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One of the challenges raised by next generation se-
quencing (NGS) is the identification of clinically relevant
mutations among all the genetic variation found in an
individual. Network biology has emerged as an integra-
tive and systems-level approach for the interpretation of
genome data in the context of health and disease. Net-
work biology can provide insightful models for genetic
phenomena such as penetrance, epistasis, and modes of
inheritance, all of which are integral aspects of Mende-
lian and complex diseases. Moreover, it can shed light on
disease mechanisms via the identification of modules
perturbed in those diseases. Current challenges include
understanding disease as a result of the interplay be-
tween environmental and genetic perturbations and
assessing the impact of personal sequence variations
in the context of networks. Full realization of the poten-
tial of personal genomics will benefit from network
biology approaches that aim to uncover the mechanisms
underlying disease pathogenesis, identify new biomark-
ers, and guide personalized therapeutic interventions.

Using networks to understand disease
During the past decade, the study of genetic diseases has
been revolutionized by the application of high-throughput
technologies and computational approaches. Although
these methodologies were first employed to find the genetic
determinants of complex diseases (see Glossary), as exem-
plified by genome-wide association studies (GWAS) [1,2],
NGS has recently been used to identify the gene variants
responsible for both Mendelian [3] and complex disorders
[4–6]. As a result, we have an impressive amount of data on
sequence alterations and biomolecular profiles (mRNA
expression, miRNA and noncoding RNA profiling, proteo-
mics, and metabolomics measurements) for many human
diseases, which can be accessed from specialized databases
and publications (for a recent review see [7]). However, we
still have not succeeded in translating this wealth of
information into actionable knowledge about disease path-
ogenesis for the development of better strategies for dis-
ease prevention, diagnosis, and treatment. Progress is
limited by the difficulties in assessing the functional con-
sequences of disease-associated sequence variants [8] and
understanding how phenotype is affected by the combined
effect of environmental and genomic variation [9].

Biological network analysis is one approach to distill
these large data sets into clinically actionable knowledge
for disease diagnosis, prognosis, and treatment (Table 1).
This is predicated on the idea that diseases are a conse-
quence of perturbations in biological networks [10], which
is rooted in seminal work on model organisms (e.g., [11]).
Networks serve as a paradigm for data integration and
analysis, providing a systems-level understanding of the
mechanisms underlying diseases. Protein interaction net-
works (PINs) in particular have become a valuable re-
source in this context [10]. PINs are derived from high-
throughput approaches, including yeast two-hybrid
screens, immunoprecipitation studies followed by mass
spectrometry analysis, and small-scale experiments [12].
The current estimates suggest that the human interactome
comprises approximately 130 000–650 000 protein inter-
actions [13,14]; however, only a subset of these has been
experimentally identified.

Networks have been used to gain insight into disease
mechanisms [15–21], study comorbidities [22–24], analyze
therapeutic drugs and their targets [25,26], and discover
novel network-based biomarkers [27]. These early suc-
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Glossary

Allelic heterogeneity: reflects different allelic mutations at the same locus
associated with multiple disorders.
Epistasis: also known as synthetic or synergistic interaction between genes, in
which the contribution of a gene to a phenotype depends on its interaction with
several other genes.
Expressivity: measures the extent to which a given genotype is expressed at the
phenotypic level, due to variation in the genomic background or the effect of
environmental factors [84].
Genetic or locus heterogeneity: a disease with high locus heterogeneity has
several variants at the population level. Locus heterogeneity is common in
syndromes resulting from failure of a complex pathway (e.g., Usher syndrome)
[85].
Mendelian and complex diseases: whereas Mendelian disorders are the result of
alterations in one or several genes that can be traced in family pedigrees,
complex diseases arise as a consequence of the combined effect of multiple
genetic determinants, which may vary between individuals, and environmental
factors. The term ‘complex disease’ is also used to refer to those diseases where
the phenotype cannot be easily predicted from the genotype. This is proposed to
be due to the interaction between genes (epistasis) [86], modulation by envi-
ronmental factors or stochastic processes [73], or epigenetic changes [87]. It is
important to note that some of these factors, such as incomplete penetrance and
variable expressivity, can also make it difficult to predict the phenotype of
Mendelian disorders based solely on genotype.
Penetrance: the probability of an individual to manifest a change in the geno-
type. This probability is a function of the presence of modifiers, epistatic genes,
and the environment [85].
Protein interaction network (PIN): a schematic mapping proteins (nodes) to
other proteins, where the lines connecting two proteins (edges) represent a
physical binding of the two proteins or a predicted interaction between them.
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cesses indicate that network biology can shed light on the
complex relation between genotype and phenotype in hu-
man diseases. Here, I review recent literature on network
analysis related to disease, with particular emphasis on
topological studies of PINs, and discuss some of the open
questions in human disease research. Related topics, such
as reverse engineering gene regulatory networks, dynamic
network modeling, and network-based prediction of dis-
ease genes, will not be covered here. Interested readers can
find information on these topics elsewhere (see, for exam-
ple, [28–30]).

