Prediction of Immunotherapy Treatment Outcome

Lars Rønn Olsen Assoc. Prof. DTU Bioinformatics lro@bioinformatics.dtu.dk

Today's topics

- 1. Prediction of immune targets in tumor cells
- 2. Characterization of immune phenotype
- 3. Correlating phenotype with clinical outcome
- 4. Integrating targets/phenotype

Clinical application

Sequence-driven identification of neoepitopes in metastatic melanoma

Predicted 448 potential HLA binders

Minor T cell response against **1 antigen**

Dominant T cell response against 1 antigen

Why only two epitopes??

van Rooij et al. JCO 2013

What predictions did they include in their model?

Essentially just one more ratereceptor-ligand interaction

Response is dependent on TCR represented by the second problem of the second problem of

Unpredictable from DNA central and peripheral selection

Prediction of response

Biomarkers for immune competence / therapy response

* Mutational load of the tumor

* Quantity, ratio, location, and anergy of CD8+ T cells and CD4+ T cells

* Molecular markers associated with effector inhibitory mechanisms (ARG1, NOS2, IDO1, IDO2, NOX2, PD-L1, PD-L2, IL-10)

* Quantity of suppressive immune subsets (Myeloid-derived suppressor cells, Tregs, etc.)

Chang et al. Cancer Immunol Immunoth 2013 Gnjatic et al. J Immunoth Cancer 2017

Mutational load of the tumor

Varies among cancers, and among individual tumors

Alexandrov et al. Nat. 2013

Mutational load of the tumor

Mutational load predict clinical benefit of adoptive T cell therapy in melanoma

The tumor is only half of the system

Brodin et al. Cell 2015

Profiling the immune system using single cell cytometry

Count the antibodies!

Profiling the immune system using single cell cytometry

Profiling the immune system using single cell cytometry

	Protein 1	Protein 2	Protein 3	Protein 4	Protein 5
Cell 1	2	3	3	0	0
Cell 2	0	0	1	5	2

Mass cytometry

Mass cytometry

Structure of the data

Mass cytometry

What comes out of the machine:

* A matrix of 1,000,000+ observations
* 40+ variables is measured for each
* Cells are of unknown type and state
* Figure out what they are
* Compare across conditions
* And the data is point!

* ...And the data is noisy!

Data pre-processing steps

- * Normalization
- * Transformation
- * Batch correction

* Removing normalization beads, doublets, debris, and other junk

Visualizing the data (dimensionality reduction)

Cell subset detection (clustering)

One example: agglomerative hierarchical clustering

First, we calculate the distance between each cell (vector of protein expression values)

$$d(\vec{u},\vec{v}) = \|\vec{u}-\vec{v}\| = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 \dots (u_n-v_n)^2}$$

Cell subset detection (clustering)

One example: agglomerative hierarchical clustering

Then, we iteratively combine cells that are closest to each other.

Color dimensionality reduced plot by cluster

What cell types constitute the clusters?

Visualizing cluster marker expression

Assigning population label to clusters: reverse querying the cell ontology database

...but in the end: ask an expert

Differential abundance of cells / proteins

Elucidating cellular hierarchies using selforganizing maps (SOM) and minimum spanning trees (MST)

Result

The immunophenotype for each patient, which we can then proceed to correlate to clinical outcome

HOWEVER!

We measure tumor antigens, immune phenotypes, immune cell reactivity, etc. *in parallel* – not in an integrated manner.

Questions?

