
Chapter 14

Predicting Immunogenicity: An
Integrative Approach

The genome era provides opportunities to study the immune system from

a systems biology perspective as discussed in chapter 1. We now have not

only the sequence information that sheds light on the immunological diversity

among individuals in a population but also advanced techniques that allow

us to obtain a better estimate of the kinetics and specificity of an immune

response. In this chapter we will give an example of such systems biology

approaches to immunology: prediction of immunogenic regions for cytotoxic

T cells. A very similar study is published by Larsen et al. [2005].

Reliable prediction of immunogenic peptides may be useful for many ap-

plications, e.g., for rational vaccine design. Many attempts have been made to

predict the outcome of the steps involved in antigen presentation. As we have

described earlier in the book, a number of methods have been developed that

very reliably predict the binding affinity of peptides to the different MHC-I al-

leles [Brusic et al., 1994, Buus et al., 2003, Nielsen et al., 2003, 2004]. Likewise,

a method has been developed that predicts the efficiency by which peptides of

arbitrary length can be transported by TAP [Peters et al., 2003a]. Several meth-

ods have also been developed that aim at predicting the proteasomal cleavage

pattern of proteins (see chapter 7 for details).

Can predictions of proteasomal cleavage patterns and TAP transport effi-

ciency contribute to an improved identification of epitopes compared to that

obtained when using only predictions of MHC-I affinity? Peters et al. [2003a]

have shown that combining MHC-I affinity predictions with prediction of TAP

transport efficiency leads to improved identification of CTL epitopes. This

analysis can be extended to address, for a large set of different HLA alleles,
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if a combined prediction method mimicking the MHC I pathway can improve

prediction of epitopes. The following analysis includes epitopes from close to

70 different MHC alleles from different MHC-I supertypes [Sette and Sidney,

1999, Lund et al., 2004]. The proteasomal cleavage event were modeled by

prediction algorithms as described in chapter 7.

To validate the integrative method, a data set (SYF) containing 152 9mer

epitopes restricted to more than 70 different HLA alleles extracted from the

SYFPEITHI database (http://syfpeithi.bmi-heidelberg.com/) are uesd. The ma-

jority of these peptides have successfully passed the steps involved in anti-

gen presentation. The set of negative peptides (peptides that will not be

presented by the MHC class I pathway) were defined as all 9mer peptides

contained in the protein sequences from which the epitopes originated, ex-

cept those annotated as epitopes in either the complete SYFPEITHI or Los

Alamos HIV databases (www.hiv.lanl.gov/immunology. When using this def-

inition of epitopes/nonepitopes one has to take into account that some 9mers

will falsely be classified as nonepitopes because the SYFPEITHI and Los Alamos

HIV databases are incomplete. Since the HLA molecules have a very specific

peptide binding repertoire, this false-negative proportion will be very small. In

a protein of 200 amino acids, one expects to have one binding, and approxi-

mately 199 nonbinding peptides [Yewdell and Bennink, 1999]. The potential

number of false negatives is hence orders of magnitude smaller than the actual

number of negatives.

14.1 Combination of MHC and Proteasome Predictions

To examine whether predictions of proteasomal cleavage can contribute to the

classification of peptides into epitopes/nonepitopes independently of the pre-

dicted MHC-I binding affinity, one option is to perform a sort/split experiment:

two groups of peptides with approximately equal predicted MHC-I affinity, but

different predicted proteasomal cleavage, is generated. All 9mer peptides in

each protein is individually sorted according to their predicted MHC-I affinity.

Looking at two peptides at a time from the top of the sorted list, they are

then split into two groups and the peptide with highest predicted proteasomal

cleavage value is put in group H, whereas the peptide with the lowest is put

in group L. Figure 14.1 shows, for four different methods predicting proteaso-

mal cleavage, how the number of epitopes in the H group deviates from the

expected number (50%).