Disease proteins: hubs, bottlenecks, or peripheral
nodes?
One of the simplest ways that network analysis can pro-
vide insight into human disease is to assess the network
properties of genes underlying the disease, which might
reveal important clues about its etiology. This is based on
the assumption that there is a tight relation between
network structure and biological function. For example,
in the yeast Saccharomyces cerevisiae, proteins with a
high degree (Box 1) in a PIN are more likely to be encoded
by essential genes [31,32]. Thus, mutations that affect
hubs are expected to perturb the network, whereas those
at the periphery have less effect [33]. Following this line of
reasoning, several early studies proposed that disease
genes encode hubs in PINs [27,34–36]. However, a sys-
tematic analysis of Mendelian diseases did not clearly
support this idea [15]. The authors argued that, to assess
the node degree of disease proteins, it was important to
distinguish between essential and nonessential proteins.
In their analysis, essential proteins were more frequently
associated with hubs, whereas disease genes that were not
essential did not encode hubs. They concluded that non-
essential disease genes occupy functionally peripheral
and topologically neutral positions in the cellular network
[15].

Recently, these results have been reevaluated in the
context of the argument that the network properties of
disease genes differ for genes implicated in complex or
Mendelian diseases. For instance, one group [37] classified
genes as Mendelian (M), complex (C), or Mendelian and
complex (MC), and analyzed their properties in a PIN.
They found that C genes encode proteins with a similar
degree as proteins encoded by MC genes, and that the
degree is significantly higher than that of proteins encoded
by M genes. The degree of disease proteins was neverthe-
less smaller than the degree of proteins encoded by essen-
tial genes in the PIN. These findings indicate that proteins
encoded by genes involved in both complex and Mendelian
disorders have more interacting partners than do proteins
encoded by Mendelian disorder genes alone. Similar find-
ings were reported by another group [38], but not in a third
study [39], in which there was no difference found between
the degree of Mendelian and nondisease genes.

These discrepancies might originate from methodologi-
cal issues. The definition of hub varies with study (e.g., 20%
of the nodes in a network with the highest degree are
‘hubs’) [10] and is highly dependent on the data set. Thus,
the contradictory results might also be due to the variabil-
ity of the different interactome data sets currently avail-
able [40,41]. A recent analysis of the most popular protein
interaction databases revealed considerable differences in
the interaction partners between these databases [41].
However, the disagreements might indicate that network
properties of disease genes do not differ for genes implicat-
ed in different types of disease; some authors propose that
there is no sharp separation between complex and Mende-
lian diseases [2] and, thus, the properties of complex and
Mendelian disease genes would be similar in PINs.

In addition to the degree of connectedness, other net-
work properties can be used to assess the importance of
a given protein in the network, such as betweenness
centrality and current information flow (Box 1). Both

Table 1. Tools for network analysis and visualization

Name URL Refs

Web resources for PINs and pathways

Pathguide http://www.pathguide.org/ [88]

HIPPIE http://cbdm.mdc-berlin.de/tools/hippie/information.php [89]

BioGRID http://thebiogrid.org/ [90]

Intact http://www.ebi.ac.uk/intact/ [91]

STRING http://string-db.org/ [92]

MINT http://mint.bio.uniroma2.it/mint/Welcome.do [93]

HPRD http://www.hprd.org/ [94]

Network analysis and visualization

Visant http://visant.bu.edu/ [95]

Cytoscape http://www.cytoscape.org/ [96]

CellDesigner http://www.celldesigner.org/ [97]

Gephi http://gephi.org/ [98]

Graphviz http://www.graphviz.org/ [99]

Ondex http://www.ondex.org/ [100]

Osprey http://biodata.mshri.on.ca/osprey/servlet/Index [101]

Biotapestry http://www.biotapestry.org/ [102]

Patika http://www.cs.bilkent.edu.tr/!patikaweb/ [103]

Biolayout Express3D http://www.biolayout.org/ [104]

Arena3D http://arena3d.org/ [105]

BiologicalNetworks http://biologicalnetworks.net/ [106]
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Box 1. A brief guide to network analysis

The principal attributes of nodes in a network are described using the
PIN around integrin beta-3 (ITGB3) as an example (Figure I).

