

DTU Health Technology Bioinformatics

Metagenomics and Microbiome Analysis: Introduction to course

Gisle Vestergaard
Associate professor
Section of Bioinformatics
Technical University of Denmark
gisves@dtu.dk

Menu

- Who are we?
- What is this course about?
- Course timeline
- Exam and evaluation
- Project
- Pre-test

Course responsible

Gisle Vestergaard

Associate Professor, Section of Bioinformatics

Marlene Danner Dalgaard

Senior researcher, Head of DTU Multi-AssayCore (DMAC)

Section of Bioinformatics

Solving biological problems using a wide variety of state-of-the-art informatics solutions

Who are we?

- PhD in Biochemistry from Copenhagen University
- Postdoc at Helmholtz Zentrum München on a Humboldt Research Fellowship
- Assistant Professor at Copenhagen University in 2018
- Associate Professor at DTU February 2019
- Taught NGS in München and at Copenhagen University
- Also organizer of the January course "Next-Generation-Sequencing Analysis"

Who are we?

- MSc in Molecular Biology and Chemistry
- PhD in Human Biology: Testicular Cancer
- Senior Researcher, Head of DMAC: Multiassay Core Facility
- 5th year course responsible

Who are you?

What stage?

- Master students
 - Systemsbiology
 - Biotechnology
 - Quantitative biology
- A PhD student
- A handful of externals

Feedback

- Eighth time course is running
- First time I am running the course
- We are still improving
- Please give us feedback!
 - Please do the evaluation at DTU Inside

Learning objectives

- Explain the concept of metagenomics and its applications opposed to single genomics
- Discuss a possible metagenomics experimental design; from sampling to sequencing
- Explain basic metagenomic data generation
- Explain the advantages and limitations of microbiome data
- Perform basic metagenomics analysis
- Explain the basic principles of microbiome ecology
- Explain the basic principles of quantitative count based data analysis
- Perform basic quantitative count based data analysis
- Perform calculations of basic ecological measures
- Present project work orally and on a poster

Course material

- No text book required
- Material will be distributed during the course on Campus net and especially the wiki

http://teaching.healthtech.dtu.dk/36636/index.php/36636:Course_plan_autumn_2019

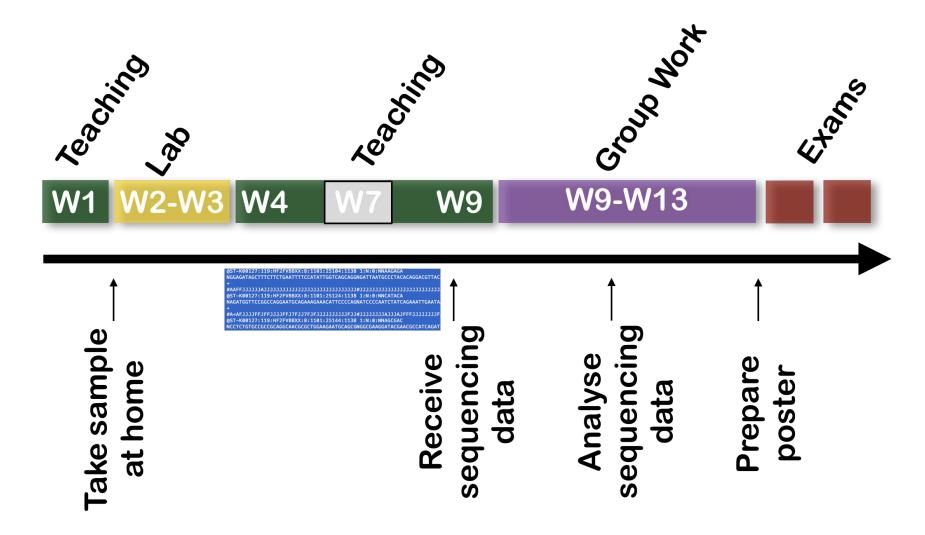
4. september 2019 DTU Sundhedsteknologi Introduction to course

11

Online learning

WILL NOT BE PART OF THE CURRICULUM

Great recent overview paper: "Best practices for analysing microbiomes" https://www.nature.com/articles/s41579-018-0029-9.pdf


Coursera course: "Gut Check: Exploring Your Microbiome" https://www.coursera.org/learn/microbiome

Videos, reading and quizzes

Course timeline

4. september 2019 DTU Sundhedsteknologi Introduction to course

13

YOUR microbial metagenomic study

- Today design this years microbial metagenomic study
- Limitations have to be considered: time limitation, effect, cohort size, feasibility
- Collect samples until next weeks laboratory exercise
- Previous years this has always been a students stool used for an intervention study

Wet lab exercise

- 2 days of laboratory work at Room 006 in Building 208 and Laboratory Room 001 also in Building 208
- Sampling, purification and extraction of DNA, QC
- Library preparation and sequencing
- Don't worry if you lack wet-lab experience!!

