
Metagenomic shotgun sequencing enables the genetic 
information of the entire community of microorganisms 
at a given site to be surveyed. The human microbiome, in 
particular the human gut microbiome, far exceeds the 
host in number of genes1–3 and is under intense inves-
tigation because of its central role in metabolism and 
immune modulation4–6. For the most part, associations 
between the microbiota and human disease have been 
studied using 16S rRNA gene amplicon sequencing4. These 
studies have suggested that dysbiosis of the gut micro-
biota may be a key environmental risk factor for many 
human diseases, although the severity of the dysbiosis 
varies according to the disease. However, the data pro-
duced by 16S rRNA gene amplicon sequencing are of 
limited use in several respects, owing to a poor taxo-
nomic resolution and an absence of information about 
the function of the microbiome. Metagenomic shotgun 
sequencing, in which the full complement of genes that 
are present in the microbiome are sequenced rather 
than just a single taxonomic marker gene, is able to 
overcome these limitations by providing information 
about the abundances of genes in functional pathways 
and at all taxonomical levels. However, until recently, 
metagenomic shotgun sequencing had been prohib-
itively expensive and the data generated had been 
challenging to analyse, owing to the substantial com-
plexity compared to data generated by 16S rRNA gene  
amplicon sequencing.

Continued reduction in sequencing costs, devel-
opments in bioinformatic tools and the accumulation 
of functional knowledge has now made metagenomic 

shotgun sequencing more accessible as a tool to study 
the human microbiome. Accordingly, several recent 
studies have used metagenomic shotgun sequencing 
to survey the microbiome, as represented by metagen-
omic data, for associations with disease. The study 
designs used for these metagenome-wide associa-
tion studies (MWAS) have largely been modelled on 
genome-wide association studies (GWAS) that iden-
tify genetic variants in the human population that are 
associated with a phenotype, often a disease. In the 
current forms of MWAS, the relative abundance of a 
gene in a metagenome is used to establish an associ-
ation with a disease of interest (BOX 1; FIG. 1), typically 
after the genes are first grouped into strain-level clus-
ters known as metagenomic linkage groups (MLGs), 
metagenomic clusters (MGCs) or metagenomic spe-
cies (MGS), which reduces the dimensionality of the  
data (BOX 1; FIG. 1e; TABLE 1).

In this Review article, we summarize recent 
findings from MWAS that have shown associations 
between the microbiome and diseases such as type 2 
diabetes, obesity, colorectal cancer and rheumatoid 
arthritis. Furthermore, we discuss strategies for veri
fying the associations that have been identified by 
MWAS and establishing whether these associations 
represent causal relationships in which components 
of the microbiome contribute to disease. Finally, we 
consider how MWAS might be used in the future  
to shed further light on the aetiology of disease and to 
inform the development of preventive and therapeutic 
interventions.
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Microbiome
The ensemble of microbial 
genomes and products at a 
given site.

Microbiota
The ecological community of 
microorganisms at a given site.

16S rRNA gene amplicon 
sequencing
Amplification and sequencing 
of the variable regions in 16S 
ribosomal RNA genes for the 
taxonomic profiling of bacteria 
and archaea in a sample.

Metagenome-wide association 
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Abstract | Metagenome-wide association studies (MWAS) have enabled the high-resolution 
investigation of associations between the human microbiome and several complex diseases, 
including type 2 diabetes, obesity, liver cirrhosis, colorectal cancer and rheumatoid arthritis. 
The associations that can be identified by MWAS are not limited to the identification of taxa that 
are more or less abundant, as is the case with taxonomic approaches, but additionally include the 
identification of microbial functions that are enriched or depleted. In this Review, we summarize 
recent findings from MWAS and discuss how these findings might inform the prevention, 
diagnosis and treatment of human disease in the future. Furthermore, we highlight the need to 
better characterize the biology of many of the bacteria that are found in the human microbiota as 
an essential step in understanding how bacterial strains that have been identified by MWAS are 
associated with disease.
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Dysbiosis
An imbalance of the microbiota 
at a body site that is caused by 
an overgrowth of pathogenic 
microorganisms or a lack of 
commensal micoorganisms.

Contigs
Contiguous DNA sequences 
that are assembled from 
shorter, overlapping 
sequencing reads.

Microbiome–disease associations
Type 2 diabetes. The incidence of type 2 diabetes, a meta
bolic disorder that is characterized by hyperglycaemia 
and insulin resistance, has been increasing rapidly over 
the past few decades — for example, in China, more 
than 10% of adults are estimated to be affected by the 
disease7. Although some genetic risk factors for type 2 
diabetes have been identified, they account for only a 
small portion of the disease risk and, as factors that do 
not vary significantly with time, cannot explain the rapid 
rise in the incidence of the disease. As the gut microbi-
ome has recently been shown to affect host physiology4,5,  

it has been proposed to be an environmental factor that 
contributes to the risk of developing type 2 diabetes. 
Indeed, before MWAS, PCR analysis and 16S rRNA gene 
amplicon sequencing of the gut microbiota of a small 
cohort of individuals with type 2 diabetes identified 
decreased levels of taxa from the phylum Firmicutes and 
the class Clostridia compared with controls8.

Type 2 diabetes was the first disease for which a sus-
pected association with the microbiota was studied by 
MWAS9. In this first MWAS, metagenomic sequencing 
of hundreds of stool samples enabled the identification of  
genes from the gut microbiota that were differentially 

Box 1 | Designing and carrying out an MWAS

Metagenomic sequencing and assembly
An important requirement in the design of metagenome-wide association studies (MWAS) is that a sufficient volume of 
sequencing data is obtained to enable reliable quantitative comparisons between samples, as the number of genes that 
are detected in any given sample increases with the volume of sequencing data until saturation. Obtaining sufficient data 
is especially challenging for samples from the gut mucosa, mouth, skin, vagina and placenta, which can be dominated by 
sequencing reads from the host, unlike faecal samples, in which sequencing reads from the host account for no more than 
1% of the total3,105,106. Depending on the degree of microbial diversity in a sample, even the several Gb of raw sequence 
data commonly used for faecal samples may be insufficient for MWAS that use non-faecal samples. However, the 
experimental removal of host DNA without affecting the microbial content of the samples remains a challenging task, 
although bioinformatics tools can be used to remove host sequences after sequencing. Following quality control, the 
sequencing reads are de novo assembled into a set of contigs that together comprise the metagenome. The development 
of high-throughput sequencing methods that produce longer reads is expected to improve the sequencing, assembly and 
analyses of metagenomic samples.

Microbial reference gene catalogues
A non-redundant gene catalogue can be constructed from a metagenome assembly by predicting genes from the 
assembled contigs and removing highly similar genes across samples, which are considered to be redundant1–3,9,107.  
The abundances of genes, taxa and functions in metagenomic datasets can then be quantified by alignment to such a 
gene catalogue (or an existing microbial reference gene catalogue) to identify associations with a disease of interest.  
We currently recommend that a high-quality reference gene catalogue, such as that produced for the gut microbiome3,  
is used as a starting point for MWAS and as a basis for comparisons between diseases, populations or individual 
animals1,3,9,13,18 (FIG. 1d). It should be noted that constructing a gene catalogue from a poor-quality metagenome assembly 
can artificially increase the number of genes3. For human faecal samples, the quality of existing reference gene 
catalogues is high, owing to the volume of metagenomic data that has been generated from this body site and continued 
efforts to improve assembly3,45 (TABLE 1). However, for body sites other than the gut, metagenomic information remains 
very limited2,45,106,108 (FIG. 1b).

