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Antimicrobial resistance (AMR) is considered one of the largest 
threats to human health1. In addition to the use of antimicro-
bial agents in humans, livestock is considered an important 

source of AMR, potentially compromising human health2. Besides 
AMR in zoonotic pathogens, AMR in commensal bacteria is worri-
some because of its ability to spread horizontally to pathogens.

Multiple studies have shown that the use of antimicrobials in 
livestock will lead to an increased occurrence of AMR and that 
the reduction of usage will eventually lead to reduced resistance3–8. 
Several national surveillance programmes have been implemented 
to monitor the occurrence of AMR in different reservoirs and fol-
low trends over time1,9–11. There are major differences in antimicro-
bial consumption patterns between different countries globally and 
also within Europe12. Major differences in the occurrence of AMR 
have also been observed among indicator organisms (for example, 
Escherichia coli) isolated from different European countries3,13. 
Current monitoring efforts are mainly based on culturing indica-
tor bacteria followed by phenotypic AMR determination13,14. This 
procedure only targets a limited number of species present in the 
gut microbiota and, therefore, probably represents only a fraction 
of its resistome (the collective pool of AMR genes). Metagenomic 
approaches have been used in several recent studies and have shown 
that metagenomic read mapping describes AMR abundance in  

bacterial communities more accurately than commonly used tech-
nologies on selected indicator organisms15–17. A recent study focused 
on sampling a diverse group of individual pigs from 11 farms in 
3 countries and showed that genetics, age, diet and geography  
all probably influence the pig microbiota, but little information is 
available for the poultry microbiota16.

As part of the European Union-funded EFFORT project (www.
effort-against-amr.eu), we sampled >​9,000 animals in 181 pig and 
178 poultry herds in 9 European countries, generating herd-level 
composite samples as previously described17. Metagenomic sequenc-
ing of these samples gives us a unique insight into the abundance, 
diversity and structure of the acquired pig and broiler resistomes in 
Europe. An association between AMR gene abundance and national 
veterinary antimicrobial usage (AMU) was also analysed. The results 
and raw data presented here can be used as a baseline for future 
metagenomic AMR monitoring. To our knowledge, this study repre-
sents the single largest metagenomic AMR monitoring effort of live-
stock: both in terms of countries (9), herds included (359), individual 
animals sampled (>​9,000) and sequencing effort (>​5,000 Gb)16.

Results
Acquired resistome characterization. The total AMR load varied 
significantly across samples, depending on both the host animal 
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and the country of origin. In general, pigs had a higher AMR level 
than poultry (Fig. 1a). The highest AMR levels were found in Italian 
pigs, where the top four resistance-scoring samples originated, all in 
excess of 10,000 fragments per kilobase reference per million bac-
terial fragments (FPKM) AMR. At the lower end of the spectrum 
were Danish poultry samples that occupied the 11 samples with the 
least AMR, all below 500 FPKM.

We summed the relative abundance of AMR to the corresponding 
drug class level for each sample to look for major trends across host 
species and countries (Fig. 1b). When considering the proportion of 
the total resistome by AMR phenotype, the pig samples were rela-
tively homogenous: tetracycline AMR was by far the most common, 
followed by macrolide AMR. β​-Lactam and aminoglycoside AMR 
genes followed by other kinds of AMR were rare. Italian pigs had a 
notably larger proportion of phenicol AMR than pigs of other coun-
tries and it seemed to be consistent across Italian farms. A subset of 
Bulgarian pig farms had a similar proportion of phenicol AMR.

Among the poultry farms, there was less consistency. Both 
within and between countries, the relative proportions of AMR per  
drug were more varied. As in pig samples, tetracycline, macrolide, 
β​-lactam and aminoglycoside AMR made up the majority, but 
the two latter classes had very minimal contributions in a subset 
of herds. Sulfonamide and trimethoprim AMR was more abun-
dant in poultry samples than in pig samples across all countries. 
In many Polish poultry herds, quinolone AMR made up a size-
able fraction of the combined resistome. This was also true for a 
few non-Polish herds, notably in Bulgaria. For non-proportional 
graphical representations of the AMR load stratified by sample and 
drug class, see the Supplementary Material for an unscaled, stacked 
bar chart (Supplementary Fig. 1) and a heatmap (Supplementary 
Fig. 2). Class-level AMR relative abundances can be found in 
Supplementary Table 1.

To characterize the individual components of the resistome, we 
summed the relative abundance to the gene level, as was done for 
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Fig. 1 | Overview of AMR abundance and composition. From read mapping to the ResFinder database, AMR abundance was calculated for each reference 
gene in each sample. a, Box plots showing the total AMR level per sample, stratified by host species and country. Each herd is also represented by a dot 
with sideways jitter to minimize overplotting. The horizontal box lines represent the first quartile, the median and the third quartile. Whiskers denote 
the range of points within the first quartile −​ 1.5×​ the interquartile range and the third quartile +​ 1.5×​ the interquartile range. n =​ 359 metagenomes from 
independent herds. Twenty metagenomes per livestock species per country were used, with the exception of Bulgarian pigs (21), Bulgarian poultry (19) 
and German poultry (19). b, Stacked bar chart of AMR abundance per type (colours) per sample (x axis), proportional to the total AMR within each 
sample. Note that the two-letter country code is used in all figures: BE, Belgium; BG, Bulgaria; DE, Germany; DK, Denmark; ES, Spain; FR, France; IT, Italy; 
NL, the Netherlands; PL, Poland.
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the phenotypic level. We found evidence for 407 different genes 
across all pig and poultry samples (Supplementary Table 2).

