

22126: Next Generation Sequencing Analysis DTU - January 2026 Mick Westbury

Mick Westbury
Associate Professor
Section of Bioinformatics
Technical University of Denmark
micwe@dtu.dk

Title

Date

VARIANT FILTERING

Date Technical University of Denmark Title

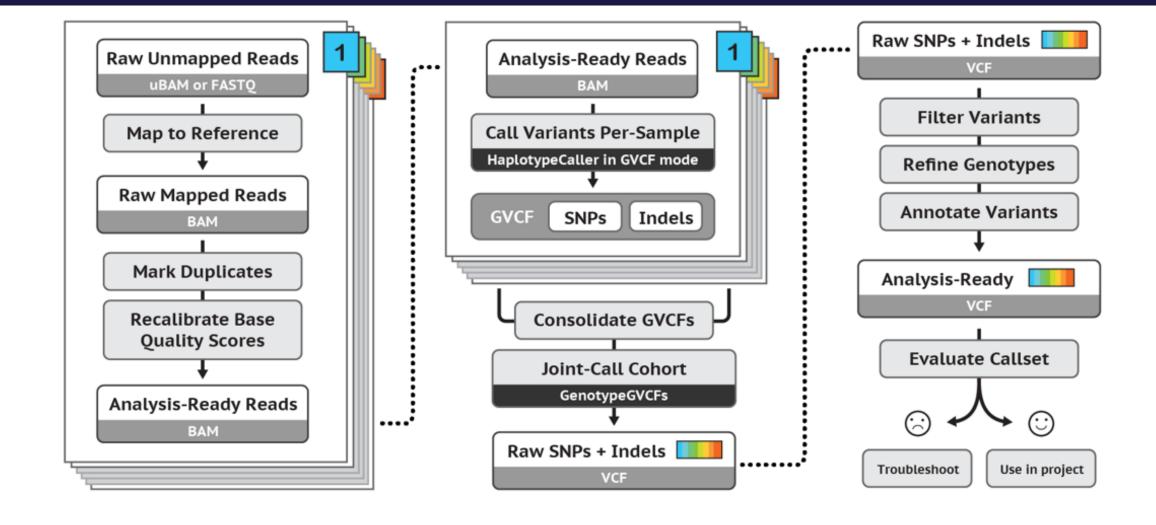
NGS Analysis workflow

Question

Q Ö Raw

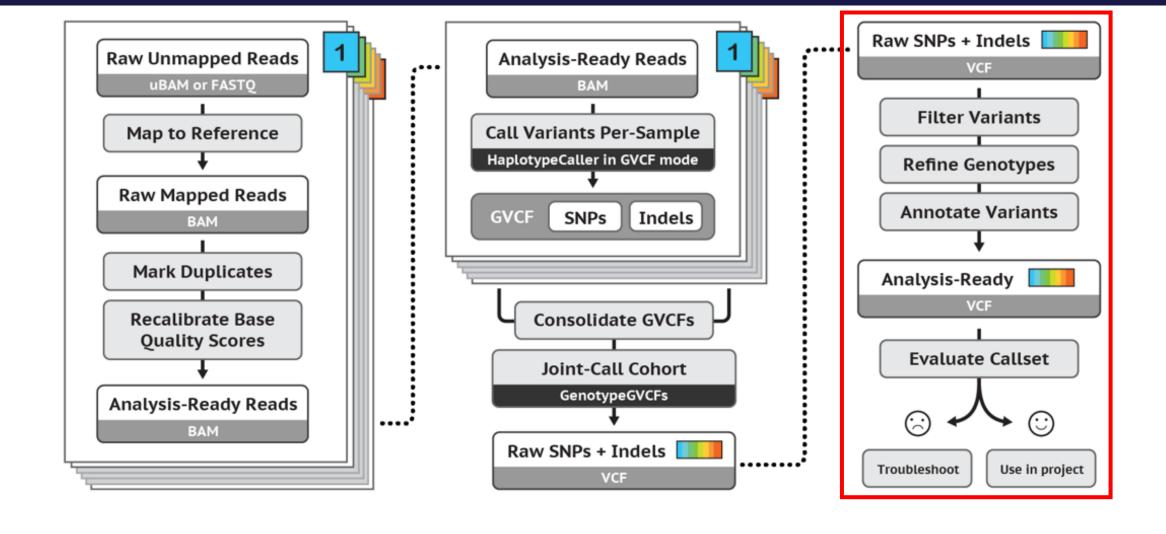
5 -proce 9

mapping or de Assembly **000** calling Variant


ost-processing

Comparison

Answer


Technical University of Denmark

Best Practices for SNP and Indel discovery in germline DNA
- leveraging groundbreaking methods for combined power
and scalability.

Best Practices for SNP and Indel discovery in germline DNA
- leveraging groundbreaking methods for combined power
and scalability.

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - -Extremely high depth
 - Alignment artifacts
 - -Repetitive regions

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - Insufficient evidence → random sequencing errors called as variants
 - -Extremely high depth
 - -Alignment artifacts
 - -Repetitive regions

Reference genome

ACGTCGTCAGTACGTCA CAGCACGTCAACGTACGTACG

Sequencing error or variant?

