

DTU Health Technology Bioinformatics

Metagenomics and Microbiome Analysis: Introduction to course

Gisle Vestergaard Associate professor Section of Bioinformatics Technical University of Denmark gisves@dtu.dk

Menu

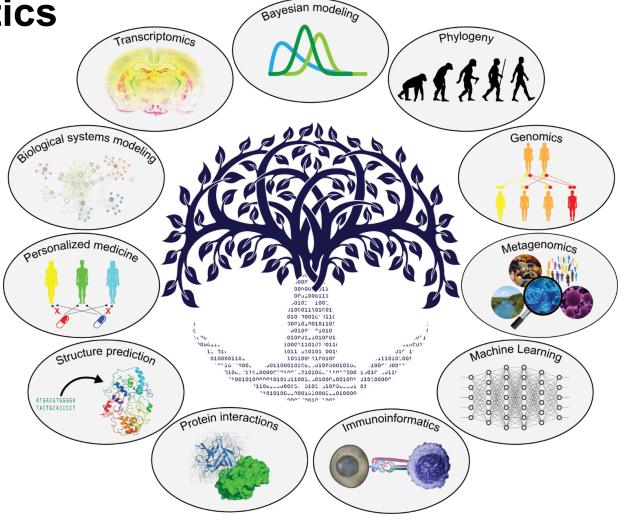
- Who are we?
- What is this course about?
- Course timeline
- Exam and evaluation
- Project
- Pre-test

Course responsible

Gisle Vestergaard

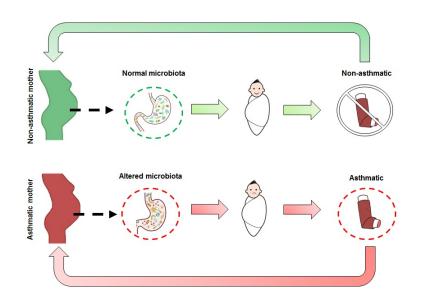
Associate Professor, Section of Bioinformatics

Marlene Danner Dalgaard


Senior researcher, Head of DTU Multi-AssayCore (DMAC)

Section of Bioinformatics

Solving biological problems using a wide variety of state-of-the-art informatics solutions



Who am I?

- PhD in Biochemistry from Copenhagen University
- Postdoc at Helmholtz Zentrum München on a Humboldt Research Fellowship
- Assistant Professor at Copenhagen University in 2018
- Associate Professor at DTU in 2019
- Taught NGS in München and at Copenhagen University
- Head of studies for the MSc degree in Bioinformatics and Systems Biology

Who are we?

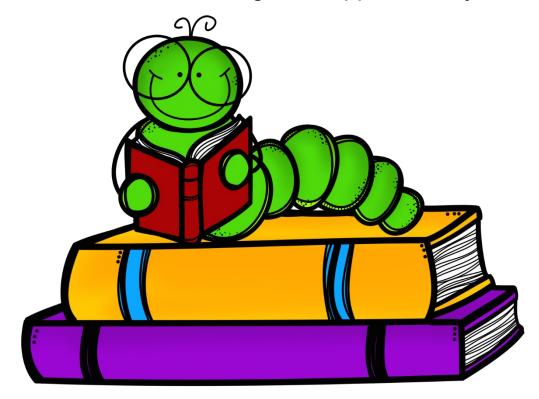
- MSc in Molecular Biology and Chemistry
- PhD in Human Biology: Testicular Cancer
- Senior Researcher, Head of DMAC: Multiassay Core Facility
- 6th year course responsible

Who are you?

- 30 Participants
- Master students
 - Bioinformatics and Systems Biology
 - Biotechnology
 - Quantitative biology
 - Mathematical Modelling and Computation
- Quite a lot of externals

Feedback

- Sixth time course is running
- Second time I am course responsible
- We are still improving
- Please give us feedback!
 - Please do the evaluation at DTU Inside


