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1984 - the birth of ancient DNA

NATURE VOL. 312 15 NOVEMBER 1984

DNA sequences from the quagga,
an extinct member of the horse family

Russell Higuchi*, Barbara Bowman®*, Mary Freiberger®,
Oliver A. Ryder! & Allan C. Wilson*

* Department of Biochemistry, University of California, Berkeley,
California 94720, USA

t Research Department, San Diego Zoo, San Diego,

California 92103, USA

To determine whether DNA survives and can be recovered from
the remains of extinct creatures, we have examined dried muscle
from a museum specimen of the quagga, a zebra-like species ( Equus
quagga) that became extinct in 1883 (ref. 1). We report that DNA

Unidentified reading frame 1

CCCAATCCTGCTC GCC GTA GCA TTC CTC ACACTA GYY GAA CGA AAA GTC TTA GGC TAC ATA CAA CTT CGT AAA GGA CCC AAC ATC GTA GGC CCC TAT GGC CTA CTA CAA CCC ATT AC
. . G

Quagga
Zebra ¢ o806 6av see vod caa se 2 25 R S

Cytochrome oxidase I

Quagga AGGAGGA TTCGTTCAC TGA TTC CCT CTA TTC TCA GGA TAC ACA CTC AAC CAA ACC TGA GCA AAA ATT CAC TTT ACA ATT ATA TTC GTA GGG GTC AAC ATA ATT TTC TTC CCA

Zebra T - 2 W P eooslosan nne ass

Fig. 1 Sequences of the coding strands determined for two pieces of quagga mtDNA. The sequences are arranged in triplets corresponding
to the amino acids that they encode. At 12 positions, the quagga sequences differ from those of mtDNA from a mountain zebra; only for
these positions is the nature of the base specified for the zebra. The two asterisks identify triplets at which the zebra and quagga differ by an
amino acid replacement.



Nobel prize in Medicine 2022

The Nobel Prize in Physiology or
Medicine 2022

Svante Paabo

Share this
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Facts

lll. Niklas EImehed © Nobel
Prize Outreach

Svante Paabo
The Nobel Prize in Physiology or Medicine 2022

Born: 20 April 1955, Stockholm, Sweden

Affiliation at the time of the award: Max Planck Institute for
Evolutionary Anthropology, Leipzig, Germany, Okinawa
Institute of Science and Technology, Okinawa, Japan

Prize motivation: “for his discoveries concerning the
genomes of extinct hominins and human evolution”

Prize share: 1/1
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Scholars on a quixotic quest to identify Leonardo da Vinci’s DNA achieve a
milestone
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The week in ancient DNA

New Results
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chromosome analysis from da Vinci-associated cultural artifacts

Harinder Singh, Seesandra V. Rajagopala, Rebecca Hart, Pille Hallast, Mark Loftus, Rosana Wiscovitch-Russo,
Cody R.K. Conrad, David S. Thaler, Guadalupe Pifar, Karina C. Aberg, Rossella Lorenzi, josé A Lorente,
Thomas P. Sakmar, Rhonda K. Roby, Charles Lee,

Jesse H. Ausubel,
doi: https://doi.org/10.64898/2026.01.06.697880
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Milestones in ancient DNA

1984 - First aDNA sequence

First aDNA
sequence

amplification

First aDNA PCR

First nuclear
aDNA fragment

First bone aDNA
extraction

First complete
ancient mitogenome

First environmental
aDNA

First reverse engineering
of an ancient virus

First Bayesian Skyline plot
using deep aDNA time series

First application of
NGS to ancient remains

First characterization of post-mortem
DNA damage sequence footprints

First metagenomic

analysis of paleofaeces |

e USER removal of post-mortem

DNA damage

» First ancient hominin genomes

e First expression and

» First metataxonomic analysis of

ancient dental calculus

functional testing of
ancient gene and protein
* First ancient bacterial

* Authentication criteria for NGS

sequence data

e D statistics applied to aDNA data

e First PSMC

Post-mortem DNA damage, mapDamage

complete ancient

* First extraction method for genome

ultrashort DNA fragments
» Single-stranded DNA libraries

* Oldest genome

(560,000-780,000 years ago)