Taxonomy from metagenomic data
One goal of an MWAS may be to identify associations between the disease that is being investigated and specific taxa.  
To increase taxonomic resolution to the level of strains, genes in a metagenomic dataset can be clustered according to 
the genome of origin. This approach is based on the idea that genes from the same microbial genome are physically 
linked and, as such, should have the same pattern of abundance variation to one another across many samples (FIG. 1c). 
Using different correlation coefficients and computational algorithms, methods have been developed to organize 
microbial genes in metagenomic data into strain-level clusters known as, depending on the method used, metagenomic 
linkage groups (MLG)9, metagenomic clusters (MGC)13 or metagenomic species (MGS)18,93. Sequence alignment to 
existing microbial genome sequences are typically used to assign genes or strain-level clusters to taxa3,109, although it 
should be noted that the annotation criteria have not been unified for MLG, MGC and MGS9,13,18,19,51,93,106. The alignment  
of conserved single-copy genes and strain-specific regions of the genome may be more useful than other loci for 
taxonomic annotation96,110–113. For example, the metagenomic operational taxonomic unit (mOTU) method, which  
assigns taxonomic annotations based on 10 conserved single-copy genes, was shown to be more accurate than the  
use of the 16S rRNA gene for species assignment110. Incorporation of additional information, such as GC content and 
tetra-nucleotide frequency, might help to separate clusters that could not be resolved using abundance variation, which 
has been a particular problem in datasets with a small number of samples53,92.

Controlling for phenotypes in MWAS
MWAS should ideally include extensive metadata that enable factors that influence the microbiota to be controlled for. 
Cohorts should then be matched according to these metadata rather than using statistical regression methods that 
would undermine the power of MWAS to control for confounding factors. For colorectal cancer and type 2 diabetes, 
the disease signal (that is, the effect size) in MWAS of faecal samples is sufficiently strong to be detectable over the 
background variation that could be caused by other factors. However, for associations that are identified by MWAS that 
have a small effect size, a larger sample size might be required to distinguish the association from background variation.
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abundant between individuals with type 2 diabetes and 
controls. The study followed a two-stage procedure sim-
ilar to that routinely used in GWAS, in which an initial 
set of genes was identified in a discovery cohort and  
then filtered by validation in a verification cohort 
(TABLE  1). The validated genes were then clustered 
into MLGs (each with at least 100 genes) according to 
co‑variations in gene abundance across the samples 
(BOX 1; FIG. 1e). Specifically, MLGs that were annotated 
as butyrate-producing bacteria, including Clostridiales 
sp. SS3/4, Faecalibacterium prausnitzii, Roseburia intesti­
nalis and Roseburia inulinivorans, were depleted in sam-
ples from patients with type 2 diabetes, whereas MLGs 
that corresponded to Bacteroides sp. 20_3, Clostridium 

hathewayi, Clostridium ramosum, Clostridium symbiosum 
and Eggerthella lenta were enriched in these samples. 
Functional gene analysis of the metagenomic data using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database suggested that the gut microbiome in the cohort 
with type 2 diabetes was enriched for genes that function 
in the membrane transport of sugars, the transport of 
branched-chain amino acids (BCAAs), methane metabo-
lism, degradation and metabolism of xenobiotics, sulfate 
reduction (hydrogen sulfide biosynthesis) and resistance 
to oxidative stress. By contrast, there was a relative deple-
tion in genes that are associated with functions in bacte-
rial chemotaxis, flagellar assembly, butyrate biosynthesis 
and the metabolism of cofactors and vitamins (FIG. 2).
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Short-chain fatty acids
(SCFAs). Fatty acids that have 
fewer than six carbon atoms. In 
the context of the microbiome, 
SCFAs usually refer to acetate, 
propionate and butyrate, which 
are produced by various 
species of bacteria.

Metformin
A biguanide drug that is 
commonly prescribed as a 
treatment for type 2 diabetes.

Supervised machine learning
Machine learning in which the 
training data are labelled (for 
example, as cases or controls). 
Using the training data, the 
algorithm learns to classify new 
data according to these labels.

The depletion of butyrate-producing bacterial strains 
and butyrate biosynthesis genes in the gut microbiomes 
of individuals with type 2 diabetes may relate to the abil-
ity of butyrate to increase the secretion of glucagon-like 
peptide 1 (GLP1) and peptide YY, as the functions of 
these peptides include the promotion of intestinal gluco-
neogenesis, which leads to better control of glucose and 
energy homeostasis10,11. Furthermore, short-chain fatty 
acids (SCFAs), including butyrate, have recently been 
shown to limit autoimmune diabetes by controlling the 
expression of an immunomodulatory antimicrobial pep-
tide by pancreatic β‑cells, which demonstrates a direct 
influence of the gut microbiota on the pancreas12.

Corroborating the MWAS findings from this first 
study9, which analysed Chinese men and women, the sec-
ond MWAS of type 2 diabetes, which analysed European 
women (mostly from Sweden), identified genes for mem-
brane transporters and oxidative stress resistance as over-
represented in the gut microbiomes of individuals with 
type 2 diabetes, whereas genes for flagellar assembly and 
riboflavin (vitamin B2) metabolism were depleted in 
the gut microbiomes of individuals with type 2 diabe-
tes13 (TABLE 1). Several clostridial species were enriched 
in individuals with type 2 diabetes and Roseburia_272 
was depleted in individuals with type 2 diabetes in both 

the Chinese and the European cohorts9,13, which suggests 
common features of the gut microbiome in individuals 
with type 2 diabetes from the two cohorts.

In the European cohort, correlations were reported 
between the abundances of specific members of the gut 
microbiome and clinical indices that are related to type 2 
diabetes. Notably, the abundance of C. clostridioforme 
positively correlated with the levels of triglycerides and 
C‑peptide, whereas the abundance of Lactobacillus gasseri 
positively correlated with fasting blood glucose and gly-
cated haemoglobin (HbA1c)13. By contrast, clostridial 
MGCs that were depleted in individuals with type 2 dia-
betes negatively correlated with the levels of C‑peptide, 
insulin and triglycerides13.

Interestingly, individuals with type 2 diabetes that 
were treated with the drug metformin had decreased 
levels of Clostridium spp. and Eubacterium spp., and 
increased levels of Enterobacteriaceae, compared with 
individuals with type 2 diabetes that were not treated 
with metformin13. Similar observations were made 
in rats with insulin resistance and obesity that was 
induced by a diet high in fat and sucrose14, and in a 
study that combined a Danish cohort with the two 
previous cohorts, which also found that individuals 
who were treated with metformin had decreased levels 
of Intestinibacter, which is a newly defined genus that 
used to be included in the Clostridium genus15 (FIG. 2; 
TABLE 1). Among members of the Enterobacteriaceae, 
the abundance of Escherichia coli was shown to be cor-
related with the levels of GLP1 in individuals who were 
treated with metformin13. Studies using mouse models 
have also linked the therapeutic effects of metformin 
to changes in the microbiota16,17, and future MWAS of 
type 2 diabetes may help to identify other changes in the 
microbiota that are associated with metformin treatment  
in humans.

To establish whether the gut microbiome provided 
sufficient information to distinguish between healthy 
individuals and individuals with type 2 diabetes, a 
disease classifier was constructed through supervised 
machine learning of the data that were obtained from the 
Chinese cohort. The classifier selected 50 gut microbial 
genes (TABLE 1), which enabled 345 samples from the 
type 2 diabetes and control cohorts to be classified with 
an area under the receiver operating characteristic curve 
(AUC) of 0.81 (REF. 9). When applied to an additional set 
of samples, an index calculated from the abundances of 
the 50 genes showed a significant difference between 11 
individuals with type 2 diabetes and 12 healthy individ-
uals. These results suggested for the first time that the 
gut microbiome could be used to distinguish between 
samples from healthy individuals and individuals with 
a disease, in this case type 2 diabetes.

