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Today’s topics

Prediction of immune targets in tumor cells
Characterization of immune phenotype
Correlating phenotype with clinical outcome
Integrating targets/phenotype




Clinical application

Sequence-driven i1dentification of neoepitopes in metastatic melanoma
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Why only two epitopes??

van Rooij et al. JCO 2013




What predictions did they include 1n their model?
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Essentially just one more rate-
receptor-ligand interaction
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Prediction of response

Biomarkers for immune competence / therapy response

* Mutational load of the tumor
* Quantity, ratio, location, and anergy of CD8+ T cells and CD4+ T cells

* Molecular markers associated with effector inhibitory mechanisms (ARG1, NOS2, IDOI,
IDO2, NOX2, PD-L1, PD-L2, IL-10)

* Quantity of suppressive immune subsets (Myeloid-derived suppressor cells, Tregs, etc.)

Chang et al. Cancer Immunol Immunoth 2013
Gnjatic et al. J Immunoth Cancer 2017




Mutational load of the tumor

Varies among cancers, and among individual tumors
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Mutational load of the tumor

Mutational load predict clinical benefit of adoptive T cell therapy in
melanoma
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Lauss M, Donia M, et al. Nat. Comm. 2017




The tumor 1s only half of the system

Brodin et al. Cell 2015




Profiling the immune system
using single cell cytometry

Blood PBMC Antibody panel
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Count the antibodies!




Profiling the immune system
using single cell cytometry

Flow cytometry Mass cytometry Sequence-based
cytometry

Antibodies labelled with Antibodies labelled with Antibodies labelled with
fluorescent molecules metal isotopes sequence barcodes

Fluorophore labelling Isotope labelling Sequence barcoding
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Profiling the immune system
using single cell cytometry
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Bendall et al., Trends Immunol. 2013




Mass cytometry

Structure of the data

Raw output: Processed output: Interpretation:
“Rain” plot FCS file Biaxial gating
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Mass cytometry

What comes out of the machine:

* A matrix of 1,000,000+ observations
* 40+ variables 1s measured for each

* Cells are of unknown type and state
* Figure out what they are

* Compare across conditions

* ...And the data 1s noisy!




Analyzing cytometry data

Data pre-processing steps

* Normalization

* Transformation

* Batch correction

* Removing normalization beads,
doublets, debris, and other junk




Analyzing cytometry data

Visualizing the data
(dimensionality reduction)




Analyzing cytometry data

Cell subset detection (clustering)
One example: agglomerative hierarchical clustering

First, we calculate the distance between each cell (vector of protein
expression values)

d@, V) = |[# =] = V@ —v1)* + (2 — v2)2... (n — vn)?




Analyzing cytometry data

Cell subset detection (clustering)
One example: agglomerative hierarchical clustering

Then, we 1teratively combine cells that are closest to each other.




Analyzing cytometry data




Analyzing cytometry data

Color dimensionality reduced plot
by cluster




Analyzing cytometry data

What cell types constitute
the clusters?

Visualizing cluster marker
expression




Analyzing cytometry data

cellular_componen

Assigning population label =
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to clusters: reverse querying -

the cell ontology database
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Analyzing cytometry data

Differential abundance of cells / proteins




Analyzing cytometry data

Elucidating cellular
hierarchies using self-
organizing maps (SOM)
and minimum spanning
trees (MST)




Analyzing cytometry data

Result

The immunophenotype for each patient, which
we can then proceed to correlate to clinical
outcome




HOWEVER!

We measure tumor antigens, immune phenotypes, immune cell
reactivity, etc. in parallel — not in an integrated manner.




Questions?