Degree

ki ¼ number of edges of node i [I]

In Figure Ia, tallin-1 (TLN1) is connected to four proteins in the network,
thus its degree is 4 (Equation I).

Distance

di j ¼ shortest path length between nodes i and j [II]

The shortest path connecting nodes i and j is the one in which the
lowest number of nodes are traversed to connect them (Equation II). In
Figure Ib, the distance between paxillin (PXN) and Calcium and integ-
rin-binding protein 1 (CIB1) is 2.

Clustering coefficient
The clustering coefficient of a node is a measure of the degree of
interconnectivity of its neighbors. It is calculated as the number of
edges between neighbors of node i (bi, depicted as pink unbroken
lines, Figure Ic) divided by the number of all possible edges (pink
unbroken and broken lines) between them, according to Equation III:

Ci ¼
2bi

kiðki $ 1Þ [III]

It ranges from zero (for a node that is part of a loosely connected group)
to one (for a node at the center of a fully connected cluster). The
clustering coefficient of TLN1 is 5/6.

Betweenness centrality
Betweenness centrality measures the global importance of a node
in communicating between pairs of nodes in the network,
considering the shortest paths. If we take protein tyrosine kinase
2 (PTK2) as an example (Figure Id), which is located in the shortest
path between nodes PXN–CIB1, and TLN1–cannabinoid receptor
type 1 (CB1), betweenness centrality is 0.0128. It is calculated by
computing the fraction of shortest paths passing through node i
(Equation IV):

Bi ¼
Xn

j¼1

Xj$1

k¼1

g jk ðiÞ
g jk

; [IV]

where gjk (i) is the number of shortest paths from j to k through i (green
lines) and gjk is the total number of shortest paths between j and k
(green and blue lines). Then it is normalized by dividing by the number
of possible edges between all the nodes in the network (not including
node i) (Equation V):

ðn $ 1Þðn $ 2Þ
2
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Figure I. The PIN around ITGB3 is used to illustrate some node attributes.
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Mendelian and complex disease proteins have significant-
ly higher betweenness centrality and current information
flow in the interactome than do nondisease proteins [39].
Notably, the network properties of GWAS genes were not
statistically different from nondisease genes, a finding
that has implications for the likelihood of these being
causal variants. These results suggest that proteins
encoded by Mendelian and complex disease genes tend
to occupy network positions that are central to the trans-
mission of information through the network. Mendelian
and complex disease proteins also have significantly lower
clustering coefficients, suggesting that the number of
connections between the neighbors of disease proteins is
unusually low. The authors of the study proposed that
proteins with these particular network properties can be
thought of as ‘broker’ proteins [39]. Broker or bottlenecks
proteins [42] are the sole connection to many other pro-
teins, serving as bridges between different cellular func-
tions. These proteins are in particularly fragile positions
in the interactome (Figure 1a). Disruption of the function

of these proteins would disturb the flow of information
between cellular processes and lead to disease pheno-
types. Functionally characterizing the different regions
of the network that disease-associated bottleneck proteins
connect could shed light on disease pathogenesis. More-
over, the proteins connecting disease-related modules
may represent interesting drug targets. Notably, most
current drugs do not target disease-associated proteins,
but proteins located in their network neighborhood [25].

Network rewiring and disease
Another possible reason why no clear consensus about the
network properties of disease proteins in PINs has
emerged may be that the networks themselves are impact-
ed by the disease state, confounding the role of particular
proteins within the PIN. Thus, it is important to consider if
the network itself is rewired in the disease state.