Obesity. Another metabolic disease to be studied by 
MWAS is obesity, which has been studied in cohorts 
from Denmark and France18,19 (TABLE 1). Previously, 16S 
rRNA gene amplicon sequencing had identified a lower 
gut microbial diversity in obese individuals, in addi-
tion to a higher Firmicutes-to‑Bacteroidetes ratio20,21. 
In the cohort from Denmark, which was stratified into 

Figure 1 | Identifying associations using MWAS. Although metagenome-wide 
association studies (MWAS) can, in principle, be used to study associations between 
the microbiome and any trait, studies to date have focused on identifying associations 
between the microbiome and disease. a | A typical cohort to be studied by MWAS 
would include a group of healthy individuals (top left panel, yellow) and a group of 
individuals with a disease (top left panel, red). However, MWAS can also be used to 
compare the microbiomes of individuals in a longitudinal study: before and after a 
certain intervention, such as a drug treatment (top right panel) or dietary intervention 
(not shown); or in a natural process, such as the development of an infant (bottom left 
panel) or the progression of a disease (not shown). Finally, an MWAS may be designed 
to compare the microbiomes at different body sites for a cohort of individuals with a 
disease (bottom right panel). b | The microbiomes of samples that are taken from 
different body sites, such as oral plaque, saliva, stool (representing the gut microbiome) 
or skin, can be studied by MWAS. c | DNA extraction, library preparation and 
metagenomic shotgun sequencing of the samples generates a dataset of sequencing 
reads. Bioinformatics tools (not shown) are used to assemble the metagenomic reads 
into contigs. d | Genes that are predicted from contigs are compiled into a gene 
catalogue, or an existing reference gene catalogue that is representative of the data 
could be readily used. The relative abundance of a gene can be quantified by 
determining the number of sequencing reads that align to that gene in the reference 
catalogue. Furthermore, phylogenetic or functional annotation and grouping of the 
predicted genes allows the quantification of microbial taxa or functional pathways in 
the samples and comparisons between samples. e | Genes (or contigs, which can 
contain several genes and intergenic regions) that have abundances that co‑vary in 
samples can be clustered into strain-level taxonomic units (known, according to  
the clustering algorithm used, as metagenomic linkage groups (MLGs), metagenomic 
clusters (MGCs) or metagenomic species (MGSs). f | Associations with a disease can be 
identified for individual microbial genes, taxa or functions. In addition, classifiers can 
be constructed using supervised machine learning to assign each sample to a certain 
category, such as healthy or diseased. g | Associations that are identified by MWAS can 
be validated using additional metagenomic datasets, such as samples from additional 
cohorts or timepoints, or using other forms of omics data. For studies that seek to 
identify causal relationships between a disease and the microbiome, associations that 
are identified by MWAS can be used to suggest hypotheses for further investigation by 
animal models. These experiments may involve the microbial transplant of specific 
species or sets of species, and/or the study of the response of the microbiome to 
dietary changes or drug treatment.

◀
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Table 1 | Diseases studied by MWAS

Cohort size 
(body site; country  
of residence)

Gene 
catalogue 
size

Sequencing 
reads 
mapped

Clustering 
method

Examples of  
key taxa

Examples of  
key functions

Disease 
classifier 
features

Feature 
selection 
method

Refs

Type 2 diabetes (T2D)

71 individuals with 
T2D and 74 controls 
for stage I; 100 
individuals with T2D 
and 100 controls for 
stage II; 11 individuals 
with T2D and 12 
controls for validation

(Gut; China)

4.3 million 
genes

77% for 
stage I, 
72% for 
stage II

MLG Bacteroides sp. 20_3 
and Clostridium 
hathewayi in 
individuals with T2D; 
Faecalibacterium 
prausnitzii, 
Roseburia intestinalis 
and Clostridiales sp. 
SS3/4 in controls

Membrane 
transport of 
sugars and BCAA 
transport in 
individuals with 
T2D; bacterial 
chemotaxis, 
butyrate 
biosynthesis 
and metabolism 
of cofactors 
and vitamins in 
controls

50 genes mRMR 9

53 individuals with 
T2D, 49 individuals 
with IGT and 43 
controls

(Gut; Sweden)

2,382 
reference 
genomes

Not 
mentioned

MGC Clostridium 
clostridioforme in 
individuals with T2D; 
Roseburia_272 in 
controls

Membrane 
transporters and 
oxidative stress 
resistance in 
individuals with 
T2D; flagellar 
assembly and 
riboflavin 
metabolism in 
controls

50 MGCs Random 
forest

13

75 individuals with 
T2D, 31 individuals 
with T1D, 277 
controls published 
by the MetaHIT 
consortium and 461 
published samples 
from the Chinese and 
Swedish studies; 30 
individuals with T2D 
for validation

(Gut; Denmark)

Not 
mentioned

Not 
mentioned

MGS, 
mOTU

Clostridium bolteae 
and Parabacteroides 
distasonis in 
untreated 
individuals with T2D; 
Escherichia coli in 
individuals with T2D 
who were treated 
with metformin; 
Roseburia spp., 
Subdoligranulum 
spp. and 
Clostridiales spp.  
in controls

Production 
of butyrate, 
propionate, 
LPS and H2 in 
individuals with 
T2D who were 
treated with 
metformin

1 genus for 
metformin- 
treated 
individuals with 
T2D versus 
controls; 63 
genera for 
untreated 
individuals with 
T2D versus 
controls

SVM 15

Atherosclerosis

12 individuals with 
atherosclerosis and 
13 controls

(Gut; Sweden)

2,382 
reference 
genomes

28% None Collinsella spp. in 
individuals with 
atherosclerosis; 
Roseburia spp. and 
Eubacterium spp. in 
controls

Peptidoglycan 
synthesis in 
individuals with 
atherosclerosis; 
phytoene 
dehydrogenase  
in controls

None None 49

Obesity

169 individuals who 
are classified as obese 
and 123 controls

(Gut; Denmark)

3.3 million 
genes

58% MGS-like Bacteroides spp. 
and Ruminococcus 
gnavus in samples 
with low gene 
counts; F. prausnitzii, 
Butyrivibrio spp. and 
R. inulinivorans in 
samples with high 
gene counts

Degradation of 
β‑glucuronide and  
aromatic amino 
acids in samples 
with low gene 
counts; production 
of organic acids 
and H2 in samples 
with high gene 
counts

4 species for 
samples with low 
versus high gene 
counts; 9 species 
for obese versus 
non-obese 
individuals

Enumeration 18

38 individuals who 
are classified as obese 
and 11 overweight 
individuals

(Gut; France)

3.3 million 
genes

57% MGS-like Decrease in 
Eubacterium rectale 
and Bifidobacterium 
spp. during the  
calorie-restriction 
phase

Not mentioned 6 species Enumeration 19
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Liver cirrhosis

98 individuals with 
liver cirrhosis and 83 
controls

(Gut; China)

2.7 million 
genes

42% MGS Streptococcus 
anginosus and 
Veillonella atypica 
in individuals with 
liver cirrhosis; 
Faecalibacterium 
prausnitzii and 
Coprococcus comes 
in controls

Assimilation or 
dissimilation of 
nitrate to or from 
ammonia, and 
denitrification in 
individuals with 
liver cirrhosis; 
histidine 
metabolism, 
ornithine 
biosynthesis and 
carbohydrate 
metabolism in 
controls

15 genes mRMR 51

Colorectal cancer (CRC)

53 individuals with 
CRC, 42 individuals 
with adenoma and 
61 controls; 38 
individuals with 
CRC, 5 new and 292 
published controls  
for validation

(Gut; France)

Not 
mentioned

Not 
mentioned

mOTU 
(single- 
copy 
genes)

Fusobacterium spp., 
Porphyromonas 
asaccharolytica and 
Peptostreptococcus 
stomatis in 
individuals with 
CRC; Eubacterium 
eligens in controls