Learning objectives

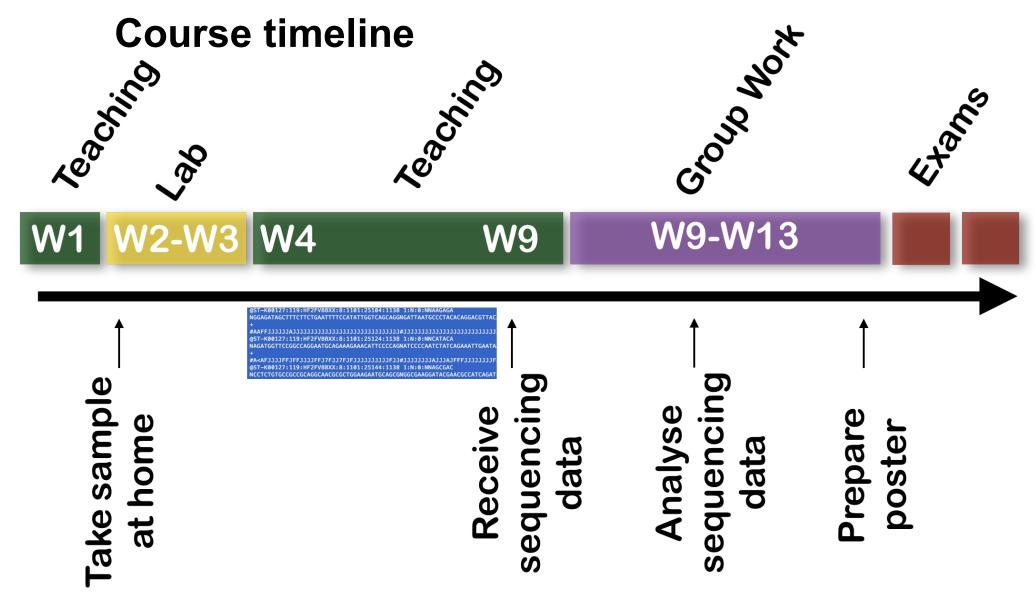
- Explain the concept of metagenomics and its applications opposed to single genomics
- Discuss a possible metagenomics experimental design; from sampling to sequencing
- Explain basic metagenomic data generation
- Explain the advantages and limitations of microbiome data
- Perform basic metagenomics analysis
- Explain the basic principles of microbiome ecology
- Explain the basic principles of quantitative count based data analysis
- Perform basic quantitative count based data analysis
- Perform calculations of basic ecological measures
- Present project work orally and on a poster

Course material

- No text book required
- Material will be distributed during the course on DTU Inside and the homepage
- You will also find recommended reading and supplementary information on the homepage

Online learning, recommended reading and supplementary information

Will NOT be part of the curriculum


Great recent overview paper: "Best practices for analysing microbiomes" https://www.nature.com/articles/s41579-018-0029-9.pdf

Coursera course: "Gut Check: Exploring Your Microbiome" https://www.coursera.org/learn/microbiome

Videos, reading and quizzes

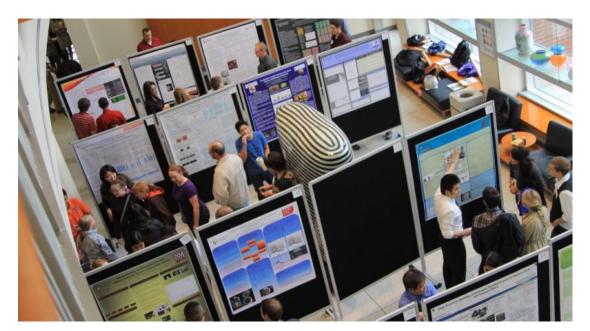
2. september 2020

YOUR microbial metagenomic study

- Today design this years microbial metagenomic study
- Limitations have to be considered: time limitation, effect, cohort size, feasibility
- Collect samples until next weeks laboratory exercise
- Previous years this has always been a students stool used for an intervention study EXCEPT last year!

Wet lab exercise

- 2 days of laboratory work at Room 006 in Building 208 and Laboratory Room 001 also in Building 208
- Sampling, purification and extraction of DNA, QC
- Library preparation and sequencing
- Don't worry if you lack wet-lab experience!!