We calculated the dissimilarities between the gene-level 
resistomes of all samples and visualized it in a dendrogram (Fig. 2).  
There was a perfect host separation, with all pig samples cluster-
ing separately from all poultry, suggesting that pig and poultry 
resistomes are very distinct. In the pig cluster, the country separa-
tion was more pronounced than in the poultry cluster. An exception 
was Danish poultry, where 18 out of 20 farm resistomes clustered.

To assess the reproducibility of our protocol, from sampling 
through to sequencing, we evaluated the similarities between the 
resistomes of two triple-sampled swine herds. The Dutch triple-
sampled herd had the highest similarities between composite 
samples, ranging from 93.6% to 93.7% Bray–Curtis similarity. The 
Belgian triple-sampled herd pools had values ranging from 91.5% 
to 93.3% similarity. No replicated sample pool had a higher simi-
larity to other herds than to its own replicates, and the two sets of 
three samples can therefore be seen clustering separately, indicating 
reproducibility in both sampling and sequencing (Fig. 2). A farm 
resistome similarity heatmap is included in the Supplementary 
Material (Supplementary Fig. 3).

We ordinated the gene-level resistomes for all samples 
(Supplementary Fig. 4) and pig and poultry samples separately 
(Supplementary Fig. 5a,b). As with hierarchical clustering, there 
was a clear separation of pig and poultry samples, along the first 
principal coordinate, which explained 48% of the variation across 
all resistomes.

When analysing the two species separately, we observed clustering  
according to the country of origin in pigs (Supplementary Fig. 5a), 
whereas clustering was more diffuse for poultry (Supplementary 

Fig. 5b). We tested for the country effect and found it to be sig-
nificant in both pigs (adonis2, P <​ 0.001) and poultry (adonis2, 
P <​ 0.001). However, in poultry, the country effect only explained 
24% of the variation, whereas the country effect explained 41% of 
the variation in pigs. In the pig resistome ordination, the Danish 
and Dutch samples clustered closely together. The same could be 
seen for the French and Belgian resistomes and to a lesser degree, 
the Italian and Spanish samples. Bulgaria, Germany and Poland 
showed larger dispersions than the other countries. Beta-dispersion 
levels varied significantly between countries in both pigs (beta-dis-
persion P < 0.001; Supplementary Fig. 5c) and poultry (beta-disper-
sion P < 0.001; Supplementary Fig. 5d).

We visualized the AMR gene abundances in a heatmap to look 
at the overall structure and composition of the resistomes and the 
co-occurrence of AMR genes (Supplementary Fig. 6). Some AMR 
genes were more abundant in one species, whereas others, including 
tet(W) and erm(B), were ubiquitous in all samples for both species. 
Among the pig samples, the Italian samples stood out: several chlor-
amphenicol AMR genes, including cat(pC194), catP and cat_2, were 
much more abundant in ltaly than in the other countries, consistent 
with our inspection of AMR at the class level (Fig. 1). Several AMR 
genes known to be co-located indeed co-occurred across samples. 
The genes in the vancomycin AMR VanA cassette were co-located 
in several poultry samples. This was also true for the VanB cassette 
members, clustering together but separately from VanA, showing 
an ability to distinguish variants of homologous genes. As indicated 
earlier, the poultry samples showed less country-based clustering 
than pigs. An exception was the Danish poultry samples; these had 
a noticeably lower abundance of many AMR genes that were wide-
spread in other countries.
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Fig. 2 | Resistome clustering is influenced by both host animal and country. A dendrogram showing the complete linkage clustering of Bray–Curtis 
dissimilarities between all pig and poultry resistomes. Triple-sampled pig herds are highlighted in separate colours. n =​ 363 metagenomes from 359 
independent herds.
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Core resistome. To determine whether specific genes were 
unique to each of the host animals, we examined the set of AMR 
genes that was consistently observed within each animal species 
(evidence for it in 95% of samples). We identified 33 core AMR 
genes in pigs and 49 core AMR genes in poultry, with 24 being 
shared between the two hosts (Supplementary Fig. 7). Hence, only 
nine AMR genes were pig-core genes without also being poultry-
core genes. These included the genes making up the Van-G van-
comycin cassette, tet(C), blaACI and cfxA. Twenty-five AMR genes 
were poultry-core genes without also being pig-core genes and 
include the Enterobacteriaceae-associated strAB, sul2, blaTEM 
and tet(A) genes.

Differential abundance analysis. To test which specific genes 
differed in abundance between countries, we carried out a differ-
ential abundance analysis for ResFinder gene cluster read counts. 
Heavy overrepresentation of low unadjusted P values indicated 
a large effect of country in both the pig and the poultry data sets 
(Supplementary Fig. 8). Of special interest was the newly charac-
terized Enterococcus-associated linezolid-resistance gene optrA, 
which had a significantly higher abundance in Bulgarian poultry 
farms than in poultry farms in all other countries (false discovery 
rate (FDR) <​ 0.05) (Fig. 3). However, a single Spanish farm did have 
an even higher optrA abundance than any other farm. Among the 
pig herds, the optrA gene was more abundant in Bulgarian and 
Italian herds than anywhere else (except for two farms in Spain) 
(FDR <​ 0.05).

The newly identified colistin-resistance gene mcr-1 was signifi-
cantly more abundant in Bulgarian and Italian poultry farms than 
in most other countries (FDR <​ 0.05). France, Poland and Spain 
had intermediate levels, whereas Denmark, the Netherlands and 
Germany had the lowest levels (Fig. 3). The Bulgarian poultry farms 
enrolled in this study did not report any polymyxin usage, whereas 
Italian farmers reported the highest average treatment incidents.