Network-perturbation models have been proposed to
explain the molecular alterations observed in human Men-
delian disorders [43]. In these models, changes in the
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Figure 1. Different network attributes of disease genes are illustrated in a protein interaction network (PIN). (a) Nodes can be characterized by their role in the network, as
peripheral, hubs, or bottlenecks. (b) The type of mutation of a protein (in-frame or truncating) leads to different perturbations in the PIN. Nonsense mutations, frame-shift
mutations, and splice-site mutations lead to truncated proteins or completely destabilized proteins that can no longer maintain proper interactions with their protein
partners. Such truncating mutations remove a node from the network and abolish all interactions. By contrast, subtle changes, such as single amino acid substitutions
affecting binding sites or truncations that retain certain domains of the protein, may produce partially functional proteins that affect only a subset of their interaction
partners. These in-frame mutations are referred to as edge-specific genetic, or edgetic, perturbations. (c) Different regions of a network can be identified according to the
involvement of the nodes in common biological processes [functional (F) modules] or the same disorder [disease (D) modules]. Note that there is not a perfect overlap
between functional and disease modules. In addition, different disease modules may overlap at least in part due to shared genetic determinants. (d) The interplay between
environmental factors and genetic variation can be studied with network analysis. For example, the relation between the target of a drug and the protein associated with an
adverse effect is modeled by calculating a distance measure in a PIN (edges highlighted in blue).

Review Trends in Genetics March 2013, Vol. 29, No. 3

153



connectivity of the network give rise to different network
topologies that underlie human diseases. Depending on the
impact of the mutation at the protein level (truncating or
in-frame; Figure 1b), the network of interactions in which
the protein is immersed will be affected in different man-
ners. This network-perturbation model was experimental-
ly validated for two genes involved in autosomal recessive
diseases and three genes involved in autosomal dominant
diseases [43]. The analysis also suggested a relation be-
tween edgetic perturbations, treatment response, and dis-
ease severity. In addition, the model offered a network-
based hypothesis to explain modes of inheritance. For 34
genes that are associated with both autosomal dominant
and recessive diseases, they found that the fraction of in-
frame mutations per gene was significantly higher than
truncating mutations for dominant diseases. This finding
suggests that the two types of mutation cause distinct
perturbations in the network, leading to diseases with
distinct modes of inheritance. The higher proportion of
in-frame mutations in dominant diseases is in agreement
with the current view of dominance as more likely pro-
duced by gain-of-function mutations [44]. The proposed
model predicts that distinct edgetic perturbations in a
protein might cause different disorders. Genes associated
with multiple diseases that encode proteins with several
domains were found to harbor in-frame mutations associ-
ated with different diseases distributed in distinct protein
domains. Further experiments are needed to assess if
these domain-specific, in-frame mutations lead to rewiring
in the PIN.

A recent study went one step further and analyzed the
distribution of in-frame and truncating mutations on pro-
tein interfaces using a structurally resolved interactome
and information on gene mutations in Mendelian disorders
[45]. Disease-associated in-frame mutations were found to
be significantly enriched in the interaction interfaces of the
proteins relative to the whole protein surface, but not in
noninteracting domains. This result suggests that specific
alterations of the interaction between two proteins caused
by disease-associated mutations play a role in the patho-
genesis of the disease. Moreover, the authors observed that
truncating mutations did not show this distribution and
were instead found randomly distributed throughout the
protein. Furthermore, they explored the locus heterogene-
ity of diseases by assessing the distribution of in-frame
mutations on two different proteins that cause the same
disorder. The authors found that in-frame mutations were
more likely to cause the same disorder than random ex-
pectation, and that these mutations were localized to
protein interaction interfaces.

Together, these studies point to an important role for
mutations that alter the connections in a PIN in several
Mendelian diseases. To extend these observations to other
disease-associated proteins, progress in protein structure
prediction is required to increase the coverage of the
structurally resolved PIN [45]. This will provide a means
to determine whether similar mechanisms underlie com-
plex disorders.

A novel family of methods collectively termed ‘differential
network mapping’ could also be used to study network
rewiring in disease [46]. These methods can experimentally

map networks across multiple conditions or time points and,
as such, are able to provide a detailed map of network
rewiring in response to different cues. A key point of differ-
ential network mapping is that it identifies as the most
interesting interactions those that change between the two
conditions studied. For instance, by comparing healthy
versus disease state networks, it would be possible to iden-
tify edgetic perturbations (e.g., loss or gain of edges between
proteins) resulting from disease-associated genetic and en-
vironmental perturbations. Thus, differential network map-
ping is a promising approach to investigate the network
dynamics during disease development and progression, as
well as to monitor the network changes upon therapeutic
interventions.