* D and f statistics, admixtools

* Procrustes PCA projection

genomes
* Read processing,
mapping and

* mtDNA contamination estimates,

contamMix

» Recalibration and base-calling, freelBIS gpWave

* Analysis of NGS data, ANGSD

* Damage selective

e First contamination removal through
post-mortem DNA damage

* First metagenome and metaproteome
of ancient dental calculus

* Discovery of high endogenous content
in petrous

* First ancient epigenome

filtering of

demography based on

genotyping, PALEOMIX
* Population ancestry
modelling, gpAdm and

contamination, PMD

First automated

* Read processing, mapping
and genotyping, EAGER

* Ancient metagenomic
profiling, metaBIT

* Nuclear DNA contamination
estimates, DICE

* mtDNA contamination
estimates, Schmutzi

» Kinship inference, l[cMLkin

capture of aDNA |

* Tree-based selection
scans, LSD
» Kinship inference, READ

* Ancient epigenetic inference
* epiPALEOMIX

* aDNA read simulator, Gargammel

» High-accuracy
phylogenetic assignation
of metagenomic data

* Paleofaeces host species
identifier, coprolD

* Admixture date estimates,
DATE

* LIMS for aDNA CASCADE

* Damage-aware heterozygosity and

ROH estimates, ROHan

» Graph-aware detection of selective

sweeps, GRoSS
* Ancient metagenomic profiling,
HOPS

Orlando et al (2021) Nat Rev Methods Primers
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The ancient human DNA revolution
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Characteristics of ancient DNA

5,000 year-old human remains from the Provadia salt mine, Bulgaria



How does DNA degrade?

o :L —0 Purines
o
(2) (3)

Pyrimidines

(2)

- Site of hydrolytic
damage

Site of oxidative
damage

Major

Intermediate

4

Minor

Fellows Yates et al (2024) Zenodo. https://doi.org/10.5281/zenodo.153784555



Fragmentation of DNA
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Fellows Yates et al (2024) Zenodo. https://doi.org/10.5281/zenodo.153784555



Characteristics of ancient DNA

------- - Netherlands, 1600-1850 CE
Caribbean, 1000-1500 CE

..... Nepal, 400-650 CE
---------- Spain, 2300-2900 BCE

Count of DNA fragments

o wm b = =,

I I I
50 100 150 200 250 300

DNA fragment length

Ancient DNA is short and fragmented

Fellows Yates et al (2024) Zenodo. https://doi.org/10.5281/zenodo.13784555



Accumulation of DNA damage
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Characteristics of ancient DNA

Frequency
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Ancient DNA is damaged with characteristic substitution patterns

Fellows Yates et al (2024) Zenodo. https://doi.org/10.5281/zenodo.13784555



Characteristics of ancient DNA

— Neanderthal, >40,000 BP
- Scandinavia, 5,000 BP
- (Costa Rica, 1,000 BP

C toT substitution frequency

0 5 10 15 20 25
nt from 5’ end

Ancient DNA damage rates depend on microenvirenmental conditions

Fellows Yates et al (2024) Zenodo. https://doi.org/10.5281/zenodo.13784555



Ancient DNA challenges

Sample DNA sequences Analysis results
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Stoneking and Krause (2011) Nat Rev Genet; Novembre et al (2008) Nature



Ancient DNA challenges

Sample DNA sequences Analysis results

DNA recovery Data quality

Contamination
Genome coverage
Error rates

Preservation
Sample material

Stoneking and Krause (2011) Nat Rev Genet; Novembre et al (2008) Nature



Ancient DNA challenges

Sample DNA sequences

DNA recovery

Preservation
Sample material

Stoneking and Krause (2011) Nat Rev Genet; Novembre et al (2008) Nature



Challenges - Ancient DNA preservation
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Allentoft et al (2012) Proc R Soc B