As previously noted from visual inspection of heatmaps, mul-
tiple chloramphenicol AMR genes including cat(pC194) were much 
more abundant in Italian pigs than in other pigs. The extended-
spectrum β​-lactamase blaCTX-M gene cluster 1 also showed country 
dependency, being significantly more abundant in poultry samples 
from Spain, Poland, Italy, France and Belgium than in poultry sam-
ples from Germany (FDR <​ 0.05). Differential abundance analysis 
results can be found in Supplementary Tables 3 and 4 for pig and 
poultry, respectively.

Alpha diversity and richness. We calculated several alpha-diversity 
indexes for each farm resistome (Fig. 4 and Supplementary Table 5). 
The range of AMR diversity was generally much larger for poultry 
samples, having both lower and higher diversity, than for pig sam-
ples, which had a tighter spread of diversity. The poultry samples 
had a higher estimated number of different AMR genes (that is, a 
higher Chao1-estimated richness).

Interestingly, countries with higher estimates of unique AMR 
genes in pigs also tended to have a high AMR richness in poul-
try (Spearman’s rho: 0.88, P =​ 0.02; Supplementary Fig. 9). Spain, 
Italy, Bulgaria and Poland had the highest estimated number of 
unique AMR genes in both pig and poultry. There was no such 
association for Pielou’s evenness or Simpson diversity (P >​ 0.05). 
Rarefaction curves for pig and poultry resistomes can be found in 
Supplementary Fig. 10.

Association between the bacteriome and the resistome. To test the 
degree to which the bacterial composition of the microbiota dictates 
the resistomes, Procrustes analyses were performed. We found that 
for both pig and poultry, the resistome correlated significantly with 
the bacterial composition (P =​ 0.001; Fig. 5). Thus, samples with 
similar taxonomic compositions tended to have similar resistome 

compositions. In addition, most of the between-country differences 
in resistomes seem to be explained by systematic between-country 
differences in bacteriomes.

The correlation between AMR and taxonomy was similar in pigs 
(correlation: 0.86) and poultry (correlation: 0.88). Interestingly, in 
the pig samples, we saw a country effect on the strength of associa-
tion between the bacteriome and the resistome. In the Dutch and 
Spanish pig herds, ordinations based on bacterial genera and AMR 
genes gave similar results (Fig. 5b). In German farms, in particular, 
the resistome and bacteriome ordinations yielded more dissimilar 
results. This was less evident for poultry, although a single Danish 
poultry herd had a very unusual resistome, considering its taxo-
nomic composition (Fig. 5d).

AMR and drug use association. We found that the total country-
level veterinary AMU from the European Medicines Agency’s 
European Surveillance of Veterinary Antimicrobial Consumption 
(ESVAC) was positively associated with AMR in both pigs and poul-
try. The AMR abundance increased by 1,736–3,507 FPKM (95% CI, 
β​ =​ 2,621) in pigs when the AMU increased by 1 loge unit (a 36.8% 
increase in AMU) (Fig. 6a) and to a lesser degree in poultry, where 
the AMR abundance increased by 68–1,330 FPKM (95% CI, β​ =​ 700) 
when the AMU increased by 1 loge unit (Fig. 6b). For pigs, the vari-
ance between farms within-country was seven-times larger than the 
variance between countries in general, whereas in poultry, the vari-
ance was four-times larger within-country than between countries.

We repeated the regression with the treatment incidents data for 
the farms (Supplementary Fig. 11). Interestingly, these data were 
less associated with the AMR load than the national veterinary 
drug use data. The association remained for pigs, whereas poultry 
was not significant (P >​ 0.05). Bulgaria had low reported usage in 
both livestock species, whereas AMR was high. The Danish farms 
reported a higher average AMU in poultry than Bulgaria and the 
Netherlands, but the total AMR was far lower.

To test whether the AMU pattern across multiple antimicrobial 
classes was associated with AMR gene profiles, we compared the 
AMR gene cluster abundances for pig and poultry against both 
the ESVAC and the farm treatment incidents data (Supplementary 
Tables 6–8 and Supplementary Fig. 12). Using Procrustes analy-
ses, all matrix–matrix correlations were significant (P =​ 0.001), 
although with low symmetric correlation coefficients (correlation: 
0.34–0.45). As for the regression analysis, there was a better fit 
between pig AMR and the ESVAC data than between pig AMR and 
the farm treatment incidents data.

Functional AMR genes. In addition to using ResFinder, we also 
ran most analyses with the functional resistance database (FRD) to 
elucidate whether the functionally determined AMR genes behave 
similarly to the acquired AMR genes in ResFinder. If the FRD genes 
serve similar AMR functionality as the acquired ResFinder genes, 
we would expect similar results.

Using the FRD, we found both similar and different patterns 
than using ResFinder. There was still a perfect separation between 
pig and poultry samples, but the country separation in pigs was 
less distinct than when using ResFinder (Supplementary Fig. 13). 
Although less variation could be explained by two axes, the prin-
cipal coordinates analysis (PCoA) plot of pig samples now clus-
tered German and Spanish samples, with the remaining countries 
being more similar. The resistome richness showed similar pat-
terns to ResFinder: Spanish, Italian, Polish and Bulgarian samples 
had a higher estimated richness in both pig and poultry than the 
other countries. The Procrustes correlation between the resistome 
and drug usage was lower (0.40 for pig and 0.25 for poultry). 
This result was echoed by the lack of association between the 
total AMR and the total AMU, for both pig and poultry (P >​ 0.05; 
Supplementary Fig. 14).
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Discussion
Using a metagenomic shotgun sequencing strategy, we were able to 
detect and quantify >​400 AMR genes across 181 pig and 178 poul-
try herds in 9 European countries.