Host cell wall 
carbohydrates 
in individuals 
with CRC; 
fibre-degrading 
enzymes and 
fibre-binding 
domains in healthy 
controls

22 species LASSO 31

41 individuals with 
CRC, 42 individuals 
with adenoma  
and 55 controls;  
5 individuals with 
CRC, 5 individuals 
with adenoma and  
8 controls for 
validation

(Gut; Austria)

3.5 million 
genes

76% MLG Bacteroides spp., 
Fusobacterium 
spp. and 
Peptostreptococcus 
stomatis in 
individuals 
with CRC; 
Bifidobacterium 
animalis in controls

Utilization of 
amino acids and 
host glycans in 
individuals with 
CRC; metabolism 
of sugars and 
dietary fibre in 
controls

15 MLGs for 
controls versus 
individuals with 
carcinoma; 
10 MLGs for 
controls versus 
individuals 
with advanced 
adenoma

Random 
forest

32

74 individuals with 
CRC and 54 controls; 
16 individuals with 
CRC and 24 controls 
for validation; 47 
individuals with CRC 
and 109 controls for 
qPCR

(Gut; Hong Kong and 
Denmark)

4.3 million 
genes

67% MLG, 
mOTU

Fusobacterium 
nucleatum, 
Peptostreptococcus 
stomatis, Parvimonas 
micra, Solobacterium 
moorei in 
individuals with 
CRC; Eubacterium 
ventriosum in 
controls

Leucine 
degradation 
and guanine 
nucleotide 
biosynthesis in 
individuals with 
CRC

2 genes None 33

Rheumatoid arthritis

77 individuals with 
rheumatoid arthritis, 
80 controls and 40 
after- treatment 
samples; 17 
individuals with 
rheumatoid arthritis 
and 17 controls for 
classifier verification

(Gut; China)

5.9 million 
genes

80% MLG Lactobacillus spp. 
and Bacteroides spp. 
in individuals with 
rheumatoid arthritis; 
Haemophilus spp. 
and Klebsiella 
pneumoniae in 
controls

Reductive 
acetyl-CoA 
pathway in 
individuals with 
rheumatoid 
arthritis; arginine 
transport systems 
in controls

8 MLGs Random 
forest

45

Table 1 (cont.) | Diseases studied by MWAS
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Area under the receiver 
operating characteristic 
curve
(AUC). The area under a 
receiver operating 
characteristic (ROC) curve of 
true-positive rates versus 
false-positive rates, which 
depicts the performance of a 
binary classifier. AUCs typically 
range between 0.5 and 1, 
corresponding to a random 
and a perfect classification, 
respectively.

Dyslipidaemia
An abnormal amount of lipids 
in the blood.

Adenomas
Benign tumours that are 
formed from glands or that 
have characteristics of glands.

individuals who were obese (body mass index (BMI) 
>30), overweight (BMI 25–30) or lean (BMI <25), 
metagenomic sequencing of faecal samples showed that 
the gut microbiomes of obese individuals were more 
likely to have low gene counts than high gene counts18. 
Notably, low gene counts, which can also be viewed as low 
gene richness, were correlated with physiological indica-
tors such as higher levels of body fat, insulin resistance,  
dyslipidaemia and inflammation18,19. Furthermore, obese 
individuals who had a gut microbiome with a low gene 
richness had put on more weight during the past 9 years 
than obese individuals who had a gut microbiome with 
high gene richness18.

The differences in gene richness also seemed to cor-
respond to differences in bacterial species richness, as 
measured using taxonomical marker genes18. Butyrate-
producing bacteria, such as F. prausnitzii, Butyrivibrio 
spp. and R. inulinivorans, as well as Akkermansia spp. 
and the methanogenic archaeon Methanobrevibacter 
smithii, were depleted in the gut microbiomes that 
had low gene richness, whereas Bacteroides spp. and 
Ruminococcus gnavus were more abundant in these gut 
microbiomes. Furthermore, the study showed that the 
species composition of the gut microbiome may be a bet-
ter predictor of obesity than human genetic factors, as a 
disease classifier that was based on nine bacterial strains 
(MGS-like; TABLE 1) was able to distinguish between lean 
and obese individuals with an AUC of 0.78, whereas a 
disease classifier that was based on 32 human genomic 
loci could only distinguish between the two cohorts with 
an AUC of 0.58.

In the cohort from France, a 6‑week energy- 
restricted high-protein diet that was followed by a 6‑week 
weight-maintenance diet led to an increase in the gene 
richness of the gut microbiome and also reduced body 
fat, cholesterol and inflammation. However, even by the 
end of the intervention, the individuals who had gut 

microbiomes with low gene richness still had higher lev-
els of these physiological indicators than the individuals 
who had gut microbiomes with high gene richness19. 
Thus, the gut microbiome may not only be able to strat-
ify individuals according to obesity, but may also predict 
the response of individuals to dietary intervention.

Colorectal cancer. Colorectal cancer is among the three 
most frequently diagnosed forms of cancer worldwide 
and is a leading cause of cancer mortality22,23. Most cases 
of colorectal cancer are sporadic but are often preceded 
by the development of dysplastic adenomas that then 
progress into malignant forms; this progression is 
referred to as the adenoma–carcinoma sequence24. 
Prior to the study of colorectal cancer by MWAS, the 
association of the disease with Fusobacterium spp.25–28 
and SCFAs29,30 in the gut microbiota had already been 
described. MWAS using faecal samples have enabled 
the identification of other microbial markers that may 
facilitate the early diagnosis of colorectal carcinomas 
or benign adenomas that may progress to colorec-
tal carcinomas31–33. Three MWAS identified strains 
of Bacteroides spp., Fusobacterium spp., Parvimonas 
micra, Peptostreptococcus stomatis and C. symbiosum as 
overrepresented in faecal samples from patients with 
colorectal cancer, whereas strains of Bifidobacterium 
spp. and Streptococcus spp. were depleted in these sam-
ples31–33 (TABLE 1). The enrichment of these species was 
common to the composition of the gut microbiome in 
individuals with colorectal cancer in all three cohorts, 
despite several technical differences between each study, 
such as different enrolment criteria and different meth-
ods of species annotation. Interestingly, Fusobacterium 
spp., P. micra and P. stomatis are known to be anaerobes 
that reside in the oral cavity and are usually rare in the 
gut31–33. The abundances of some of these strains had 
already changed significantly in patients with advanced 

54 individuals with 
rheumatoid arthritis, 
51 controls and 37 
after-treatment 
samples

(Dental plaque; 
China)

3.2 million 
genes

77% MLG Lactobacillus 
salivarius and 
Atopobium spp. in 
individuals with 
rheumatoid arthritis; 
Haemophilus spp. 
and Aggregatibacter 
spp. in controls

Methionine 
salvage pathway 
in individuals 
with rheumatoid 
arthritis; arginine 
transport systems 
in controls

6 MLGs Random 
forest

45

51 individuals with 
rheumatoid arthritis, 
47 controls and 24 
after-treatment 
samples

(Saliva; China)

3.2 million 
genes

71% MLG Lactobacillus 
salivarius and 
Veillonella spp. in 
individuals with 
rheumatoid arthritis; 
Haemophilus spp. and 
Prevotella intermedia 
in controls

Menaquinone 
biosynthesis in 
individuals with 
rheumatoid 
arthritis; arginine 
transport systems 
in controls

2 MLGs Random 
forest

45

BCAA, branched-chain amino acid; IGT, impaired glucose tolerance; LASSO, least absolute shrinkage and selection operator; LPS, lipopolysaccharide; mOTU, 
metagenomic operational taxonomic unit; MetaHIT, Metagenomics of the Human Intestinal Tract; MGC, metagenomic cluster; MGS, metagenomic species;  
MLG, metagenomic linkage group; mRMR, minimum redundancy maximum relevance; SVM, support vector machine. 
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adenoma (≥1cm), and a classifier could be constructed 
that was able to distinguish between individuals with 
advanced adenomas and controls based on the compo-
sition of the gut microbiome32. Not only were similari-
ties observed between the changes in the composition of 
the gut microbiota in individuals with colorectal cancer 
and individuals with adenomas, but the changes in the 
composition of the gut microbiota in individuals with 
colorectal cancer were also similar to the changes in 
the composition of the gut microbiota that have been 
reported for individuals with inflammatory bowel dis-
eases (IBD) and mouse models of colitis-associated  
colorectal cancer 31,32. Functional analysis of the 
metagenomic data suggested that the gut microbiome 
in individuals with colorectal cancer had a decreased 
capacity for the metabolism of sugars and dietary fibre 
compared with healthy individuals, but was better 

able to metabolize amino acids and host glycans and 
might also have a greater potential to produce toxins 
and carcinogenic metabolites31,32 (FIG. 3).