Challenges - Ancient DNA preservation
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Challenges - Ancient DNA preservation
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DNA from a 1.2 million year old mammoth tooth is highly fragmented

van der Valk et al (2020) Nature



Challenges - Endogenous DNA content

Low endogenous
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Challenges - Endogenous DNA content

Low endogenous High endogenous

B Endogenous DNA

Other DNA

Endogenous DNA content varies substantially between samples



Challenges - Endogenous DNA content
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DNA capture enrichment (targeted or whole genome) to increase endogenous DNA



Impact of sample material
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Impact of sample material
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Ancient DNA challenges

DNA sequences Analysis results

Data quality

Contamination
Genome coverage
Error rates

Stoneking and Krause (2011) Nat Rev Genet; Novembre et al (2008) Nature



Challenges - Contamination

Ancient human
DNA

Stoneking and Krause (2011) Nat Rev Genet



Challenges - Contamination

Modern human
DNA contamination

Ancient human
DNA

Ancient DNA data is a complex mixture of DNA from different sources

Stoneking and Krause (2011) Nat Rev Genet



Challenges - Contamination

Monti Lessini (L906-H924)
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MC1R gene fragments amplified from Monti Lessini Neandertal DNA extract

Lalueza-Fox et al (2007) Science



Challenges - Contamination
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Authentication of ancient DNA

------- - Netherlands, 1600-1850 CE
— (Caribbean, 1000-1500 CE

_____ Nepal, 400-650 CE C—=-T G—=>A
.......... Spain, 2300-2900 BCE

0

o >

= O

5 S

= QU

= N

0 S

@)

: S

3 L

o

D W s
‘ =y e ’ ’
| | | TR e 5 3
50 100 150 200 250 300 B ase

DNA fragment length

Ancient DNA is damaged

’ is short f t . . o
Ancient DNA is short and fragmented with characteristic substitution patterns



Authentication of ancient DNA
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Challenges - Genome coverage and errors
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Challenges - Genome coverage and errors
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Challenges - Genome coverage and errors
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Challenges - Genome coverage and errors
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Challenges - Genome coverage and errors
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Challenges - Genome coverage and errors
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Population genetic analysis of ancient DNA data

Principal component analysis Model-based clustering f-statistics
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Kinship and plague in Stone Age Scandinavia
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Population genomics of late Neolithic Scandinavia
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Genetic diversity of human populations
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Recent admixture with Pitted-ware culture hunter-gatherers
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A five generation pedigree of Neolithic farmers

FRAO11 |
FRAOO1 | FRAOO02

FRAO004 | FRAOO7 FRAO12
FRAOO03 FRAO05 FRAO06

FRAO21

e ]

’ . .
' Hjelmars ror

-

FRAO022 | FRA023

os ™ mm mm mm s mmfem
= E = =

FRA028 « HJEOO3 HJEO12 .

--------

FRA0O24 FRA025 FRAO26 FRA020 FRAO027

FRAO39 FRAO040

FRAO1 3

Gok2

FRAO029

FRAO09 FRAO10 FRAO41 FRAO042

TEEEESEY

FRA101 FRA102 FRA103 FRA104 FRA105 FRA106 FRA107 FRA108

FRAO30 FRAO031 FRAO037

FRAO034

FRAOS3 FRAO35

FRAO32

Gok4

Unrelated

FRAO38

Pedigree of 38 sequenced individuals suggests patrilineal and patrilocal social organisation

Seersholm et al (2024) Nature



High prevalence of plague in late Neolithic Scandinavia
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Multiple plague strains in Neolithic farmer families
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Multiple plague strains in Neolithic farmer families
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Did plague play a role in the Neolithic decline?
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Reconstruction of a 2 million year-old ecosystem from ancient environmental DNA
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