A recent study including Chinese, Danish and French pigs 
showed that the Chinese pig resistomes clustered separately, 
whereas the Danish and French pig resistomes overlapped16. Here, 
we demonstrate that even among European countries, the live-
stock resistomes differ in a country-specific manner that might be 
explained by differential AMU so that countries with similarly high 
and diverse AMU (Spain and Italy) have similar resistomes, the 
same way as countries with similarly low AMU (Denmark and the 
Netherlands) also have similar pig resistomes.

We found that within-country resistome dispersion is coun-
try dependent, particularly in pigs, with Bulgarian, German and 

Polish pig herds having more dispersed AMR. Although we cannot  
currently explain this, we consider the possible causes as differences 
in trade and management, among others.

We found the recently discovered plasmid-borne colistin resis-
tance gene mcr-1 in numerous poultry herds, especially in Bulgaria, 
Spain and Italy. Spain and Italy had the highest reported veterinary 
colistin usage among the surveyed countries, whereas Bulgaria has 
a low reported usage, which is uncharacteristic for the high mcr-1 
level found here13. This gene was recently discovered in China and 
identified throughout the world and has been identified in pigs, 
poultry and human clinical infections alike18.

A newly characterized enterococcal linezolid-resistance gene, 
optrA, was detected in a subset of pig samples, with Bulgaria, Italy 
and Spain having the highest abundances. The optrA gene pro-
vides AMR to both oxazolidinone and amphenicols, including the 
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veterinary-used florfenicol13,19. The high abundance of this gene in 
these countries can probably be explained by the fact that they have 
the highest veterinary amphenicol usage among the nine countries 
investigated. This explanation fits well with the fact that Bulgaria, 
Italy and Spain also had the highest abundances of chloramphenicol 
AMR genes, such as cat(pC194), in poultry.

Another AMR gene of special interest, the blaCTX-M, was also 
observed in the poultry herds. The higher abundance of blaCTX-M  
cluster 1 in Spain, Italy, Poland and Belgium could possibly be 
explained by co-selection by fluoroquinolones, which is used more 
in Spain, Poland, Italy and Belgium than in other sampled countries. 
qnr and blaCTX-M genes are frequently co-located on large extended-
spectrum β​-lactamase plasmids. Veterinary cephalosporin usage 
did not seem to explain the observed levels.

Poland and Spain use far more veterinary fluoroquinolones 
than other countries included in this study. We found that plasmid-
mediated quinolone AMR (qnr genes) was frequently abundant  
in Polish, but not in Spanish, poultry. In Bulgaria, quinolone AMR 
was also frequently observed, although their reported AMU did not 
follow the same trend.

Interestingly, we observed that the number of unique AMR genes 
predicted (Chao1) significantly correlated between pig and poultry 
farms across countries. In addition, countries with a high estimated 

number of unique AMR genes also have a high AMR abundance 
(Italy, Spain, Bulgaria and Poland). The fact that countries’ AMR 
abundance and the predicted number of unique AMR genes in 
pig and poultry tend to follow each other, could be explained with 
policy: if a country has strict AMU regulations in one livestock  
species, the chances are that similar regulations are in place for other 
livestock species. Indeed, the treatment incidents data showed that 
countries with higher AMU in pigs, had higher AMU in poultry. 
It might also be speculated that an ecological country effect plays 
a role; for example, the total country AMU might influence AMR 
abundance in all reservoirs. This, might explain why the ESVAC 
data correlate better with the observed AMR than the treatment 
incidents data. Better AMU data, at the herd and country level and 
over time, are needed to further explore the specific AMU–AMR 
associations. It has previously been reported that the composition 
of the bacterial community structures the resistome20,21. We found 
the same to be true for pig and poultry resistomes; in addition, we 
showed that the taxa–AMR association strength differs between 
countries. Horizontal gene transfer could explain this phenomenon, 
if a larger proportion of certain countries’ resistome is mobile and 
AMR genes are more frequently introduced and re-introduced to 
genera. Conversely, vertical AMR transmission can also play a role, 
if, for example, one country’s livestock is more isolated from trade. 
As we found that a large part of the observed resistome is dictated 
by the taxonomic composition, we expect much of the country 
resistome differences to be explained by systematic differences in 
feed and management.

In contrast to ResFinder, when using FRD, we found no rela-
tionship between the ESVAC total drug use and the total func-
tional AMR abundance. This suggests that, although many genes 
can provide AMR when cloned into, for example, E. coli, in func-
tional metagenomic assays, they might not provide AMR function-
ality in their natural hosts with natural expression levels. If most 
of them did, we could expect to see antimicrobial-based selection 
and an association to AMU, as it is observed for the AMR genes in 
ResFinder. This finding echoes previous sentiments that one should 
carefully consider the risk to human health imposed by functionally 
determined AMR genes22. Some FRD genes might represent high-
risk AMR genes, but we currently do not know what subset that 
is. Creating the FRD is a first step in trying to catalogue the many 
AMR genes found in functional metagenomic studies. Screening 
sequenced pathogenic isolates and metagenomic assemblies for 
FRD genes would be a good start for assessing their host range and 
risk potential.