One interesting direction for MWAS would be to 
compare the local gut microbiome in the tumour with 
the local gut microbiome in the adjacent mucosa, which 
have to date only been quantitatively compared using 
16S rRNA gene amplicon sequencing or PCR25–27,34,35. 
Notably, Fusobacterium spp. were only found in tumour 
samples, whereas Bacteroides spp., Parvimonas spp. and 
Peptostreptococcus spp. were found both in tumour sam-
ples and in samples from the adjacent mucosa, although 
with a higher relative abundance in tumour samples35,36. 
It should be noted that differences in community com-
position may not be indicative of bacterial species that 
drive carcinogenesis, as such ‘driver’ bacterial species 
might have been outcompeted by ‘passenger’ bacteria 
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Vitamins↑
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Inflammation↓
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Tissue repair?
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• Flagellar assembly
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vitamins
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• C. ramosum 
• C. symbiosum
• E. lenta
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• Membrane transport of sugars
• BCAA transport
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 of xenobiotics 
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sulfide 
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?
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• E. coli↑
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Figure 2 | Changes to the gut microbiome that are associated with type 2 diabetes. a | In healthy individuals, the gut 
microbiome is enriched for taxa that are associated with an increased capacity for the production of metabolites, such as 
short-chain fatty acids (SCFAs)13,14, that promote intestinal integrity and energy homeostasis through absorption by the 
gut epithelium and signalling through host receptors to induce regulatory T cells (Treg), which restricts inflammation and 
may even promote tissue repair37. SCFAs also stimulate the secretion of glucagon-like peptide 1 (GLP1) and peptide YY by 
intestinal L cells (not shown) to control glucose homeostasis and regulate food intake10,11. These taxa and functions tend  
to be depleted in the gut microbiomes of individuals with type 2 diabetes or obesity13,14,18. b | In individuals with type 2 
diabetes, metagenome-wide association studies (MWAS) suggest that changes to the gut microbiome are associated with 
metabolic dysfunction and inflammation. For example, an increased potential for the production of hydrogen sulfide and 
lipopolysaccharide (LPS) could stimulate inflammation. However, the gut microbiomes of individuals with type 2 diabetes 
who were treated with the anti-diabetic drug metformin showed a decrease in the abundance of Intestinibacter spp. and 
an increase in the abundances of species in the Enterobacteriaceae family, such as Escherichia coli, compared with 
individuals with type 2 diabetes who did not receive metformin treatment. The increase in the abundance of E. coli 
seemed to correlate with an increase in the secretion of GLP1. BCAA, branched-chain amino acid; C. hathewayi, 
Clostridium hathewayi; C. ramosum, Clostridium ramosum; C. symbiosum, Clostridium symbiosum; E. lenta, Eggerthella lenta; 
F. prausnitzii, Faecalibacterium prausnitzii; R. intestinalis, Roseburia intestinalis; R. inulinivorans, Roseburia inulinivorans.
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that gain a growth advantage as the tumour progresses 
through different stages36. Future work to better define 
the species in the gut microbiota that are associated with 
colorectal cancer would benefit from larger studies that 
examine different stages of colorectal cancer, differences 
in the location of tumours and/or differences in the age 
and gender groups of individuals with the disease31–33,35.

The evidence that is emerging from MWAS in 
humans and from experiments in animal models sug-
gests that the gut microbiome is a hub that integrates 

known risk factors that are associated with colorectal 
cancer, such as the consumption of red meat and smok-
ing24,32,37, and that influences the efficacy of therapies for 
the treatment of the disease38,39. How might these factors 
interact with the gut microbiota? One possibility is that 
the interactions relate to gut microbial metabolites 
that are key to a healthy gut epithelium, such as butyrate, 
or that might be genotoxic, such as secondary bile acids 
(reviewed in REFS 37,40). The consumption of fruits and 
vegetables possibly helps to favour the fermentation of 
dietary fibre, rather than host mucin, by the microbiota 
in the distal colon. The SCFAs that are produced through 
the fermentation of dietary fibre, together with lactic acid 
that is produced by lactic acid-producing bacteria, could 
also help to maintain a relatively low pH that might limit 
amino acid fermentation and the growth of pathogens31,32 
(FIG. 3). By contrast, a diet that is rich in red meat prob-
ably nurtures a gut microbiota that increases the likeli-
hood of developing colorectal cancer, with increased bile 
secretion by host cells and an excess of iron available for 
pathogenic bacteria. The gut microbiota may also hold 
the key to the development of a personalized treatment 
for colorectal cancer, as several bacterial species that are 
found in the gut have been shown to positively or neg-
atively affect therapies that are used to treat colorectal 
and other cancers in mouse models32,38,39. For example, 
administering a specific bacterium or its antigen into 
a mouse model of melanoma increased the success of 
immunotherapy41,42.

Rheumatoid arthritis. Rheumatoid arthritis is a common 
autoimmune disorder that causes progressive disability 
and systemic complications. The concordance rates of 
rheumatoid arthritis are 15–30% in monozygotic twins 
and 5% in dizygotic twins, which suggests that genetic 
factors alone cannot account for the risk of developing 
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Figure 3 | Model for a gut microbial basis for the 
development of colorectal cancer. a,b | Associations 
that were identified by metagenome-wide association 
studies (MWAS)31,32 suggest that bacterial species that are 
usually of low abundance in the gut, and the toxins that 
they produce, could become more abundant in response  
to lifestyle or dietary changes, such as an increase in the 
consumption of red meat and a decrease in the consumption 
of fruits, vegetables and fibre. Some bacterial species that 
are most commonly described as anaerobic oral bacteria, 
such as Fusobacterium spp. and Parvimonas micra, have 
been identified by MWAS as being associated with 
colorectal cancer31–33,35. Functional changes in the gut 
microbiome might involve an increase in the production  
of carcinogens through processes such as amino acid 
fermentation and the metabolism of bile acids37. By 
contrast, bacterial species that produce the metabolites 
butyrate and lactate, which facilitate the maintenance of 
the colonic epithelium, can be depleted in the gut 
microbiomes of individuals with colorectal cancer.  
c | Dysbiosis of the gut microbiota can result in an 
impairment of gut barrier function, which increases the 
exposure of the gut epithelium to microorganisms and 
their metabolites37,40; some of these metabolites are 
mutagens that might promote carcinogenesis.
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Periodontitis
Inflammation of the tissue that 
surrounds the teeth, which 
leads to the progressive loss of 
the alveolar bone and the 
loosening or loss of teeth.

Rheumatoid factor
An autoantibody against the 
constant region (known as the 
fragment crystallisable (Fc) 
region) of immunoglobulin G.