Modularity of human diseases
A backbone of network biology is the ‘local hypothesis’,
which states that proteins involved in the same disease
have a tendency to interact with each other, forming
‘disease modules’ [10]. It has been proposed that the study
of the modularity of human disease genes will help in
understanding disease pathogenesis, explain penetrance
and expressivity [47], provide clues for the identification of
therapeutic targets [48,49], and identify or prioritize new
disease genes [50].

Disease modules are defined as a group of network
components that contribute to a cellular function and,
when disrupted, lead to disease [51]. Functional modules
are groups of nodes in a network neighborhood with similar
function. By contrast, a topological module is a particularly
dense area of a network in which the nodes have a higher
proportion of links between the components of the module
than to components outside that module, but there is no
constraint on the function of the nodes to define the mod-
ule. It is generally assumed in the network biology litera-
ture that topological modules overlap with functional
modules and with disease modules [10]. The concept of
modularity of human diseases has been useful in the study
of inherited ataxias [52], pancreatic cancer [20], Fanconi
anemia [53], Walker–Warbur syndrome [54], and other
Mendelian diseases [55], but until recently there was still
limited evidence for its applicability to complex traits [47].

A recent study performed a large-scale analysis using
topological and functional analysis of gene–disease associ-
ation networks to assess the concept of modularity of
Mendelian, complex, and environmental diseases [17].
Modularity was measured as the proportion of disease
genes belonging to the same biological process, pathway,
or PIN, and it was found to be a function of the locus
heterogeneity of the disease. Thus, in diseases with low
locus heterogeneity (no more than five associated genes),
75% of the genes belong to the same biological pathway. By
contrast, for diseases with a higher locus heterogeneity
(more than five associated genes), the modularity was
lower (42%). Similar results were obtained with clusters
of genes grouped by their shared diseases [17]. These
results suggest that most human diseases are associated
not with a single pathway but with a set of biological
pathways. This is consistent with observations from dif-
ferent cancer types, such as pancreatic cancer [20], glio-
blastoma [56], and familial breast cancer [57], wherein the
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disorder arises from different mutations in any one of
multiple genes, but all of them encode proteins involved
in related pathways. More importantly, these findings
highlight that the overlap between disease modules and
functional modules is not perfect (Figure 1c), in part be-
cause a disease module may comprise multiple functional
modules in the cell.

The notion that disease proteins are bottleneck nodes in
PINs [39] is consistent with this module definition; the
involvement of several pathways suggest that crosstalk
between them plays an important role in disease patho-
genesis [58,59]. For instance, crosstalk between integrin
and tumor growth factor (TGF)-b pathways has been found
to be related to several human pathologies, including
systemic sclerosis, idiopathic pulmonary fibrosis, chronic
obstructive pulmonary disease, and cancer [60]. Finally,
disease modules from different disorders might also over-
lap, providing hypotheses to explain comorbidities. Modu-
larity of diseases can be exploited for the development of
more efficient therapeutic strategies [61,62] and to
improve disease classification [63].

Networks integrate genetic and environmental factors
Several lines of evidence suggest that gene–environment
interactions play significant roles in diseases such as
asthma [64], cancer, unipolar depressive disorders, ische-
mic heart disease, and cerebrovascular disease, among
many others [65]. The environmental factors that modu-
late diseases include allergens, air pollution, cigarette
smoke, and viruses, as well as therapeutic drugs that
produce adverse effects [66]. Gene–environment interac-
tions can be modeled within the framework of network
biology. To test the hypothesis that proteins targeted by
environmental factors are in the network vicinity of dis-
ease-associated proteins, network distance measures, such
as the average shortest path (Box 1) or pathway-discovery
algorithms [67–69], can be applied to networks (Figure 1d).
As an example of this approach, the analysis of the risk of
cardiac arrhythmias of five antipsychotic drugs indicated
that the average shortest path length between pairs of
drug- and disease-associated proteins was significantly
smaller than would be expected by chance [66]. This sug-
gests that proteins in the network vicinity of drug targets
are more likely to be involved in adverse effects and
provides a hypothesis to explain cardiac arrhythmias
caused by antipsychotic drugs. A similar approach looking
at associations between a group of genetic diseases and
viral infections [70] found that viral targets in the host
interactome were in the local neighborhood of disease
proteins, and a study focusing on the relation between
DNA tumor virus and cancer showed rewiring of the host
network in response to viral perturbations [71]. Together,
these studies exemplify the application of networks to both
integrate and analyze genetic and environmental contri-
butions to human diseases.