The AMU data used in this study are not optimal. There is varia-
tion in drug use within each country’s farms that we did not account 
for by using the available country-wide averages per drug class. 
Moreover, the population correction unit (PCU) denominator used 
by the ESVAC may vary greatly between countries, and no inde-
pendent validation of the data reported by the national competent 
authorities have been performed. Furthermore, the integrated herds 
enrolled in this study might represent only a limited subset of the 
overall livestock production in some countries. However, even with 
the crude ESVAC-based total veterinary AMU, we found significant 
associations with the total AMR abundance. The similar conclusion 
when considering the specific drug usage profile of each country 
indicates that the resistome is responding to AMU. The AMR–
AMU association is well documented for specific cultured indicator 
species and certain antimicrobial drugs, but is relatively unknown 
when considering the whole microbiota and resistome and the 
newer approach of metagenomic shotgun sequencing3,8. We do not 
know why the pig samples had a larger within-country spread of 
total AMR, but perhaps the more heterogeneous production system 
and production management are responsible. Curiously, the treat-
ment incidents data, which are specific to the sampled farms, was 
less associated with the resistomes and total AMR than the ESVAC 
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data. Instead of reporting that AMU does not affect AMR after all, 
we think that it is worthwhile considering whether there are some 
AMU reporting biases between countries.

DNA extractions from the pooled poultry samples resulted in 
relatively low DNA yields. The protocol used was optimized for pig 
faeces, human faeces and sewage, but not for poultry faeces23. The 
lower yields necessitated the use of a PCR-based library preparation 
kit that can influence downstream analysis of shotgun sequencing24. 
Although the large difference between pig and poultry resistomes 
in our study is probably real, we caution the use of sensitive, quan-
titative analyses when comparing between samples prepared using 
different library preparation kits. For this reason, we have mostly 
tested within each reservoir.

The sensitivity of metagenomic approaches does not yet rival 
phenotypic alternatives such as selective enrichment. There are 
AMR genes in important pathogens that we know are probably 
present but are below our detection limit. For example, we only 
found evidence for blaCTX-M in three of the pig herds, whereas in 
phenotypic studies, the prevalence is high even among farms with 
no cephalosporin usage25.

The primary concern with read-mapping techniques is the 
lack of genomic context, which can be solved using metagenomic 
assembly and binning approaches16,26,27. In this way, AMR alleles 

in full length, their genomic context and their associated taxa have 
been identified in both pig, poultry and human faecal samples28. 
As shown previously, the association between AMR and AMU is 
similar for metagenomics and traditional phenotypic methods, but 
several aspects make metagenomics an intriguing monitoring tool17. 
The fact that both types of analyses (quantitative, sensitive read 
mapping and qualitative, context-giving binning) use the same raw 
data makes metagenomics an attractive tool. In addition, the digital 
nature of sequence data would also allow future re-use and form the 
basis of an invaluable historical archive, potentially usable for both 
AMR and pathogen-tracking worldwide.

We found that the metagenomic resistome varied significantly 
between the pig and poultry reservoirs, but also within each spe-
cies, in a country-dependent manner. Within each country, we 
found different levels of variation, with some countries having more 
homogenous herds than others. Differences were seen both in the 
total AMR abundance, but also the abundances of AMR types and 
specific genes, including clinically relevant AMR genes. Some of this 
variation we attributed to differential drug usage between the coun-
tries. We also identified the microbiome background as an impor-
tant factor in determining the resistome in livestock, but found that 
the strength of the association was country dependent, at least in 
pigs. Interestingly, we found that the AMR richness in one livestock 
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species in a country is linked to the abundance in another livestock 
species. Finally, we observed some indications that newly described 
AMR genes from functionally metagenomic studies might not  
provide AMR functionality when expressed in their natural host, 
even though they have the potential at the right expression levels in 
the right organism.

Methods
Farm selection and sampling. The sampling protocol for pig and broiler farms that 
has been agreed on by the EFFORT consortium is described below. The selection of 
farms and the sampling procedure followed these guidelines to the extent possible, 
but some deviations from the protocol were occasionally necessary. The selection 
and sampling goals are described below, whereas a detailed description of the 
sampling conducted in the individual countries and exceptions is provided in the 
Supplementary Material.

Selection of pig and poultry farms. In each participating country, 20 conventional 
integrated pig farrow‐to‐finisher non-mixed farms were selected. The farms 
needed to have a minimum of 150 sows and 600 fatteners and use batch production 
to ensure that most of the animals of the sampled group originated from the same 
birth cohort. All‐in all‐out production at compartment level was preferred, and all 
fatteners sampled were required to have been on the same site during their entire 
life. Selected farms should have no contact through livestock trade and should have 
a random regional distribution.

In each country, 20 conventional broiler farms (no breeders) were selected. 
The farms had all-in all-out production, with a thinning procedure from day 30 
onwards allowed. All selected farms should have no intended slaughter age higher 
than 50 days, no slow-growing breeds (intended growth rate of less than 55 g 
per day) and no stocking density lower than 10 birds per m². Only one flock per 
house per holding should be sampled and each flock should be between 20,000 
and 40,000 birds. If possible, the selected farms should have a random regional 
distribution.

Procedure for sampling. We sampled pig farms between May 2014 and December 
2015 and tried to minimize seasonal influences. The sampled fatteners were 
as close to slaughter as possible (that is, within the last week). A total of 25 
fresh, still-warm and undisturbed faecal droppings were sampled from pen 

floors (a minimum of 10 g faeces per sample) randomly divided over all eligible 
compartments or stables of fatteners close to slaughter.

Broilers were sampled between May 2014 and June 2016 and we tried to 
minimize seasonal influences. On each farm, 25 undisturbed, fresh main bowel 
droppings were collected from the floor of the house (a minimum of 3 g faeces per 
sample). The flocks were sampled as close to slaughter as possible (the last week 
before the final depopulation).