To test if the number of epitopes is significantly different in group H as

compared to group L, the binomial distribution is applied. Under the null

hypothesis, the epitopes have an equal chance of falling into either group,

⇡
0

= 0.5. If n is the total number of epitopes, the expected number of epitopes
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in either group is ⇡
0

n. If r is the observed number of epitopes in one of the

groups, the departure from the expected number can be expressed by the z-

score [Armitage et al., 2004]:

z = r �n⇡
0p

n⇡(1�⇡) . (14.1)

The nullhypothesis is rejected at p = .05 if z > 1.96, at p = .01 if z > 2.58,

and at p = .001 if z > 3.29.

All four proteasomal cleavage methods the number of epitopes is signifi-

cantly higher in group H than in group L. The method with the poorest perfor-

mance is that of NetChop 20S with a p-value just below .01. The other three

methods all separate the H from the L group with p-values below or close to

.001. For NetChop 2.0, for example, 34% or 72% more epitopes are found in the

H group. Figure 14.1 also shows that the predicted cleavage patterns of the

internal amino acids add very little extra information to the predicted MHC-I

affinity. When using NetChop 2.0 or NetChop 3.0 to study the predicted cleav-

age at position 1, only 38% and 39%, respectively, of the epitopes are located

in group H. This may indicate that peptides with a high predicted proteasomal

cleavage value at this position are rarely epitopes. If, however, the NetChop

20S or NetChop 20S-3.0 network is used, this scenario is reversed.

Applying the bootstrap [Press et al., 1992] method you find that the

NetChop 20S method performs significantly worse than the other methods

(p < .05 in all three comparisons). The difference in predictive performance

between the other methods is, however, statistically insignificant (p > .05 in

all cases). Thus, this analysis demonstrates that only the methods based on in
vivo cleavage data can improve the identification of epitopes in combination

with the predicted MHC-I affinity.

14.2 Independent Contributions from TAP and Proteasome Pre-
dictions

To address the question of whether proteasomal cleavage and TAP trans-

port efficiency can contribute independently to the identification of epitopes a

sort/split experiment sorting on TAP transport efficiency and splitting on pro-

teasomal cleavage was conducted. When examining if cleavage predictions can

contribute to the identification of epitopes independently of the predicted TAP

transport efficiency, two groups of peptides with close to equal TAP transport

efficiency, but different predicted proteasomal cleavage, were generated us-

ing the same method as described in the previous section. In this experiment

the two groups H and L thus have similar TAP transport efficiency, but very

different predicted proteasomal cleavage values. The result of the analysis is
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Figure 14.1: Sort/split experiment conducted sorting on predicted MHC-I affinity, splitting on

predicted proteasomal cleavage. Two groups with close to equal MHC-I affinity, but with differ-

ent predicted proteasomal cleavage. In total, the two groups contain 152 epitopes. The figure

shows the number of epitopes in group H deviating from the expected number of 76 (50%) L. 1-9:

position 1-9 of the peptide (9 is the C-terminal end). Four different methods have been used for

predicting proteasomal cleavage: NetChop 20S, NetChop 20S-3.0, NetChop2.0, and NetChop3.0.

Also shown are lines indicating levels of significance estimated as described in the text.

shown in figure 14.2, where NetChop 3.0 has been used for the proteasomal

cleavage predictions. The figure shows how the number of epitopes in the

H group deviates from the expected number (50%). In combination with TAP

transport efficiency only, the predicted C-terminal cleavage can contribute sig-

nificantly to the identification of the epitopes. There is an excess number of

30 epitopes between the H and L groups, corresponding to 70%. This result

demonstrates that not all TAP transported peptides are cleaved equally well

by the proteasome. Between two groups of peptides with equal TAP transport

efficiencies, epitopes are found predominantly in the group with high protea-

somal C-terminal cleavage.

Next a sort/split experiment sorting on MHC-I affinity and splitting on TAP

transport efficiency is conducted to investigate if TAP transport efficiency and

MHC-I binding can contribute independently to the identification of epitopes.