Anti-cyclic citrullinated 
peptide autoantibodies
Autoantibodies against 
proteins that contain the 
modified amino acid citrulline. 
Cyclic citrullinated peptides are 
used to clinically detect these 
antibodies.

the disease43. Autoantibodies that are associated with 
rheumatoid arthritis can be detected in individuals years 
before the onset of the symptoms of the disease (that is, 
joint pains), and mucosal environments, such as the gut, 
mouth and lungs, have been suspected to be the initial site 
of inflammation before the onset of disease symptoms44. 
This suggests that early changes in the microbiota might 
be detectable before the development of symptoms, which 
provides a diagnostic use for marker genes that have been 
identified by MWAS.

Whereas other diseases have been studied using 
MWAS of faecal samples, which represent the gut micro-
biome, rheumatoid arthritis is the first disease to be  
studied using MWAS of the oral microbiome, although 
the gut microbiome has also been examined by MWAS 
for this disease45. The analysis of dental and salivary 
microbiomes alongside gut microbiomes showed that the 
difference between individuals with rheumatoid arthritis 
and healthy controls was greater in the oral microbiome 
than in the gut microbiome45,46, which is consistent 
with the epidemiological link that has been established 
between rheumatoid arthritis and periodontitis43,47. This 
analysis also showed that changes in the taxonomical 
and functional composition of the microbiome that are 
associated with rheumatoid arthritis partially overlapped 
between the dental, salivary and gut microbiomes45 
(FIG. 4; TABLE 1) and that the abundances of specific bacte-
rial taxa were correlated with the levels of serum markers 
of rheumatoid arthritis, including rheumatoid factor and 
anti-cyclic citrullinated peptide autoantibodies. Thus, both 
the gut and the oral microbiomes reflect, if not contribute  
to, the pathophysiology of rheumatoid arthritis.

As with type 2 diabetes, obesity and colorectal 
cancer, the gut microbiomes of individuals with rheu-
matoid arthritis could be distinguished from those 
of healthy individuals based on a disease classifier 
(TABLE 1). Furthermore, based on MLGs, a disease clas-
sifier could also be constructed to distinguish between 
the dental or salivary microbiomes of individuals with 
rheumatoid arthritis and those of healthy individ-
uals, despite taxonomic differences between the gut 
and oral microbiomes. If classification based on the 
microbiomes of two of the three body sites was used to 
overrule the small number of misclassifications based 
on the microbiome of the third body site, almost all 
of the fully sampled individuals (68 out of 69) could 
be correctly classified as individuals with rheumatoid 
arthritis or as controls45 (FIG. 4).

The disease classifier for the dental microbiome was 
particularly useful for evaluating the treatment effect 
of disease-modifying antirheumatic drugs (DMARDs). 
Dental samples from patients with low disease activ-
ity following treatment were often classified as healthy, 
and the abundances of several MLGs that are usually 
depleted in individuals with rheumatoid arthritis were 
higher in the dental microbiomes of patients who 
showed good or moderate improvement than in the 
dental microbiomes of patients who did not improve (as 
measured by the European League Against Rheumatism 
(EULAR) response criteria), which suggests that the 
recovery of a healthy dental microbiome might be 

an additional measure for evaluating DMARD treat-
ments45. Preliminary results on the effects of different 
DMARDs on the oral and gut microbiomes were also 
obtained, and the outcome of treatment with DMARDs 
was predicted based on the microbiome of samples that 
were taken before treatment45. Given the long preclin-
ical phase of rheumatoid arthritis, and the challenges 
in successfully tailoring drug treatment for each indi-
vidual, microbiome-based diagnosis and prognosis may 
enable the development of exciting new possibilities for 
the management of the disease43,45,48 (BOX 2).

Other diseases. A small number of MWAS have been 
reported for diseases other than type 2 diabetes, obesity, 
colorectal cancer and rheumatoid arthritis (TABLE 1). In 
one study, individuals with symptomatic atherosclero-
sis were found to have a lower abundance of genes that 
encode phytoene dehydrogenase in the gut microbiome 
compared with healthy individuals, and a concomitant 
decrease in serum β-carotene49. Associations between 
serum triglycerides, low-density and high-density lipo-
proteins (LDLs and HDLs) and specific members of the 
gut microbiota have also been identified in MWAS of 
rheumatoid arthritis or colorectal cancer, as well as in 
a study of a general population cohort that was based 
on 16S rRNA gene amplicon sequencing, although no 
MWAS has yet directly examined cardiovascular dis-
eases32,45,50. Another MWAS identified bacterial taxa 
that were enriched in individuals with liver cirrhosis 
and found that many of these taxa, including Veillonella 
spp., Streptococcus spp. and Haemophilus parainfluenzae, 
were of suspected oral origin; a disease classifier for 
liver cirrhosis was also constructed, based on 15 gut 
microbial genes51 (TABLE 1).

What is a healthy microbiome? Some bacterial spe-
cies and bacterial functions have been associated with 
healthy controls in MWAS for more than one disease, 
which suggests that these taxa and functions might be 
features of a ‘healthy’ microbiome (TABLE 1). Notably, 
SCFA-producing bacteria, such as R. inulinivorans and 
F. prausnitzii, have been associated with a healthy gut 
microbiome in MWAS of several diseases, including 
type 2 diabetes and obesity (FIG. 2). Bacteria in the 
genus Bacteroides, which is the most abundant genus 
of bacteria in the gut and is associated with natural 
delivery and breast-feeding as infants3,52,53, include 
both taxa that are associated with a healthy micro
biome and taxa that are associated with some diseases 
(TABLE 1). On the one hand, bacteria from this genus 
help to metabolize various plant-derived sugars, which 
provides a benefit to the host; conversely, they can also 
forage for host glycans54,55 and produce toxins, which 
are functions that might contribute to the development 
of colorectal cancer31–33 (FIG. 3). Similarly, Lactobacillus 
salivarius and Bifidobacterium dentium are enriched 
in the gut microbiomes of individuals with rheuma-
toid arthritis45, even though the genera Lactobacillus 
and Bifidobacterium are generally regarded as com-
prising beneficial species that train the immune sys-
tem and restrict the growth of other bacterial species. 
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A strain-level characterization of the metabolisms 
and host interactions of members of genera such as 
Bacteroides, Lactobacillus and Bifidobacterium may 
help to elucidate the full complexity of their seemingly 
contradictory roles in human health and disease56,57.

The signatures of health and disease in the micro-
biome may be clearer at the functional level than at  
the taxonomic level. In the anaerobic environment of the 
gut, an increased capacity to tolerate oxidative stress is a 
sign of dysbiosis of the microbiome, as it is indicative of 
the presence of aerobic bacteria and/or activation of the 
host immune system (FIG. 2). Another functional indica-
tor of dysbiosis of the gut microbiome is the reduction 
of sulfate or sulfite into hydrogen sulfide, which may 
also ameliorate dysbiosis9,18,45,58. For populations with a 
diet that is rich in resistant starch, which is fermented 
by the microbiota, the production of hydrogen gas as 
an end product of fermentation, and the subsequent use  
of hydrogen to produce methane, are major functions of 
the gut microbiome; however, these functions were iden-
tified by MWAS as perturbed in individuals with low 
gene counts in the gut microbiome3,18. Finally, the SCFAs 
butyrate and, to some extent, propionate are also associ-
ated with a healthy gut microbiome, as shown in MWAS 
of diseases such as type 2 diabetes, obesity and colorectal 
cancer. These metabolites are a major source of energy 
for gut epithelial cells and, as such, help to maintain a 
healthy gut environment. Furthermore, SCFAs confer 
additional benefits to the health of the host by inhibiting 
histone deacetylation, signalling through host receptors 
and inducing the differentiation of regulatory T cells37 
(FIG. 2). These associations between a healthy gut and the 
functions, rather than the taxa, of the gut microbiome 
demonstrate the effectiveness of functional information 
provided by MWAS for studying disease mechanisms, 
as opposed to single-gene taxonomical marker surveys, 
from which function can only be inferred.