All samples were collected aseptically in plastic containers and were stored at 
4 °C and transported to the laboratory within 24 hours after sampling.

Pooling and handling of samples. Upon laboratory arrival, individual faecal 
samples were homogenized by stirring thoroughly with a sterile tongue depressor 
or spoon for a few minutes. From each pig sample, two 2-ml cryotubes were filled 
and frozen immediately at −​80 °C (alternatively at −​20 °C for a maximum of 4 days, 
before transferring to −​80 °C). For broiler samples, two cryotubes were prepared 
with at least 0.5 g faeces each. Sample pooling was either done immediately or the 
frozen tubes were shipped to the Technical University of Denmark (DTU) on dry 
ice for pooling. Individual samples from the same herd were defrosted and placed 
on ice briefly before weighing. Following weighing, they were pooled with 0.5 g 
faeces from each sample and stirred for a few minutes with a sterile device (for 
example, a disposable wooden tongue depressor). All samples were only thawed 
once shortly before DNA extraction.

After the removal of two mislabelled samples, composite samples from a total 
of 178 broiler flocks and 181 pig herds remained.

Sampling to estimate the effect of random sampling. To study the potential 
effect of sampling randomness and the reproducibility of our sampling protocol, 
a Belgian and a Dutch pig herd were chosen for triplicate sampling. These two 
herds were sampled three times on the same day (25 samples ×​ 3 sampling rounds), 
resulting in 6 pooled samples (2 herds ×​ 3 sampling rounds), from which the 
within-farm resistome variation was assessed. A table with all the samples and the 
associated data is included as Supplementary Table 9.

DNA extraction and sequencing. From each of the pooled, herd-level faecal 
samples, DNA was extracted using a modified QIAamp Fast DNA Stool Mini Kit 
protocol (51604, Qiagen), as previously described23. One major modification is the 
addition of a bead-beating step at the beginning of DNA extraction. The protocol 
can be found at figshare.com/articles/SOP_-_DNA_Isolation_QIAamp_Fast_
DNA_Stool_Modified/3475406. DNA purification of all the pooled samples was 
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processed centrally at the DTU, and the DNA was stored in duplicates at −​20 °C 
until further use.

DNA was shipped on dry ice for library preparation and sequencing at the 
Oklahoma Medical Research Foundation (OMRF; Oklahoma City, OK, USA). At 
the OMRF, DNA from all samples was mechanically sheared using ultrasonication 
to a targeted fragment size of 300 bp (Covaris E220evolution). For pooled pig 
samples, library preparation was performed with the NEXTflex PCR-Free library 
preparation kit (Bioo Scientific). For poultry samples, owing to a lower DNA 
availability, the minimal amplification-based KAPA Hyper kit (Kapa Biosystems) 
was used. For all samples, the Bioo NEXTflex-96 adapter set (Bioo Scientific) 
was used. In batches of roughly 60 samples, the libraries were multiplexed and 
sequenced on the HiSeq3000 platform (Illumina), using 2 ×​ 150-bp  
paired-end sequencing per flow cell. A total of 17 Belgian, Danish and Dutch 
pig faecal samples were sequenced on the HiSeq2500 platform (Illumina), using 
2 ×​ 100-bp paired-end sequencing before it became unavailable at the OMRF  
(see Supplementary Table 9).

In total, DNA from 365 pooled samples was extracted and shotgun sequenced, 
resulting in >​36 billion sequences (18 billion paired-end reads), comprising >​
5,000 Gb of DNA. The sequencing yielded an average of 50 million (s.d.: 18 ×​ 106) 
paired-end reads per pooled sample. This was similar for pig and poultry samples, 
although the sampling depth was more varied in pig samples.

Bioinformatics processing. The DNA sequences (FASTQ reads) from each sample 
were analysed following the principles from the previously described MGmapper 
tool15. To avoid PCR copies in the poultry data, identical read pairs were removed 
using ‘MarkDuplicates’ from the Picard software (v2.8.3; broadinstitute.github.
io/picard). Adaptor sequences were removed using BBduk (BBMap software)29. 
Sequences from phiX174, which is an internal sequencing control, were removed 
using the BWA-MEM algorithm30. Trimmed read pairs were aligned using the 
BWA-MEM algorithm (Burrows-Wheeler aligner) to the prokaryotic RefSeq 
genomes from the NCBI GenBank with ‘reference’ and ‘representative’ tags 
(downloaded on 18 November 2016). The BWA-MEM algorithm (v0.7.15) 
normally estimates the insert size individually per computer CPU core. We used 
a per-sample estimate to increase the robustness of the estimated insert sizes and, 
therefore, the acceptable mapping distances for read pairs.

The read pairs were aligned to the prokaryotic genomes again and to the AMR 
genes present in the ResFinder database (accessed 17 November 2016) using the 
robust insert size estimates31. ResFinder is a manually curated database of acquired 
AMR genes and, therefore, does not include intrinsic AMR genes and mutated 
housekeeping genes.

Properly paired read pairs, with at least a 50-bp alignment in each read were 
accepted. ResFinder mapping counts were adjusted for differences in both gene 
lengths and bacterial sequence abundances by computing FPKM values for each 
ResFinder reference sequence32. Raw mapping count data and their associated 
FPKM values can be found in Supplementary Tables 2 and 10.