Exams & grading

- Oral exam/Group Work:
 - Each group will prepare a poster and present the poster for a group of examiners
 - Afterwards each group member will be individually questioned about the course objectives and your project (~ 5-10min) that you have prepared as a group
- 2 hours Written exam without help
- Deliverables:
 - Quizzes and assignments

Oral exam / Group work

- Oral exam/Group Work:
 - Each group will prepare a poster and present the poster for a group of examiners
 - Afterwards each group member will be individually questioned about the course objectives and your project (~ 5-10min) that you have prepared as a group
 - You will have the chance to assign the groups
 - Questions?

40%

Written exam

- 2 hours written exam without help
- Questions?

40%

Deliverables

- See program webpage for overview and dates
- Quizzes and assignments graded as passed/not passed
- Questions?

Deliverable	Date	Description
I	04/09-2019	Class Room presentation in groups: Intervention study
II	09/09-2019 23:59	Hand-in: Lab protocol Powersoil Kit
III	17/09-2019 23:59	Hand-in: Lab protocol Nextflex DNAseq kit
IV	30/09-2019 23:59	Hand-in: Sequencing technology report
V	02/10-2019	Class Room Quiz: NGS I
VI	30/10-2019	Class Room Quiz: NGS I+II & Quantitative metagenomics I+II

20%

Cloud computing

- The course has moved to the Cloud!
- Danish National Supercomputer for Life Science (Computerome) located at DTU Risø
- 16048 cores, 92 Tb RAM an 3Pb storage
- We have 2 nodes
 - Each has 28 cores and 128 Gb RAM

Why shell terminal?

21

- The command-line is not as dangerous as it looks...trust us!
- Almost all tools for NGS analysis are command line only
- Generally more efficient/flexible, you can play around with the tools/data
- They can be pipelined, ie. analyzing 100 files in windowed mode is a pain ...
- Alternative approaches: Galaxy, CLC-workbench, Geneious

Course essentials

- Course wiki:
 - http://teaching.healthtech.dtu.dk/36636/index.php/36636:Course_plan_autumn_2019
- Teaching Wednesdays in Room 062, Building 208, EXCEPT:
 - Week 2 & 3 wet lab exercises at Room 006 in Building 208 and Laboratory Room 001 also in Building 208
- Form groups for project work to begin 23.10.2019
- Poster exam 04.12.2019
- Written exam 19.12.2019

Course advice

- Learn principles of how to analyse metagenomics data
- Use principles for your project
 - This includes formulating a project that can be answered with the tools and data you have available
- Use the cloud servers for group analysis and coordinate data heavy analysis across all groups (no need for all groups to perform assembly of the same data)
- Form groups with people from other backgrounds...diversity IS an advantage
- ...and again please feel free to answer questions and give us feedback!!

Course breakdown – Week 1

- Course introduction
- Pre-test
- General introduction to metagenomics
- Introduction to course study design
- Agreement on course study...YOUR study!

Course breakdown – Week 2 & 3

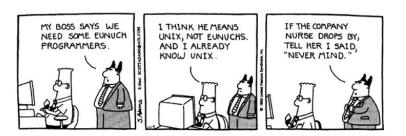
W1 W2-W3 W4

W7

W9

W9-W13

- Sample purification
- DNA isolation
- Quality control
- Fragmentation
- Create sequencing library



Course breakdown – Week 4

W1 W2-W3 W4 W7 W9 W9-W13

- Introduction to UNIX
- Log on to Computerome
- Introduction to Next-Generation Sequencing
- Next-Generation Sequencing basics

26

Course breakdown – Week 5-9

W1 W2-W3 W4 W7 W9 W9-W13

- R
- 16s rRNA analysis
- Quantitative metagenomics
- De novo assembly & Binning
- Human gut microbiome
- Association studies
- Group formation and project formulation

4. september 2019 DTU Sundhedsteknologi Introduction to course

27

Course breakdown – Week 9-13

• Group work on projects

4. september 2019 DTU Sundhedsteknologi Introduction to course

28

Course breakdown – Exams

- Oral presentation of project posters
 - Group work, < 4 per group, and present results on a poster
 - try to form diverse groups in terms of skills
 - Analyse your own data!
 - supplement with existing data (e.g. MetaHIT, SRA…)
 - don't run too large datasets (computational and time restrictions)

Pre-test

- 10 min individually
- discuss in plenum and summarise
- not used for grading, it will give us an idea of your level