From association to causality?
The success of MWAS does not only depend on the find-
ings that are obtained using the method itself, but also on 
follow‑up studies that investigate whether microbiome–
disease associations can be validated in other cohorts, 
what the mechanistic bases are for these associations 
and whether the associations are causal (although the 
identification of non-causal associations can also be 
useful in developing diagnostic markers; BOX 2). Thus, 
an MWAS may show that a gene has ‘guilt by association’  
with a disease, but its ‘conviction’ requires further evi-
dence from all possible sources (FIG. 1g). It should be 
noted that prior knowledge of the identified markers is 
usually very limited, as many genes in the microbiome 
have not yet been functionally characterized.

Additional evidence to support disease associations. 
Analogous to GWAS, additional cohorts can be used 
to validate associations between microbial genes and a 
disease, which increases the sample size and reduces the 
problem of technical issues, and such validation cohorts 
have been used in MWAS of type 2 diabetes, colorec-
tal cancer and rheumatoid arthritis9,15,31–33,45 (TABLE 1). 
However, unlike the human genome, the microbiome 
of any given individual is subject to substantial variation, 
which adds to the difficulties of validation — but also 
raises hopes for the potential of intervention to amelio-
rate diseases through the modulation of the microbiota. 
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Figure 4 | The oral and gut microbiomes of individuals with rheumatoid arthritis. 
The microbiome might interact with both genetic and environmental factors that influence 
the risk of developing rheumatoid arthritis45,46. Using metagenome-wide association 
studies (MWAS) to examine both the oral and gut microbiomes of individuals with 
rheumatoid arthritis has shown an overlap between the microbiomes from the two body 
sites, with an enrichment of several bacterial species, including Lactobacillus salivarius, 
at both sites. Sets of bacterial species were also shown to have correlated changes in 
abundance between the oral and gut microbiomes of individuals with rheumatoid arthritis: 
for example, the abundance of Klebsiella pneumoniae in the gut microbiome was positively 
correlated with the abundance of Lactococcus spp. in the oral microbiome, whereas the 
abundance of Clostridium asparagiforme in the gut microbiome was negatively correlated 
with the abundance of Prevotella intermedia in the oral microbiome45. As such, sampling at 
one body site may reveal information about the microbiome at another site45. HLA‑DRB1, 
major histocompatibility complex, class II, DRβ1; PADI4, peptidyl arginine deiminase 4; 
PTPN22, protein tyrosine phosphatase non-receptor type 22; TNFAIP3, tumour necrosis 
factor-α-induced protein 3.
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Guilt by association
A concept from genome-wide 
association studies (GWAS) that 
describes associations in such 
studies  as ‘guilt’ of a gene for a 
trait of interest, which means 
that the gene is of interest for 
further investigation.

An additional technical challenge when designing a vali
dation study with an independent cohort is that human 
cohorts are commonly heterogeneous with respect to 
factors such as geographical origin, BMI and age (BOX 1). 
Validation analyses using independent cohorts or using 
meta-analyses across studies are expected to become 
routine as more metagenomic data become available 
for more diseases, but these will require the sharing of 
metadata and data standardization.

Other forms of omics data, such as metatranscrip-
tomic, metaproteomic and metabolomic data (together 
with host genetic data, which can also shape the com-
position of the microbiome56,59–65; FIG. 1g), can provide 
further support to candidate microbiome–disease asso-
ciations that have been identified by MWAS (reviewed 
in REF. 66). Future studies may use metatranscriptomic 
and metaproteomic data to identify RNAs and proteins 
that are differentially enriched in the microbiomes of 
disease cohorts. These data may need to be analysed in 
combination with metagenomic data to control for the 
total number of bacterial cells, if the studies are to dis-
tinguish between genes that have upregulated expression 
and genes for which more abundant transcripts simply 
reflects a larger number of bacterial cells. Another prom-
ising form of omics data for the study of the microbiome 
is metabolomics, although a database of microbiota- 
contributed metabolites is currently not available67. 
In an analysis of data from an MWAS of obesity19, 

metabolomic modelling of five representative bacte-
rial species before and after a weight-reducing dietary 
intervention enabled the prediction of changes in the 
levels of SCFAs and amino acids in faeces and serum68. 
An important benefit of multiomic data is that these data 
provide evidence that microbial markers that have been 
identified by MWAS are active in the body.

Finding evidence for causality in disease associations. 
To progress from identifying microbiome–disease asso-
ciations to identifying the functions of the microbiome 
in disease, experiments are required that are able to 
examine causality between the microbial markers that 
are identified by MWAS and the disease of interest. 
These experiments can include the study of longitudinal  
cohorts, experiments that use animal models and 
in vitro functional studies. Longitudinal cohorts ena-
ble the study of samples that are taken from the same 
individuals before the onset of disease and during 
disease development (FIG. 1a), especially from preclin-
ical or high-risk groups. Such an approach would be 
very useful for establishing whether the enrichment of 
microbial genes occurs before the development of dis-
ease phenotypes at a relevant body site, which would be 
expected for genes that have a causal role. Longitudinal 
studies for testing microbiome–disease associations 
could be even more powerful when comparing samples 
before and after interventions, such as drug treatment, 
dietary change or microbial transplant19,45,69–72 (FIG. 1). 
One example of a longitudinal study that used a drug 
treatment to modulate the gut microbiota examined 
the ability of a berberine-containing herbal mixture to 
alleviate type 2 diabetes69. Changes to the gut microbiota, 
such as a substantial enrichment of F. prausnitzii, could 
be observed after 4 weeks of treatment; importantly, these 
changes preceded the detection of the alleviation of the 
symptoms associated with type 2 diabetes, which were  
not detected until 8 weeks of treatment, which suggests 
that the therapeutic effects of the treatment might have 
been mediated by the gut microbiota. These results 
also extend the MWAS finding that the butyrate- 
producing bacterium F. prausnitzii was depleted in the gut 
microbiomes of individuals with type 2 diabetes9,15 (FIG. 2).

The use of animal models (FIG. 1g) enables well- 
controlled study designs that minimize the influence of 
environmental and host factors that can confound the 
analysis of data from human cohorts, and also enables 
numerous physiological parameters, body sites and cell 
types to be measured that may not yet be accessible in 
humans. Together, these benefits mean that the effects 
of genetics, diet and microbial community function can 
be better separated in animal models than in human 
cohorts56,73. However, it should be noted that the micro-
biomes of mice from different sources can differ sub-
stantially in composition74, which should be taken into 
account when designing these studies. Furthermore, 
mouse models should be used to investigate the exact 
strain that has been identified by MWAS, even if  
related strains are more readily available (FIG. 1g).

Germ-free mice are commonly used as animal 
models for studies of the microbiome, as they provide 

Box 2 | MWAS: from bench to bedside

Diagnostic markers
Whether causal or not, associations that are identified by metagenome-wide 
association studies (MWAS) could be a starting point for the development of 
non-invasive tests that use microbiome-based marker genes for the diagnosis  
of diseases before the development of symptoms (FIGS 1,4; TABLE 1). For colorectal 
cancer and rheumatoid arthritis, faecal or oral microbiome-based tests may be more 
powerful than conventional screening techniques, and quantitative PCR (qPCR) or 
other relatively rapid tests on only a few microbial genes would suffice31–33,45.