Genes with many alleles in ResFinder result in unspecific mapping and 
randomly assigned read pairs. To avoid sensitivity loss and wrong assignments, 
we kept ambiguous hits, but aggregated their abundances to higher levels, 
corresponding to 90% gene identity clusters. To determine these clusters, we used 
CD-HIT-EST (v4.6.6) at a 90% identity level and otherwise default settings33.  
The resulting gene clusters were manually inspected and named to reflect their 
gene members (Supplementary Table 11). In addition to this ‘gene cluster’ level,  
we summed the FPKMs to resistance phenotype levels, as annotated in the 
ResFinder database.

FRD. Previous studies have identified a wide array of AMR genes in various 
reservoirs using functional metagenomics, referred to as functional AMR  
genes20,34–36. By cloning random DNA fragments from complex microbiomes into 
an expression vector expressed in a host (typically E. coli) and selecting for growth 
in the presence of certain antibiotics, they have been found to provide AMR to 
many antibiotics20,34–36. We constructed a FRD from 3,416 AMR gene variants 
identified in four major studies using 23 different antimicrobials for selection20,34–36.

Briefly, in each of these studies, DNA was extracted from environmental and 
human faecal samples, fragmented and cloned into a plasmid vector and screened 
for AMR functionality in E. coli cultured with one of several antimicrobials. 
Cloned fragments in plasmids that were found to confer AMR were sequenced 
and the AMR genes were identified. The protocol for the database construction 
can be found at cge.cbs.dtu.dk/services/ResFinderFG. Genes were quantified using 
MGmapper, as was done for ResFinder. Genes with >​90% identity to ResFinder 
genes were removed post-mapping to obtain the set of FRD genes that was absent 
from ResFinder. The reference gene abundances were summed to 90% gene 
clusters, using CD-HIT-EST, as was done for ResFinder33. The most frequent 
gene clusters remaining were derived from genes selected using trimethoprim, 
chloramphenicol, co-trimoxazole, cycloserine, amoxicillin, gentamicin, penicillin 
and tetracycline.

PCoA and resistome clustering. For PCoA, the gene cluster-level FPKM 
matrix was Hellinger transformed and the Bray–Curtis dissimilarities between 
all samples were calculated using the R package vegan37. PCoA was carried out 

for both pigs and poultry, combined and separately, using the vegan function 
‘betadisper’. The same analysis was used to test whether host animal and country 
were significant predictors of within-group dispersion. The effects of country on 
sample dissimilarities were determined using ‘permutational multivariate analysis 
of variance using distance matrices’ (the ‘adonis2’ function in the vegan package), 
separately for pig and poultry.

AMU in livestock. Data for the national livestock AMU were obtained from 
the ESVAC report and were stratified by major drug family12. The mass of 
active compound sold for use in animals in 2014 was divided by the PCU in 
106 kg, approximating the biomass. The PCU is a unit that allows inter-species 
integration by adjusting for import/export and differences in the average weight 
between species when they are most likely to receive antimicrobial treatment. The 
estimate was multiplied by 1,000 to obtain drug per mg per PCU livestock. The 
country-specific veterinary drug use can be found in Supplementary Table 6 and 
Supplementary Fig. 15.

In addition to the national veterinary AMU, we obtained data from 
collaborating researchers on the average treatment incidents in the sampled farms, 
stratified by antimicrobial class, country and livestock species. The treatment 
incidence was calculated as the antimicrobial dose per defined daily animal doses 
(DDDvet) per 1,000 animals at risk, adjusting for 200-day and 40-day production 
cycles for pigs and poultry, respectively38. These average AMU values for pigs  
(S. Sarrazin et al., manuscript in preparation) and poultry (P. Joosten et al.,  
manuscript in preparation), stratified by drug group, are presented in Supplementary 
Tables 7 and 8, respectively. Data are visualized in Supplementary Figs. 16 and 17.

Procrustes analyses. To determine the effect of the underlying microbiota on 
the resistome, we used Procrustes analysis. The gene cluster FPKM ResFinder 
matrix and the genus-level FPKM taxonomy matrix were Hellinger transformed 
and Bray–Curtis dissimilarities were calculated. Each dissimilarity matrix was 
ordinated using PCoA. The symmetric Procrustes correlation coefficients between 
the bacteriome and the resistome ordinations, P values and plots were obtained 
using the ‘protest’ function in vegan39.

To test the association between AMU patterns and the resistomes, we also  
used Procrustes analysis as follows. A PCoA was generated from Euclidean 
distances between the samples in the AMU data. The AMU PCoA configuration 
was tested against the AMR gene cluster PCoA configuration using the ‘protest’ 
function with the default 999 permutations. This was done separately for pig and 
poultry samples.

Alpha diversity. For all samples, we computed the within-herd resistome diversity 
using the Simpson’s Index of Diversity (1-D), the Chao1 richness estimate and 
Pielou’s evenness40. The gene cluster count matrix was rarified to 10,000 hits per 
sample for alpha diversity estimation, leading to the exclusion of samples with 
fewer hits to the AMR database.

Visualization. Heatmaps were produced using the pheatmap R package. For 
heatmaps showing individual-gene abundances, the Bray–Curtis dissimilarities 
between samples were used for hierarchical clustering. For all other dendrograms, 
the Pearson product-moment correlation coefficients were used. Complete-linkage 
clustering was used for all hierarchical sample clustering. For sample similarities, 
Bray–Curtis dissimilarity was converted to a similarity percentage, that is, 
100 ×​ (1 −​ Bray–Curtis).

The circular Bray–Curtis resistome dendrogram was constructed by exporting 
the dendrogram in Newick format using the ape package and further annotating it 
using the Interactive Tree of Life tool41,42. Bar plots, box plots and scatter plots were 
produced using the ggplot2 R library43. The R library RcolorBrewer was used to 
generate the colour palettes used for the figures. This library is based on work  
by C. A. Brewer (www.ColorBrewer.org).

