
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3.7.3 Predicting Functional Categories for Systems Biology: the Cell
Cycle as an Example

Characterization of the immune system also requires that genes and proteins
are grouped into subsystems, where the biochemical task of each protein may
be highly different. The ProtFun method can also be used to group sequences
in this manner. As an example with relevance for the immune system, we de-
scribe here a version of the method that predicts whether a protein is encoded
by a periodically transcribed, cell cycle regulated gene, or not. The ability of a
cell to replicate itself is one of the most fundamental features of life, and also
of disease, most importantly in relation to cancers. The hundreds of genes
maintaining the cell cycle work together in a highly robust manner, making it
possible for cells to divide under many different growth conditions and other
influences from the environment. The robustness is achieved by sophisticated
regulation making the periodic gene expression highly stable. The eukary-
otic cell cycle is regulated at many levels, from transcription and translation
to posttranslational modification and targeted protein degradation. Proteins
need not only be produced, but also be removed again when no longer needed.
The cell cycle molecular machinery consists of highly diverse proteins, with
little sequence similarity.

A key technique being used to elucidate which genes are involved in a given
subsystem is the DNA microarray method (see section 5.1). This is also the
case for the cell cycle, where gene expression measurements are made during
many different time points of the cycle. Unfortunately, many of the “lists”
of genes, which have been produced in this way do not agree as much as
expected, even if these studies have produced highly valuable information
de Lichtenberg et al. [2003, 2004]. Part of the disagreement relates to dif-
ferences in experimental conditions and procedures, but a large fraction is
presumably related to basic noise problems in the DNA microarray technology
when measuring the expression level of weakly expressed genes.

The ProtFun function classification technique described above can be used
to predict, in feature space, such systems biology related categories de Lichten-
berg et al. [2003]. Not all cell cycle related genes are periodic, but many of the
key factors enabling the final formation of protein complexes are. The fact that
the method with a reasonable high performance is able to separate such two
highly diverse categories, demonstrates that many cell cycle proteins indeed
display correlations between their features, which are different from those of
other proteins. These features include phosphorylation, glycosylation, stabil-
ity and/or disposition for targeted degradation, as well as localization in the
cell.

In relation to the immune system many other sets of proteins creating a
given subsystem may also display feature based similarities that can be ex-
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ploited in a prediction approach like ProtFun. One aim is of course to identify
novel components involved, but also to discover whether such biochemically
diverse proteins share features which can be used to describe the biology be-
hind their functionality.