15

Exams & grading

- Group work with individual exams
 - Each group of 3-4 people will present their poster for about 15 minutes
 - Each member of the group will be examined individually about course objectives and the project for 5-15 minutes
- 2 hour written exam without aids

Oral exam / Group work

- Group work with individual exams
 - Each group of 3-4 people will present their poster for about 15 minutes
 - Each member of the group will be examined individually about course objectives and the project for 5-15 minutes
- You will have the chance to assign the groups of 3-4 people
- Questions?

Written exam

- 2 hours written exam without help
- Questions?

Deliverables

- See program webpage for overview and dates
- Quizzes and assignments are not graded but important when planning recap sessions
- Questions?

Deliverable	Date	Description
1	02/09-2020	Class Room presentation in groups: Intervention study
11	09/09-2020	Hand-in: Lab protocol Powersoil Kit
III	16/09-2020	Hand-in: Lab protocol Nextflex DNAseq kit
IV	28/09-2020	Hand-in: Sequencing technology report
V	30/09-2020	Class Room Quiz: NGS I
VI	28/10-2020	Class Room Quiz: NGS I+II & Quantitative metagenomics I+II

Cloud computing

- The course has moved to the Cloud!
- Danish National Supercomputer for Life Science (Computerome) located at DTU Risø
- 16048 cores, 92 Tb RAM an 3Pb storage
- We have 2 nodes via virtual machines
 - Each has +20 cores and 128 Gb RAM

Why shell terminal?

- The command-line is not as dangerous as it looks...trust us!
- Almost all tools for NGS analysis are command line only
- Generally more efficient/flexible, you can play around with the tools/data
- They can be pipelined, ie. analyzing 100 files in windowed mode is a pain ...
- Alternative approaches: Galaxy, CLC-workbench, Geneious

Course essentials

- Course homepage:
 - https://teaching.healthtech.dtu.dk/22136/index.php/22136:Course_plan_autumn_2020
- Teaching Wednesdays in Room 162, Building 210, EXCEPT:
 - Week 2 & 3 wet lab exercises at Room 162 in Building 210 and Laboratory Room 001 in Building 208
- Form groups for project work to begin 21.10.2020
- Poster exam 02.12.2020
- Written exam 18.12.2020

Course advice

- Use the cloud servers on other days than Wednesday
- Learn principles of how to analyse metagenomics data
- Use principles for your project
 - This includes formulating a project that can be answered with the time, tools and data you have available
- Use the cloud servers for group analysis and coordinate data heavy analysis across all groups (no need for all groups to perform assembly of the same data)
- Form groups with people from other backgrounds...diversity IS an advantage
- Use the cloud servers on other days than Wednesday
- ...and again please feel free to answer questions and give us feedback!!

Course breakdown – Week 1

W1 W2-W3 W4 W9 W9-W13

- Course introduction
- Pre-test
- General introduction to metagenomics
- Introduction to course study design
- Agreement on course study...YOUR study!

2. september 2020 DTU Sundhedsteknologi Introduction to course

24

Course breakdown - Week 2 & 3

W1 W2-W3 W4

W9

W9-W13

25

- Sample purification
- DNA isolation
- Quality control
- Fragmentation
- Create sequencing library

Course breakdown – Week 4

W1 W2-W3 W4 W9

W9-W13

26

- Introduction to UNIX
- Log on to Computerome
- Introduction to Next-Generation Sequencing
- Next-Generation Sequencing basics

Course breakdown – Week 5-9

W1 W2-W3 W4 W9 W9-W13

- R
- 16s rRNA analysis
- Quantitative metagenomics
- De novo assembly & Binning
- Human gut microbiome
- Association studies
- Group formation and project formulation

2. september 2020 DTU Sundhedsteknologi Introduction to course

27

Course breakdown – Week 9-13

Group work on projects

2. september 2020 DTU Sundhedsteknologi Introduction to course

28

Course breakdown – Exams

W1 W2-W3 W4 W9 W9-W13

- Oral presentation of project posters
 - Group work, 3-4 per group, and present results on a poster
 - Try to form diverse groups in terms of skills
 - Analyse your own data!
 - Supplement with existing data (e.g. MetaHIT, SRA…)
 - Don't run too large datasets (computational and time restrictions)

Pre-test

- 10 min individually
- Discuss in plenum and summarize
- Not used for grading, it will give us an idea of your level