Interpretation of GWAS and whole-genome sequencing
data
GWAS have accelerated the discovery of genes associated
with complex diseases, but the translation of these findings
to an understanding of disease pathogenesis has proven

difficult due to epistasis [72], among other issues [73].
From a systems-level perspective, epistasis can be viewed
as the consequence of the functional effect of gene variants
on the entire network of interactions in which they are
immersed in the cell [74]. Thus, biological epistasis can be
explained by the interaction of proteins in the context of
biological networks and pathways [75]. Network analysis
offers a powerful set of methods to study this genetic
phenomenon at a systems-wide level. Several authors
proposed the use of PINs to analyze epistasis in relation
to human disease, the rationale being that knowledge of
biological networks can be used to narrow the search for
epistasis between loci. In addition, this kind of approach
offers the possibility of a biological interpretation of the
interaction between genes, contrasting with purely statis-
tical models [75–79]. Although these novel, network-based
methodologies are proving useful for the identification of
interactions between individual markers, they are limited
to SNPs that have a clear effect on protein function,
omitting most of the variants located in noncoding regions.
To overcome this limitation, computational methods pre-
dicting the effects of SNPs in gene regulatory regions could
be used to include all the variants found in the GWAS
studies [8].

More recently, NGS has opened up the door to sequenc-
ing the genome of an individual, raising not only several
regulatory, methodological, technological, and educational
issues, but also fundamental questions, such as which
variants are clinically actionable, which ones should be
the focus of genomic diagnoses, and what kind of informa-
tion should be reported back to the patient [80]. The
interpretation of personal genomic data is one of the great
challenges ahead in personalized medicine. Several stud-
ies have highlighted the difficulty in identifying clinically
relevant variants from whole-genome sequence data using
the information currently available in databases, such as

Box 2. Can network analysis aid in the interpretation of

personal genomes?

A recent study applied whole-genome sequencing to characterize a
rare tumor with the goal of guiding personalized therapeutic
intervention in the absence of an established treatment [107]. The
integration of copy number, expression, and mutational data with
pathway analysis suggested that tumor growth was driven by
activation of the RET oncogene. The patient was then treated with
sunitinib, a drug that inhibits RET but is not indicated for this tumor
type, leading to a stabilization of the disease for 4 months.
Recurrence of tumor growth prompted new sequencing analysis,
yielding new genetic alterations that explained drug resistance
through activation of the mitogen-activated protein kinase (MAPK)
and AKT pathways.

Whole-genome sequencing is also being used to assess disease
risk in healthy individuals. A pioneering study combining genomic,
transcriptomic, proteomic, and autoantibody profiles was per-
formed on a healthy individual to monitor dynamical changes in
molecular and medical phenotypes over a 14-month period [4].
Network and pathway analysis helped identify distinct biological
processes characteristic of two viral infections that occurred during
the length of the study, as well as of the development of type 2
diabetes mellitus. Although network analysis of PINs is not yet an
integral part of the interpretation of personal genomic data, these
studies suggest that its application would aid in the identification of
etiological modules perturbed in the diseases and could guide
strategies for therapeutic interventions.
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Online Mendelian Inheritance in Man (OMIM), or the
literature [6,80,81]. This is challenging not only for muta-
tions identified in Mendelian disorders, but also particu-
larly in studies focusing in healthy individuals where
putative harmful sequence variants are being discovered
[4,6]. Some early studies suggest that network analysis can
aid in the interpretation of genomic data (Box 2).

Concluding remarks
Network biology has emerged as an integrative and sys-
tems-level approach to aid in the interpretation of genome
data in the context of health and disease. However, some
challenges remain to realizing the full potential of network
biology for understanding human diseases (Box 4). One of
the current limitations of network biology is the coverage
and quality of interactome data. The data incompleteness
of the human PIN poses limitations to any study of net-
work properties of disease genes. In addition, the avail-
ability of condition-specific interactomes that are more

representative of the interactions of the proteins in a given
tissue or under certain conditions will improve the signifi-
cance of such analysis (Box 3).