In the experiment, most epitopes (66%, p < .001) fall into the group with high

TAP transport efficiency. Among peptides with similar MHC-I affinity, peptides

with high TAP transport efficiency are thus most likely to be epitopes.
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Figure 14.2: Sort/split experiment conducted sorting on predicted TAP transport efficiency,

splitting on predicted proteasomal cleavage. Proteasomal cleavage is predicted using the

method of NetChop 3.0. Two groups with close to equal predicted TAP transport efficiency,

but with different predicted proteasomal cleavage. In total, the two groups contain 152 epi-

topes. The figure shows the number of epitopes in group H deviating from the expected number

of 76 (50%). 1-9: position 1-9 of the peptide (9 is the C-terminal end). Also shown are lines

indicating levels of significance.

14.3 Combinations of MHC, TAP, and Proteasome Predictions

A combined prediction score for MHC-I affinity, proteasomal C-terminal cleav-

age, and TAP transport efficiency can be defined as a weighted sum of the three

individual prediction scores. We use an MHC-I affinity rescaled prediction val-

ues; TAP prediction method of [Peters et al., 2003a], and the NetChop 2.0 and

3.0 predictors described in chapter 7.

Two nonparametric performance measures are used to evaluate the per-

formance of the combined methods. One measure is the conventional AROC
value (the area under the receiver operator characteristics [ROC] curve) [Swets,

1988]. In this measure, all overlapping 9mer peptides in the SYF data set were

sorted according to the prediction score. The epitopes define the positive

set, whereas the negative set is made from all other 9mers, excluding 9mers

present in the SYFPEITHI or the Los Alamos databases. In a typical calculation,

the positive set contains 152 peptides, and the negative set more than 92,000

peptides.

The ROC curve is plotted from the sensitivity and 1-specificity values cal-

culated by varying the cut-off value (separating the predicted positive from

the predicted negative) from high to low. The AROC value is 0.5 for a random

prediction method and 1.0 for a perfect method. Even though commonly used,
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the AROC measure is not easy to interpret intuitively. A second performance

measure with a clear and intuitive interpretation is a rank measure: for each

protein in the benchmark, all 9mer peptides are sorted based on the predic-

tion score. A given protein may appear more than once in the benchmark if it

contains more than one epitope. The rank value for the protein is calculated

as the number of nonepitopes with a score higher than that of the correspond-

ing epitope. From these rank values a rank curve showing the accumulative

fraction of proteins with a rank value below a certain value was constructed.

From the rank curve one can then extract information on how large a fraction

of the proteins will have the epitope within a rank of, e.g., 25. Finally, a sin-

gle performance measure (ARANK) as the area under the rank curve integrated

from rank zero up to rank 100 was defined. A perfect prediction method will

have all the epitopes as rank 1, and thus an ARANK value of 1.0, whereas a poor

method will have the epitopes well below rank 100 and hence an ARANK value

of 0.0. Examples of a ROC and a rank curve are shown in figure 14.3. For both

the AROC and ARANK performance measures, one should be aware that some

9mers will falsely be classified as nonepitopes because the SYFPEITHI and Los

Alamos HIV databases are incomplete.

The SYF data set is used to estimate the set of weights where the ARANK
and AROC values are optimal. Next the optimal combined prediction scheme

is applied to an HIV data set of 69 epitopes derived from the Los Alamos HIV

database to estimate the performance gain on an independent evaluation data

set.

The optimal combined method is found to have relative weights on

C-terminal cleavage and TAP transport efficiency of 0.15 and 0.115, respec-

tively. In figure 14.3, we show examples of ROC and rank curves for the

SYF data set. The figure shows the performance curves for five different

prediction scoring schemes: Comb, MHC, TAP, NetChop 2.0, and NetChop

3.0. Here, the Comb method is the combined method with relative weight on

TAP and NetChop 3.0 of 0.115 and 0.15, respectively, while others are single

predictions. In figure 14.4, we give the details of the performance measures

for the different methods and their combinations.

The curves shown in figure 14.3 clearly highlight the problematic aspects

of using the AROC performance measure when dealing with highly unbalanced

data sets. The AROC values for the NetChop 3.0 and TAP prediction methods

are close to identical (see figure 14.4). However, looking at the ROC curves for

each method, it is clear that the NetChop 3.0 method provides the most useful

predictions. The region of the ROC curve where the TAP predictor performs

best falls in a highly nonrelevant region of the specificity. The two curves cross

at a false-positive ratio of 0.4. This value corresponds to 40% false-positive

predictions, and having an improved prediction method only in this specificity

range is clearly irrelevant. For the rank curves this problem is not present, and
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Figure 14.3: ROC and rank performance curves for different prediction methods. Left: the ROC

curves. Right: rank curves. ARANK is the area under the rank curve (highlighted as the shaded

area under the TAP curve) as described in the text. Predictions are made on the SYF data set.

