

DTU Health Technology Bioinformatics

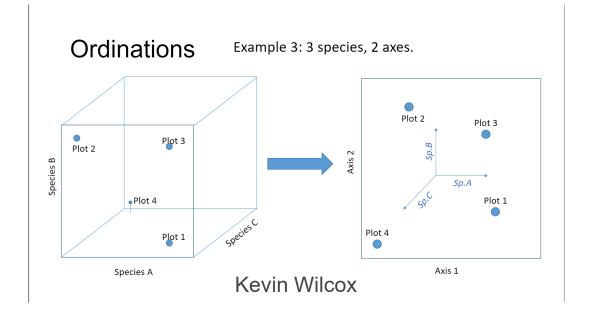
Ordination methods

Gisle Vestergaard
Associate Professor
Section of Bioinformatics
Technical University of Denmark

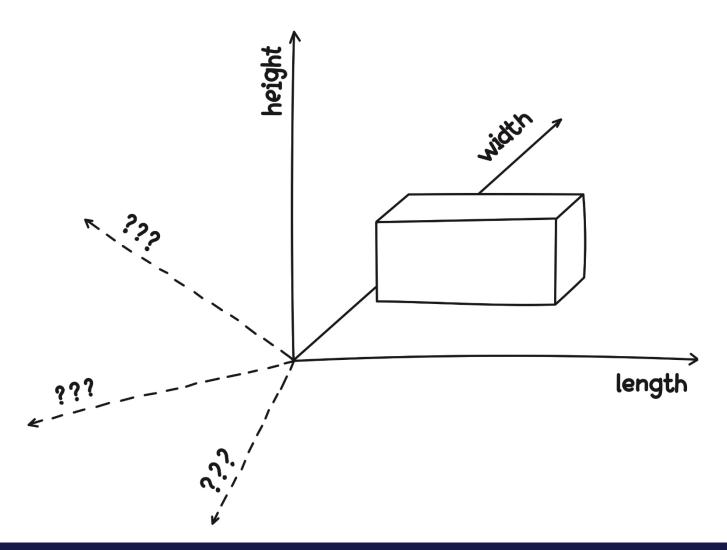
Menu

- What is ordination?
- What are we using ordination for?
- Principal Coordinates Analysis (PCoA) & Principal Components Analysis (PCA)

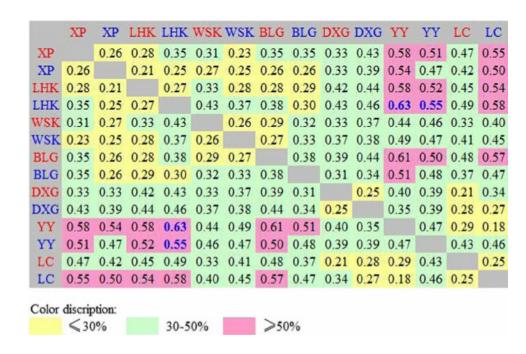
Many types of ordination


- Becoming part of the clergy
- Nonmetric Multidimensional Scaling (NMDS)
- Correspondence Analysis (CA)
- Many more
- We will focus on Principal Coordinates Analysis (PCoA)

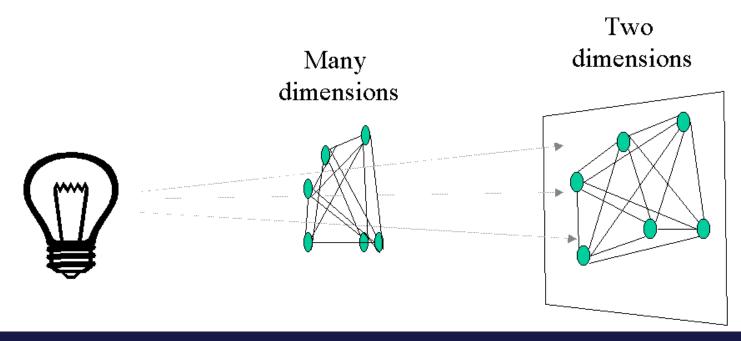
Ordination in ecology


- A statistical technique in which data from a large number of sites or populations are represented as points in a multidimensional space.
- 2 OTUs/ASVs/Genes = 2 axes
- 3 OTUs/ASVs/Genes = 3 axes
- n OTUs/ASVs/Genes = n axes
- Squish into 2 or 3 dimensions