Patient stratification and precision medicine
Markers that are identified by MWAS may be characteristic of only a subgroup of 
individuals with a disease3,18,32,45, which might inform the tailoring of treatment.  
For example, gene markers in the microbiome might be predictive of the probable 
outcome of a specific therapy19,32,45,91,114, as has been shown for disease-modifying 
antirheumatic drugs (DMARDs) in individuals with rheumatoid arthritis. Continuing to 
monitor these markers during the course of treatment could help to further optimize 
the treatment plan. For the effective screening of large groups of individuals, or 
even the whole population, mobile applications could be used to collect dietary, 
lifestyle and phenotypic information at regular time intervals from the same 
individual115. These data could then be used to generate recommendations for 
intervention strategies that might help to prevent or delay the development of disease. 
An example of a metric that might be better managed using data from the microbiome 
is blood glucose level, which can vary markedly between healthy individuals in response 
to the same meal116,117. Personalized dietary intervention that takes the gut microbiota, 
diet, physical activity, blood parameters and other metrics into consideration could 
then be used to help prevent the onset of metabolic disease117.

Treatment of diseases
Dietary intervention or microbial transplant (whether of faeces, defined mixtures 
of bacterial strains or single strains) could be designed to target markers of disease 
or treatment success that have been identified by MWAS (reviewed in REF. 118). 
Alternatively, new drugs could be developed to target the products of these 
marker genes71,114,119,120.
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a clean microbial background that enables the spe-
cific study of microorganisms of interest. However, 
the results that are obtained using germ-free mice 
should be interpreted with caution, as these mice are 
metabolically, immunologically and neurologically 
abnormal, owing to physiological changes such as an 
overproduction of corticosterone, an increase in the 
level of triglycerides and an impairment of the blood–
brain barrier75–79. As an alternative to germ-free mice,  
specific pathogen-free mice may be used as animal mod-
els. Results that are obtained using these mice may be 
of more translational value than those that are obtained 
using germ-free mice; although, colonization of spe-
cific pathogen-free mice can be more challenging than 
germ-free mice, this can be addressed by the use of 
mutant mice that are deficient for specific genes57,72. 
Studies using animal models that more closely resem-
ble humans, such as pigs or minipigs, or simpler — 
and therefore more experimentally tractable — model 
organisms, such as nematodes, are also important for 
functional investigations of the microbiome74,80–82.

An example of pioneering work that used an animal 
model of the gut microbiota is the demonstration of a 
causal role for the gut microbiota in obesity. Germ-free 
mice that had received a faecal microbial transplant from 
obese human donors had a greater increase in adiposity 
than germ-free mice that had received a faecal microbial 
transplant from lean human donors73,83. Furthermore, 
in agreement with associations that were identified by 
MWAS18,19 (TABLE 1), several species of bacteria, including 
Akkermansia muciniphila and F. prausnitzii, have been 
shown to have functions that prevent obesity in mouse 
models or in mouse gut organoids84.

Although longitudinal studies of human cohorts 
and studies that use animal models can help to estab-
lish a causal link for associations that are identified 
by MWAS, elucidating the mechanism that underlies 
the association may rely on functional studies that are 
aimed at understanding the microbiology of individ-
ual bacterial strains, as well as their interactions with 
each other and with host molecules85–87, cells and tis-
sues84,88. Such studies would also help to characterize 
the microbial genes and products that drive the devel-
opment or progression of disease, as these genes and 
products may not yet have known functions in existing 
databases89. For example, in vitro studies of the Gram-
positive bacillus E. lenta, which has been identified in 
MWAS that investigated type 2 diabetes and rheuma-
toid arthritis, found that an operon that encodes two 
genes that are predicted to be bacterial cytochromes 
inactivates the cardiac drug digoxin and that this 
inactivation is inhibited by arginine90,91. Differences 
in digoxin metabolism between strains of E. lenta or 
between different individuals could then be explained 
by the presence or absence of this operon, although 
the relevance, if any, to type 2 diabetes or rheumatoid 
arthritis remains unknown9,45.

Together, longitudinal studies of human cohorts, 
studies that use animal models and in vitro functional 
studies of microorganisms and microbial products may 
help to establish how associations that are identified by 

MWAS relate to the aetiology of a disease. As the field 
of MWAS is still in its infancy, with only a small num-
ber of studies that have been reported to date and with  
relatively small samples sizes, follow‑up studies that 
have investigated causality of MWAS findings have 
not yet been reported, although, as mentioned above, 
animal models that use faecal transplants or antibiotic 
treatment have shown the involvement of the gut micro-
biota in the development of some diseases. Therefore, 
elucidating causal associations between the microbiome 
and disease remains an important challenge.

Conclusions and future perspectives
Despite sample sizes that are orders of magnitude 
smaller than GWAS, MWAS have been able to identify 
microbial markers that are associated with complex 
diseases, including type 2 diabetes, obesity, liver cirrho-
sis, colorectal cancer and rheumatoid arthritis (BOX 2; 

TABLE 1). Notably, the production of butyrate has been 
repeatedly identified as a feature of a healthy gut micro-
biome; preliminary associations have also been made 
for numerous other functions and genes but require 
further investigation.

Improving the power of MWAS to identify associa-
tions between the microbiome and disease will depend 
on resolving challenges in sampling, sequencing, bioin-
formatics analyses and the functional characterization 
of the microbiome. For example, the taxonomic anno-
tation of metagenomic datasets (BOX 1) will improve as 
more microbial genome sequences become available 
from ongoing sequencing efforts, such as those using 
genome-resolved metagenomic assemblies53,92–94 and 
single-cell sequencing methods95,96, which promise to 
substantially increase the availability of genomes for 
species that cannot be cultivated in the laboratory. 
These advances may enable the construction of a com-
prehensive reference genome catalogue that could be 
used for high-resolution analyses as an alternative to the 
clustering of reference genes. Genome-based analyses 
will have to take into account the effects of horizontal 
gene transfer by mobile genetic elements, such as plas-
mids, transposons and bacteriophages3,93,97–101, which 
may be relatively common in crowded environments 
such as the human gut98. Such elements are among the 
genetic variants in the microbiome, which also include 
SNPs, indels and copy number variations (CNVs)102–104, 
that high-resolution studies could investigate for asso-
ciations with a host phenotype. The availability of a 
reference genome catalogue would also help to resolve 
the gap between taxon-level and function-level analy-
ses, which are largely separated in the gene catalogue 
approach used by current MWAS (BOX 1). The gap 
may be further narrowed through the incorporation 
of multiomic data, which provide more informative 
measurements of community function. Finally, future 
MWAS may also look for associations between diseases 
and eukaryotic viruses or eukaryotic microorganisms.

The ultimate goal of MWAS is to inform improved 
diagnostics or therapeutic (or preventive) interventions, 
which may include changes to the diet or lifestyle of an 
individual, or clinical interventions, such as microbial 

Specific pathogen-free mice
Laboratory mice that are free 
of particular pathogens that 
could interfere with 
experiments. The excluded 
pathogens include both viral 
and bacterial pathogens.

Organoids
Organ-like structures that are 
grown in the laboratory.

Mobile genetic elements
DNA sequences that can be 
transferred between genomes 
or between loci of the same 
genome.
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transplant or drug treatment. However, such clinical 
benefits will depend on a more detailed definition of 
the healthy microbiome, which can vary substantially 
between individuals. Currently, information on the 
healthy microbiome is limited, owing to relatively small 
sample sizes and metadata that are incomplete or that 
have not been shared with the public. One important 
use of an improved definition of the healthy microbiome 
may be the design of microbial transplant treatments. 
For those transplants that use faeces from a donor, a well- 
defined set of criteria that denote a healthy microbiome 

may be useful in donor selection and could be used to 
maintain a bank of quality-controlled donor samples. 
The criteria may also be useful for determining which 
strains to include in laboratory cultivated microbial 
cocktails for use in microbial transplant treatments. 
When combined with a more comprehensive under-
standing of the ‘healthy’ microbiome, we expect that 
improved sampling, sequencing, bioinformatics analy-
ses and functional characterization will empower future 
MWAS to have many applications in human health 
and disease.
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