The different prediction methods are; Comb: optimal combined method with relative weight on

C-terminal cleavage and TAP transport efficiency of 0.15 and 0.115, respectively; MHC: MHC-I

affinity; TAP: TAP transport efficiency; NetChop 3.0: C-terminal cleavage by NetChop; NetChop

2.0: C-terminal cleavage by NetChop 2.0. The inserts to the figures show high specificity/high

rank, part of the corresponding curves.

we can directly identify the most relevant method from the integrated ARANK
value.

The results shown in figures 14.3 and 14.4 demonstrate that the combined

method integrating prediction of proteasomal cleavage, TAP transport, and

MHC affinity has the highest performance in terms of both the AROC and

ARANK values. The individual method with the poorest performance is that of

NetChop 20S, followed by NetChop 20S-3.0, TAP, the NetChop 2.0 and NetChop

3.0 methods, and MHC-I affinity.

What is also clear from the results shown is that the combined method

has a predictive performance superior to that of both MHC-I affinity alone

and any method integrating prediction of MHC-I affinity with TAP transport

efficiency or C-terminal proteasomal cleavage. The performance values for

MHC, MHC+TAP, MHC+NetChop 3.0, and the combined method are 0.88, 0.90,

0.90, 0.91 for AROC and 0.70, 0.75, 0.73, 0.76 for ARANK respectively. Com-

paring the performance values for the combined method to that of MHC-I,

MHC-I+TAP, and MHC-I+NetChop 3.0, we find the following bootstrap hypoth-

esis test values: <0.01, <0.01, <0.01 and 0.025, <0.01, <0.01 for AROC and
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Figure 14.4: Predictive performance for different prediction methods: AROC (upper panel) and

ARANK (lower panel). Predictions are made on the SYF data set. The figure shows for each pre-

diction method the performance measures for each method on its own, the optimal performance

in combination with MHC affinity predictions, and the optimal performance in combination with

TAP transport efficiency and MHC affinity predictions.

ARANK , respectively. However, we see no significant difference between the

combined methods integrating predictions from any of the three proteasomal

cleavage prediction methods: NetChop 20S-3.0, NetChop 2.0, or NetChop 3.0.

This analysis indeed shows that the combined method performs significantly

better than all other methods in the comparison.

It is striking to observe that in combination with MHC-I affinity the TAP

predictor provides more additional information useful for epitope identifica-

tion than any of the NetChop predictors. The MHC-I+TAP predictor has ARANK
and AROC values of 0.75 and 0.90, respectively, whereas the values for MHC-

I+NetChop 3.0 are 0.73 and 0.89. Using the bootstrap experiment, we find that

these values are significantly different (p < .05).

Another interesting finding is that even though the different NetChop pre-

dictors, except NetChop 20S, individually have very different predictive per-

formance, they achieve the same predictive performance when combined with

MHC-I affinity predictions. In combination with MHC-I affinity predictions,

NetChop 20S-3.0, NetChop 2.0, and NetChop 3.0 all have performance val-
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ues close to 0.90 and 0.73 for AROC and ARANK , respectively, and the indi-

vidual performance differences are statistically significant. Finally, we also

found that the NetChop 20S-3.0 and TAP predictors can be combined in a con-

structive manner with a predictive performance significantly higher than that

of the individual predictors. This is, however, not the case for the NetChop

3.0 predictor. Here the combination with TAP only leads to a minor and in-

significant improvement in the predictive performance (data not shown). This

analysis suggests that the NetChop predictor trained on epitope data does in-

deed predict a combination of MHC-I affinity, TAP transport efficiency, and

proteasomal cleavage rather than just proteasomal cleavage. As an individ-

ual prediction method for epitope recognition, the NetChop method trained

on epitope data clearly outperforms the methods trained on in vitro degra-

dation data. However, when combined with MHC-I affinity and TAP transport

efficiency predictions both the epitope and in vitro trained methods achieve

similar performance.