Statistical analyses. All statistics were done in Microsoft R Open 3.3.2, using the 
libraries and the procedures detailed below. The exact package versions can be 
found here: mran.revolutionanalytics.com/snapshot/2016-11-01/bin/windows/
contrib/3.3. For statistical tests, only samples from the first visit to the triple-
sampled herds were included (see Supplementary Table 9), meaning npig =​ 181 and 
npoultry =​ 178. Unless otherwise mentioned, all statistical analyses were performed  
on pigs and poultry separately.

Association between AMU and AMR. To test the effect of the total AMU on the 
total metagenomic AMR abundance (the sum of all genes), we used the lme4 1.1-
12 package to make linear mixed-effects regression models, with the total livestock 
drug usage (the sum of the ESVAC PCUs) as the independent variable, the total 
AMR abundance (the sum of FPKM) as the dependent variable and country as a 
mixed-effect intercept44. The total AMU was log transformed, which resulted in 
lower Akaike’s information criteria. Pig sample residuals and country residuals 
showed normality and so did the poultry country residuals. Poultry sample 
residuals had a longer right tail, but square-root transformation of the poultry 
AMR data gave more-normal residuals and a similar conclusion (P <​ 0.05). The 
effect and significance of drug usage were assessed using likelihood-ratio tests, 
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comparing the random-effect models with and without the AMU effect. The 
ResFinder-treatment incidents and FRD-PCU tests were done in the same way as 
the ResFinder-PCU tests.

Differential abundance analysis. To identify AMR genes that differ in abundance 
between countries, we analysed the gene cluster count matrix using the DESeq2 
package as previously recommended for metagenomic read count data45,46. This 
was done on the full count matrix, based on recommendations that rarefying is 
not warranted in metagenomic studies46. The read-pair count matrices for pigs 
and poultry were analysed separately. The number of mapped bacterial pairs was 
divided by the minimum number of mapped bacterial pairs and was used as the 
size factor. For each gene, we used a two-sided Wald test to determine whether the 
fold change between countries differed from zero and extracted all the country-
versus-country results. P values were adjusted for the FDR using the Benjamini–
Hochberg approach and we used a significance threshold of alpha: 0.05 (ref. 47).

Core resistome. To determine the set of AMR genes consistently found within 
each livestock species, we used a soft threshold. AMR gene clusters with mapping 
read pairs in at least 95% of samples from a livestock species were considered part 
of the core resistome.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Drug use data are attached as Supplementary Tables. The DNA 
sequences (reads) from the 363 metagenomic samples from the 359 herds are 
deposited in the European Nucleotide Archive under the project accession number 
PRJEB22062.
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    Experimental design
1.   Sample size

Describe how sample size was determined. For each host species, 25 fecal samples per farm were taken on 20 farms in 9 
countries to ensure a sufficiently precise estimate of the resistome at the herd 
level and to obtain sufficient power to describe associations between determinants 
or modifying factors and AMR that are present across countries in a meta-analysis. 

2.   Data exclusions

Describe any data exclusions. Two metagenomic datasets were excluded from all analysis. We had no pre-
defined exclusion criteria, but during data exploration, it became obvious that two 
samples were mis-labeled and originated from from the wrong animal species. 
PCoA revealed a pig-labeled sample clustering with poultry and a poultry-labeled 
sample clustering with pigs. Follow-up investigation confirmed the labeling 
mistake. Since DNA library preparation was performed differently for the two 
species, we opted to exclude the data, rather than re-annotate it.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No replication was performed in the classical sense, but two pig herds were 
sampled three times each (2 farms x 3 sampling rounds x 25 fecal samples) to 
verify our procedure. Resistomes of the triple-sampled herds were similar and 
clustered together as expected.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Fecal samples were grouped according to the host animal species (pig/poultry) and 
country of origin (one of nine European countries).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Since the "groups" in question were host animal (pig/poultry) and country, it was 
not feasible to blind samplers to either. No attempts were made at blinding during 
DNA extraction. Library preparation and shotgun sequencing was performed by 
OMRF, who were blind to "country" but not "host species", since different 
protocols were used for the two species, following discussion between us and 
OMRF. No blinding was attempted during data analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Microsoft R Open 3.3.2 (R distribution with library version control and 
multithreading support) 
RStudio 1.0.136 (GUI for R) 
DESeq2 1.14.1 (differential abundance analysis R package) 
lme4 1.1-12 (Linear, generalized linear, and nonlinear mixed models) 
vegan 2.4.1 (Community Ecology R Package) 
CD-HIT 4.4.6 (clustering of nucleotides based on sequence identity) 
BBmap/BBduk2 39.92 (adapter- and quality-trimming of DNA read data) 
BWA-MEM v0.7.15 (alignment of DNA reads to reference sequences) 
Picard 2.8.3 (Removal of duplicate reads which can during PCR amplification)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All NGS data used in the study has been made publicly available on ENA (30th of 
May, 2018). 
 
From some samples, all fecal material has been exhausted. The remaining faecal 
samples were collected for this study only and can not be used for other studies. 
For some samples with remaining material, fecal matter could be made available 
for the purpose of verification.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified eukaryotic cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Observational study of livestock animals in farms. 
Pigs (Sus scrofa): Mean age of 179 days (min: 95 max: 320 days). Mixed sexes. 
Poultry (Gallus gallus): Mean age of 34 days (min: 16, max: 54).

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants.
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