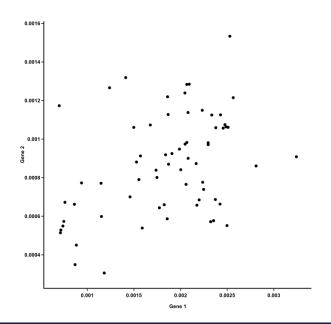
Mainly used for exploratory analysis and NOT hypothesis testing

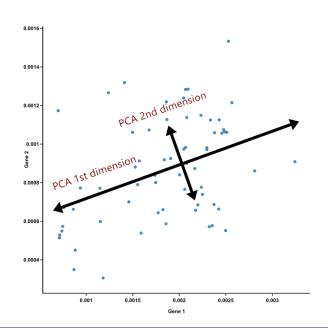

N-space

Distance matrix


Pairwise distances

Principal Coordinates Analysis - PCoA

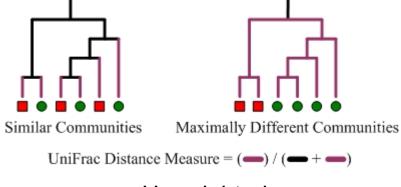

- Principal Coordinates Analysis (PCoA) incorporates the distance between all samples
- Displays a image (often 2D) with matrix rotated so first axis shows maximal variance
 - The maximum variation uncorrelated with axis 1 is projected on the second axis
- Principal Components Analysis (PCA) is a PCoA here the distance metric is Euclidean



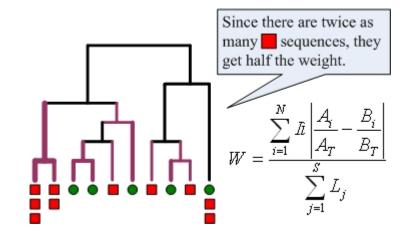
Principal Components Analysis - PCA

- Principal Components Analysis (PCA) is a rotation of the original data matrix
- Maximum variance is projected or "extracted" along the first axis
 - The maximum variation uncorrelated with axis 1 is projected on the second axis
 - The maximum variation uncorrelated with the first and second axis is projected on the third axis
 - Etc.

All those zeroes...


• Excess of zero skews results

ID	9	7284	7536	6366	6
Unassigned;Other	0,004093485	0,00659483	0,009890426	0,003651382	0,00570
kArchaea;pEuryarchaeota	0	0	0	0	
kBacteria;Other	0	0	0	1,77E-05	
kBacteria;pAcidobacteria	0	0	0	0	
kBacteria;pActinobacteria	0,000437338	0,000441618	0,000184676	1,77E-05	0,00079
kBacteria;pBacteroidetes	0,032695403	0,598672202	0,081011204	0,011025046	0,00074
kBacteria;pChlorobi	0	0	0	0	
kBacteria;pCyanobacteria	0	0	0	0	
kBacteria;pElusimicrobia	0	0	0	0	
kBacteria;pFirmicutes	0,961759149	0,104148266	0,907969795	0,964017938	0,98011
kBacteria;pFusobacteria	0	0,269313431	0	0	0,00098
kBacteria;pLentisphaerae	0	0	0	0	
kBacteria;pPlanctomycetes	0	0	0	0	
kBacteria;pProteobacteria	0,001014625	0,020829653	0,0009439	0,013931971	0,01166
kBacteria;pSynergistetes	0	0	0	0	
kBacteria;pTM7	0	0	0	0	
kBacteria;pTenericutes	0	0	0	0,007338214	
kBacteria;pVerrucomicrobia	0	0	0	0	
Unassigned;Other;Other	0,004093485	0,00659483	0,009890426	0,003651382	0,00570
kArchaea;pEuryarchaeota;cMethanobacteria	0	0	0	0	
kBacteria;Other;Other	0	0	0	1,77E-05	
kBacteria;pAcidobacteria;c[Chloracidobacteria]	0	0	0	0	
kBacteria;pActinobacteria;cActinobacteria	0	0	4,10E-05	0	0,00069
k Bactaria n Actinobactoriae Coriobactoriia	0.000427220	0.000441619	0.0001/12627	1 775.05	0.59



Unifrac

- Distance metric
 - The distance between the two samples is calculated as (the sum of "unshared" branch lengths)/(the sum of all tree branch lengths)
 - i.e. the fraction of total branch length which is unshared.
- Weighted Unifrac incorporates abundance
- Has good separation power (<u>Thorsen et al., 2016</u>)

Unweighted

11

Example

24. september 2019 DTU Sundhedsteknologi Ordination methods

12