A direct measure of the performance gain when comparing the combined

method to that of MHC-I affinity prediction alone is the rank number needed in

order to identify 75% of the epitopes in the benchmark. For the MHC-I affinity

predictions alone this rank number is 55, meaning that in a set of proteins

one will have to test 55 peptides from each protein in order to identify 75% of

the epitopes. For the combined method this number has dropped to 30. Even

though this number is still high, the performance gain is clearly notable.

14.4 Validation on HIV Data Set

The above analysis can be done for indivual pathogens, like HIV. The results

of such an analysis are shown in figure 14.5 and confirm the findings from the

SYF data set. The combined method has a performance superior to that of all

the individual methods. The TAP transport predictor has the poorest perfor-

mance, followed by that of NetChop 3.0. Estimating the rank number needed

in order to identify 75% of the epitopes in the benchmark, we find values of

52 and 30 for the MHC-I predictor alone and the combined method, respec-

tively. These numbers thus confirm the values found when using the SYF data

set. A direct implication of this performance gain is a twofold reduction in the

experimental efforts needed to identify 75% of the epitopes in a large set of

proteins.
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Figure 14.5: Performance for different prediction methods. Predictions are made on the HIV data

set. The figure shows the predictive performance for the three individual prediction methods

of MHC, C-terminal cleavage (NetChop 3.0), and TAP, as well as the combined method (Comb)

with relative weight on C-terminal cleavage and TAP transport efficiency of 0.15 and 0.115,

respectively.

14.5 Perspectives on Data Integration

In this chapter, we have demonstrated how an integrative approach combining

predictions of the proteasomal cleavage, TAP transport efficiency, and MHC-I

affinity can lead to improved CTL epitope recognition.

Other groups have previously combined different prediction methods: Hak-

enberg et al. [2003] developed a bioinformatical tool for prediction of CTL epi-

topes by combining prediction of proteasomal cleavage and MHC affinity. On

a very small data set of only five epitopes from HIV-1 Nef, Kesmir et al. [2002]

showed that combining predictions of proteasomal cleavage with measured

TAP and MHC-I binding affinity correlates well with the observed number of

MHC-I ligands presented on the cell. In another study, Peters et al. [2003a] im-

proved identification of epitopes by combining predictions of binding affinities

to the HLA-A*0201 allele with predictions of TAP transport efficiency. They

also combined HLA-A*0201 affinity predictions with predictions of C-terminal

cleavages by NetChop 20S, but this led to a less accurate identification of epi-

topes. What is novel about the analysis given in this chapter is the broad set

of MHC-I (70 different alleles) specificities used. This allows us to (1) draw

more general and well-founded conclusions about how to integrate the differ-

ent steps in the class I pathway in an optimal manner, and (2) derive a predic-

tion method that is broadly applicable to the identification of CTL epitopes.

Concern has previously been raised that the NetChop methods, which have

been trained on natural MHC-I ligand data, do not only predict proteasomal

cleavage but rather a combination of cleavage, TAP transport, and affinity to
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the average MHC-I allele [Peters et al., 2003a]. We find that when predicting

CTL epitopes, the NetChop method trained on epitope data outperforms the

methods trained on in vitro degradation data. However, in combination with

MHC-I affinity and TAP transport efficiency predictions, both methods trained

on in vitro digest data and MHC ligands, respectively, show similar perfor-

mance. This leads to the conclusion that the high performance of the NetChop

method trained on epitope data does not come from more accurate predic-

tion of the proteasomal cleavage but rather from indirect integration of TAP

transport efficiency and MHC-I affinity. However, this observation also leaves

promise for future improvements to CTL epitope predictions, since it should

be possible to improve at least the proteasomal cleavage prediction accuracy

by developing a method describing the differences between the immuno pro-

teasome and the constitutive proteasome cleavage specificities, and thereby

improve the accuracy of the integrative method.


