
Sample processing: 20 pig stool samples were obtained from the European Union-funded EFFORT project and

sequenced using an Illumina sequencer. Of these samples, 6 were obtained from Polish wild pigs and 14 from

French domesticated pigs [2].

Preprocessing: Adapter and 5' end trimming was done using BBTools and quality trimming was done using Sickle

[3][4]. PhiX and host DNA removal was done using BBDuk and BBMap. Coverage and read quality were assessed

from Nonpareil curves and FastQC reports respectively [5][6].

Analysis: De novo genome assembly was done for all 20 samples using Spades with K-mer sizes (21, 33, 55)

[7]. For each sample, microbial diversity and abundance was determined using Kaiju and the NCBI non-redundant

protein database (eukaryotic proteins included) [8]. We also identified and quantified AMR genes in the samples

using RGI coupled with Prodigal, DIAMOND and Bowtie2 against the CARD AMR gene database [9] [10] [11]

[12][13]. Lastly, statistical analysis was performed in R.
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Introduction
In recent years interest in microbiomes has expanded with research into not only the human microbiome, but also

other organisms such as livestock. Pigs are an important agricultural livestock that makes up a large part of the

world's overall meat consumption, and the influence of the microbiome on factors such as nutrient absorption,

disease and general health are of interest to the industry.

The practice of giving antibiotics to livestock to combat pathogens and promote growth is known to select for

antibiotic resistance genes in the microbiome, and thus the presence of these genes can be utilized as a proxy for

the antibiotic pressure on the pig [1].

In this project we wish to investigate the correlation between the abundance of antibiotic resistance genes (ARG) and

the general microbiome diversity, by comparing stool samples from domestic farm pigs and wild boars.
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Discussion

From the heatmap, two resistome clusters consisting of samples (s1, s15, s22, s6, s20, s18, s8, s19, s9, s2, s13

and s14) and (s17, s10, s7, s11, s12, s21 and s23) were detected. Note that these clusters interestingly are not

distinguished by pig type but by the samples that were clustered in our OTU PCA analysis (see Microbial Diversity

section). The 3 most prominent antibiotic resistance drug classes were tetracycline, macrolide and lincosamide

antibiotics, all classes commonly used in the agriculture industry which are known to promote antimicrobial

resistance [16][17]. Stool sample s1 had the most diverse AR drug class hits, which is interesting as our microbial

diversity study suggested that the corresponding host was in a diseased state.

For ARG quantification, Bowtie2 mapping of raw reads was done against the CARD + Variant Database. The resulting

mapping counts were normalized by sample read counts and used in conjunction with our microbial diversity study

to determine if there is a correlation (see Discussion section).

Analysis groups R2 p-value

Pig feces vs. Wild life feces 0.0567 0.343

Cluster 1 vs. Cluster 2 0.166 0.001

The microbial composition of the pig and boar feces samples were analyzed using Kaiju with a non-redundant

database of bacterial, eukaryotic, archaeal and viral proteins. Here, 40685 operational taxonomic units (OTUs) were

identified of which 32140 were bacterial. We focused the downstream analysis on this subset. In order to elucidate

the microbial composition of the dataset, the relative abundance of each sample was computed. In order to simplify

the visualization, OTUs which constituted less than 0.0005% of total reads were filtered out and put into one of the

two NA categories (although not for the subsequent analysis).

The composition of sample 1 stands out from the other samples. It is dominated by the Proteobacteria phylum which

encompasses many common pathogens. An overrepresentation of this otherwise low-abundance phylum may

suggest that the host is in a diseased state [15]. Using this information in conjunction with the large ARG diversity of

sample 1, it can be hypothesized that the boar which provided the sample suffered from an infection at the time of

death. As this sample is a strong outlier it was filtered out during further analyses. Beyond this no obvious

differences can be observed between the composition of pig and boar samples.

An RDA/PCA analysis was performed on all OTUs

across samples in order to further elucidate

sample variance. Interestingly, 2 distinct

clusters can be observed, although not based on

sample type, but largely corresponding to the

clusters observed in the ARG analysis.

Additionally sample 7 appears as an outlier in this

analysis and is thus excluded from either cluster.

Lastly, a PERMANOVA was performed in order to

test for statistical significance in the difference

between the two clusters as well as between the

two sample types. This revealed a

statistical significance of 0.001 between PCA

clusters 1 and 2 with significance level α = 0.001,

but no statistical significance between the pig and

boar microbiomes using any common threshold.

Provided more metadata was available, further

analysis could reveal the factors which cause this

Quality and coverage check
Sequencing quality prior and post preprocessing

was assessed using FastQC. We also checked

sequencing coverage for all samples with

Nonpareil curves where the estimated average

coverages ranged from, 0.61 - 0.93 (see right

figure)

From these results, we determined that sequence

quality was satisfactory for further analysis.

difference. Differential abundance between PCA clusters 1 and 2 was computed at genus level in order to determine

which genera drive the variance between the clusters. A positive score indicates that a genus is observed more

commonly in cluster 1 compared to cluster 2, and a negative score the indicates the opposite.

Contigs generated by Spades

were used as input for RGI,

to determine a resistome for

19 of the 20 samples (genome

assembly for sample 16 was

not completed).

RGI first predicts ORF's and

putative proteins with Prodigal,

which are then subsequently

mapped to CARD using

DIAMOND.

A heatmap was generated by

grouping antibiotic resistance

genes according to drug class

and reporting the highest

degree of alignment match for

each class.

We see that genera belonging to Proteobacteria strongly drive the difference between cluster 1 and 2. As previously

mentioned, this phylum encompasses many common pathogens, and thus it is interesting that it is also this cluster

of samples which exhibits the greatest ARG diversity. Additionally, we see that some Bacteroidetes genera are

overrepresented in cluster 1, while many Firmicutes genera are more so present in cluster 2. Interestingly, the

Proteobacteria and Bacteroidetes phyla constitute a larger part of gut microbiomes of younger pigs and are

diminished over time while Firmicutes becomes more dominant [18]. Thus age might be contributing factor in

separating the two clusters, although this is entirely speculative and requires more rigorous analysis.
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