The role that disease proteins play in the PIN remains a
matter of debate. It is interesting to note that most of the
first studies proposing disease genes as hubs were per-
formed on cancer [27,34,35]. Although many cancer types
are inherited, the cell transformation process that occurs
during cancer development results from the accumulation
of somatic mutations in different genes. Thus, it would be
interesting to evaluate the network properties of disease
genes taking into account the type of mutation (somatic or
germ-line) of disease genes. This type of experiment may
offer more definitive evidence as to the role of disease
proteins in PINs. In addition, differential network map-
ping should offer more insight into the network rewiring
that occurs during disease. This approach would also
enable monitoring changes in the role of the individual
nodes (hubs, bottlenecks, etc.) and changes in the global

Box 3. Condition-specific interactomes

Most of the studies on the involvement of protein interactions in
human disease to date have been performed using aggregate PINs.
Aggregate PINs are conglomerates of interactions obtained by
integrating different data sets. They represent the set of possible
physical interactions between the tested proteins but, due to the
experimental methods used to identify the interactions, the aggregate
interactomes lack spatiotemporal resolution [108]. Are the network
properties of disease genes measured in aggregate PINs maintained
in condition-specific interactomes? Although this has not been fully
addressed yet, some studies show differences in size and topology
between aggregate and condition-specific interactomes [41,108].
Condition-specific interactomes can be obtained by integrating
protein interaction data with gene or protein expression information
[41,108,109] (Figure I). In this kind of approach, two proteins are

assumed to interact in a given condition only if both proteins (or their
corresponding mRNA) are expressed in this condition. By using this
methodology, one group obtained 86 organ- and cell type-specific
PINs, which comprised between 1% and 25% of the interactions from
the original databases [41]. In a study of the molecular pathways
associated with the proteins targeted by HIV and hepatitis C (HCV)
viruses, meaningful results were obtained when using tissue-specific
subnetworks, but not with the aggregate PINs. This last point is
particularly important to the study of human disease, where it may be
necessary to reassess the network topology properties of proteins
encoded by disease genes in interactomes with spatiotemporal
resolution in both healthy and disease states. This will provide a
more realistic scenario and might help to resolve the discrepancies
found in previous studies [15,37–39].
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Figure I. Aggregate and condition-specific interactomes. The protein interaction network (PIN) around integrin beta-3 (ITGB3) is used as an example, as obtained from
the Human Integrated Protein–Protein Interaction Reference (HIPPIE) [89]. In the aggregate interactome, ITGB3 interacts with 13 proteins, whereas in the PINs obtained
by integration of gene expression data and protein interactions for brain, heart, kidneys, and liver, only a subset of the interactions are maintained.
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topology of the PIN, as well as how all these alterations
correlate with cell function. By fully characterizing net-
work rewiring in disease, a deeper understanding of how
sequence variation shapes cellular networks and leads to
observed phenotypic changes would be gained.

One caveat to these methods is that they are costly and
time consuming, limiting their practical utility for the
interpretation of personal genome data. Here, bioinformat-
ic methods for the prediction of the impact of sequence
variation could play an important role. Although there are
several methods and tools already available for that pur-
pose [8], they need to be improved to cope with the current
demands of GWAS and personal genome data analysis.
The prediction of the functional effect of sequence variants
and mutations is an open research area, as evidenced by
recent conferences on the topic ([82]; http://www.unbsj.ca/
sase/csas/data/aimm2012/index.html). Existing methods
focus mainly on the prediction of the functional conse-
quences of mutations at the protein level [8]. More impor-
tantly, with the exception of some first attempts [83], there
is currently no approach able to evaluate the consequences
of sequence variations at the network level. Analogous to
the differential network mapping methodologies discussed
above, there is room for the development of in silico meth-
ods to assess network rewiring as a consequence of disease-
associated sequence variation. Such methodologies could
predict, for instance, if a mutation leads to a node removal
or an edgetic perturbation, how the structure of the net-
work is modified in the presence of such perturbations, and
how functional modules are modified or reconnected due to
disease-associated mutations. The availability of such
methodology would aid in the interpretation of personal
genome data by providing mechanistic hypothesis of the
effect of sequence variation and identify potential targets
for personalized therapeutic intervention.
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