Antigen capture and presentation to T lymphocytes

What T lymphocytes see

Innate Immunity

Immediately available

or

rapidly recruited

Very broad specificity

Adaptive Immunity

Adaptive immunity

Rare and naïve cells require priming and expansion (i.e. a primary response takes time to develop)

Narrow specificity

Clonally distribution

Clonal selection

Clonal Distribution & Selection

Each lymphocyte (B or T cell) express one receptor specificity (clonally distributed)

Each of these cells (i.e. specificities) can be silenced or promoted (clonally selected)

Control cells = control specificity

What is a good target for the adaptive immune system?

To be seen – targets must be accessible and easy to identify

To allow discrimination between self and foreign – targets must be highly variable

To avoid escape – targets must be difficult to conceal, change or remove

PROTEINS FULFILL THESE REQUIREMENTS – ACTUALLY PEPTIDES DO

The World of Peptide Antigens

Number of different peptides = 20^{N} where N = length of peptide

The universe of 9-mers = 512×10^9 peptides The human proteome $\approx 12 \times 10^6$ peptides i.e. plenty of discriminatory power in 9-mers

Questions

How are source proteins captured?

How are peptides generated?

How are peptides displayed (presented)

Questions

 T cells of the appropriate specificity are rare how do T cells find the antigen?

The cellular location of a threat is important –
 how do T cells determine this location?

A UNIFIED ANSWER: ANTIGEN PRESENTATION

Antigens Recognized by T Lymphocytes

Abbas et al: Basic Immunology, 4e Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

Capture & Display of Microbial Antigens

Gastrointestinal tract

Skin

Respiratory tract

Immature DC

Antigen Capture

Mature DC

Antigen Presentation

in the spleen plogical Sequence Analysis Biological Bioinformatics Abbas et al: Basic Immunology, 4e Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc.

Immature and Mature Dendritic cells

Immature DC

Antigen Capture

Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

Crude Recognition of Microbes

Dendritic cells – two major classes

Feature	Conventional dendritic cells	Plasmacytoid dendritic cells
Surface markers	CD11c high CD11b high	CD11c low CD11b negative B220 high
Major location	Tissues	Blood and tissue
Expression of Toll-like receptors	TLRs 4, 5, 8 high	TLRs 7, 9 high
Major cytokines produced	TNF, IL-6, IL-12	Type I interferons

Abbas et al: Basic Immunology, 4e Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

most antigens

Induction of T cell

responses against

Antiviral innate immunity

responses against viruses

and induction of T cell

Postulated

major functions

Capture & Presentation by DC's

Antigen capture by dendritic cells (DCs)

Activation of dendritic cells

TLR ligands, cytokines Antigen capture Migration DC in epidermis: of DC phenotypically immature Afferent lymphatic vessel Maturation of migrating DC T cell Mature dendritic cell Antigen presentation presenting antigen to naive T cell Lymph node T cell zone

Antigens Presenting Cells (APC)

Cell type	Expression of		Principal
	Class II MHC	Costimulators	function
Dendritic cells	Constitutive; increases with maturation; increased by IFN-γ	Constitutive; increases with maturation; inducible by TLR ligands, IFN-γ, and T cells (CD40-CD40L interactions)	Initiation of T cell responses to protein antigens
Macrophages	Low or negative; inducible by IFN-γ	Low, inducible by TLR ligands, IFN-γ, and T cells (CD40-CD40L interactions)	Effector phase of cell-mediated immune responses
B lymphocytes	Constitutive; increased by IL-4	Induced by T cells (CD40-CD40L interactions), antigen receptor cross-linking	Antigen presentation to CD4+ helper T cells in humoral immune responses (cognate T cell–B cell interactions)

Abbas et al: Basic Immunology, 4e

Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

What are MHC molecules?

MHC (HLA) gene region

MHC / HLA polymorphism

- The most polymorphic gene region known
 - About 3500 different HLA class I registered
 - About 4500 different HLA class II registered

Gene complexity at the MHC locus in man

Cla	ss l		Cla	ss II	
gene	alleles	gene	A alleles	B alleles	AxB
HLA-A	1,519	DR	3	966	2,898
HLA-B	2,069	DQ	35	144	5,040
HLA-C	1,016	DP	28	145	4,060
HLA-E	10	DM	4	7	28
HLA-F	22	DO	12	9	108
HLA-G	46				

data from the European Bioinformatics Institute (EBI) server (http://www.ebi.ac.uk/imgt/hla/stats.html)

Structure of MHC / HLA molecules

Class I MHC

Class I

Class II MHC

Class II

Features of MHC genes and molecules

Features of MHC genes and molecules

Polymorphic genes:

Many different alleles are present in the population Ensures that different individuals are able to present and respond to different microbial peptides

Features of MHC genes and molecules

MHC-expressing cell types:

Class II: Dendritic cells, macrophages, B cells

Class I: All nucleated cells CD4+ helper T lymphocytes interact with dendritic cells, macrophages, B lymphocytes

CD8+ CTLs can kill any virus-infected cell

Binding of Peptides to MHC

MHC class I closed Peptide short

MHC class II open Peptide longer

June 4th, 2015

Feature	Significance			
Broad specificity	Many different peptides can bind to the same MHC molecule	4 4 4		
Each MHC molecule displays one peptide at a time	Each T cell responds to a single peptide bound to an MHC molecule			
MHC molecules bind only peptides	MHC-restricted T cells respond only to protein antigens, and not to other chemicals	Proteins Lipids Carbohydrates Nucleic acids		

Peptides are acquired during intracellular assembly Class I and class II MHC molecules display peptides from different cellular compartments

Stable surface expression of MHC molecule requires bound peptide

Only peptide-loaded MHC molecules are expressed on the cell surface for recognition by T cells

MHC molecule with bound peptide

Empty MHC molecule

Very slow off-rate MHC molecule displays bound peptide for long enough to be located by T cell

MHC samples intracellular peptides.

They do NOT discriminate between self and non-self

Antigen Processing

Antigen uptake

Antigen

MHC processing biosynthesis

Peptide-MHC association

MHC class II mediated antigen processing

Uptake of extracellular proteins into vesicular compartments of APC

Processing of internalized proteins in endosomal/ lysosomal vesicles

Biosynthesis and transport of class II MHC molecules to endosomes Association of processed peptides with class II MHC molecules in vesicles Expression
of peptideMHC
complexes
on cell
surface

MHC class I mediated antigen processing

Production of proteins in the cytosol

Proteolytic degradation of proteins

Transport of peptides from cytosol to ER Assembly of peptide-class I complexes in ER

Surface expression of peptide-class I complexes

Two Antigen Processing Pathways: one for each class of MHC

Feature	Class II MHC Pathway	Class I MHC pathway
Composition of stable peptide-MHC complex	Polymorphic α and β chains of MHC, peptide Peptide α	Polymorphic α chain of MHC, β2-microglobulin, peptide Peptide β2-microglobulin
Cells that express MHC	Dendritic cells, mononuclear phagocytes, B lymphocytes; endothelial cells, thymic epithelium	All nucleated cells
Responsive T cells	CD4+ T cells	CD8+ T cells

Two Antigen Processing Pathways: one for each class of MHC

Feature	Class II MHC Pathway	Class I MHC pathway
Source of protein antigens	Endosomal/lysosomal proteins (mostly internalized from extracellular environment)	Cytosolic proteins (mostly synthesized in the cell; may enter cytosol from phagosomes)
Enzymes responsible for peptide generation	Endosomal and lysosomal proteases (e.g., cathepsins)	Cytoplasmic proteasome
Site of peptide loading of MHC	Specialized vesicles	Endoplasmic reticulum
Molecules involved in transport of peptides and loading of MHC molecules	Invariant chain, DM	TAP

Detecting the cellular antigen location

T cell effector Antigen uptake Antigen or synthesis presentation functions Class II MHC-associated presentation of extracellular antigen to helper T cells Antigen in Macrophage endosome Macrophage activation: Extracellular destruction of antigen phagocytosed antigen CD4+ helper Cytokines T lymphocyte Antigen-B cell antibody Extracellular specific secretion: antibody antigen B cell binding to antigen Class I MHC-associated presentation of cytosolic antigen to cytotoxic T lymphocytes Killing of Patics © D8 te cytotoxic al Sequence Analysis Cytosolic target cell

T lymphocyte

June 4th, 2015

Cross-presentation

Abbas et al: Basic Immunology, 4e Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

T cell recognition

 MHC molecules sample peptides from the cellular protein metabolism, and T cells recognize peptide/MHC complexes in a cellcell interaction

 Priming requires presentation AND costimulation

T cell recognition

 MHC's do NOT discriminate between self and non-self – T cells do

 T cells do NOT discriminate between peptides of intra or extra-cellular protein origin— MHC pathways do

HLA polymorphism and immune specificity

To be, or not to be - encrypted

HLA polymorphism individualizes T cell responses

HLA polymorphism mismatch causes allo-responses

Donor TcR

Donor APC

Auto tolerance

Donor TcR

Perfectly matched APC

Auto tolerance

Altered self-repertoire = equivalent of allo-response

Auto TcR

HLA-B*57:01

Auto tolerance

"Allo-equivalent" TcR

HLA-B*57:01/Abacavir

ADR

B cell recognition

- Do NOT require MHC mediated antigen processing and presentation
- Use FDC for antigen display
- Recognizes targets of many kinds / intact structures
- May use a soluble receptor
- Recognize targets in the extracellular space