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - Extremely high depth
 - Often indicates mis-mapping or duplicated reads
 - -Alignment artifacts
 - -Repetitive regions

Reference genome

TGACGTCGTCAGTACGTCAACG
ACGTCGTCAGTACGTCA
CAGCACGTCAACGTACGTACG
CAGCACGTCAACGTACGTACG
CAGCACGTCAACGTACGTACG
CAGCACGTCAACGTACGTACG

Trustworthy?

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - -Extremely high depth
 - -Alignment artifacts
 - Indels, soft-clipping, local misalignment near variants
 - -Repetitive regions

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - -Extremely high depth
 - Alignment artifacts
 - -Repetitive regions
 - Reads map ambiguously → inflated depth and spurious variants

- Raw VCFs contain many false positives
- Causes of false positives:
 - -Low depth
 - Extremely high depth
 - Alignment artifacts
 - Repetitive regions

Reflection prompt (1 min):

What's worse: missing a real variant (false negative) or believing a false variant (false positive)? Why?

Goals of Variant Post-processing

- Remove technical artifacts
 - -Filter variants caused by sequencing, PCR, or alignment errors

Goals of Variant Post-processing

- Remove technical artifacts
 - -Filter variants caused by sequencing, PCR, or alignment errors
- Retain biologically plausible variants
 - -Consistent with expected allele balance, depth
 - -Respect organism biology (ploidy, heterozygosity, mutation rate)

Goals of Variant Post-processing

- Remove technical artifacts
 - -Filter variants caused by sequencing, PCR, or alignment errors
- Retain biologically plausible variants
 - -Consistent with expected allele balance, depth
 - -Respect organism biology (ploidy, heterozygosity, mutation rate)
- Increase precision with minimal sensitivity loss
 - -Reduce false positives while keeping true variants
 - Accept that some true variants may be filtered

Variant Post-processing Approaches

- Hard filtering
- Variant Quality Score Recalibration (VQSR)

Hard Filtering

- Apply fixed, user-defined thresholds to variant-level metrics
- Variants failing any threshold are removed
- Key properties
 - -Simple and transparent
 - –Easy to reproduce
 - No model training required

Hard Filtering Metrics

- Variant quality (QUAL, QUAL/DP)
 - -Confidence of the variant call relative to depth
- Depth (DP)
 - -Remove low-support and abnormally high-coverage variants
- Mapping quality (MQ) / mappability
 - -Poor or ambiguous read placement
- Read / base quality metrics
 - Low-quality evidence for the alternate allele

Mappability

- Measures uniqueness of read placement in the genome
- Low mappability → repetitive regions → ambiguous mapping
- Causes inflated depth and false-positive variants
- Often handled using genome masks or mappability tracks

Hard Filtering Limitations

- Thresholds depend on the data and project
 - -Coverage, library prep, organism, ploidy
 - Assumes one set of cutoffs fits all variants
- Introduces systematic bias
 - –Against indels
 - Against low-frequency variants
 - -Against variants in difficult regions
- Can reduce sensitivity if applied too aggressively

Variant Quality Score Recalibration

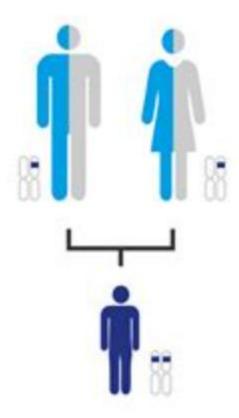
- Model-based variant filtering (GATK)
- Learns characteristics of true variants from known datasets
- Assigns a probability-based quality score to each variant
- Improves precision—recall balance compared to hard filtering
- Requires large datasets and high-quality truth sets

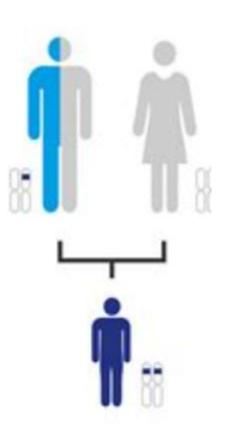
Variant Quality Score Recalibration

- Model-based variant filtering (GATK)
- Learns characteristics of true variants from known datasets
- Assigns a probability-based quality score to each variant
- Improves precision—recall balance compared to hard filtering
- Requires large datasets and high-quality truth sets

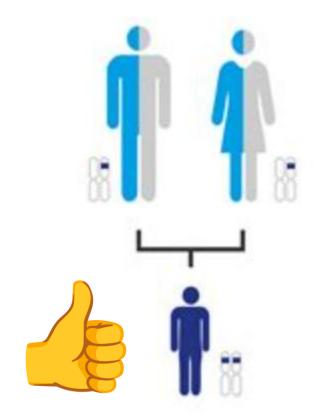
Reflection prompt:

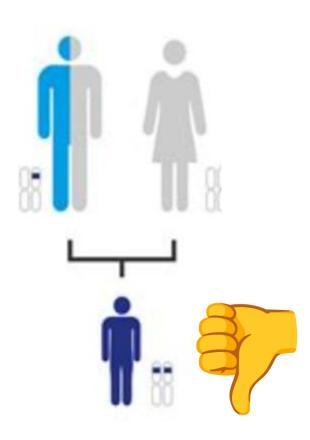
What kind of datasets is this NOT suitable for? Why?


- Improve genotype accuracy after variant calling
- Resolve uncertain or low-confidence genotype assignments
- Key idea
 - Combine sequencing evidence with biological constraints and prior information

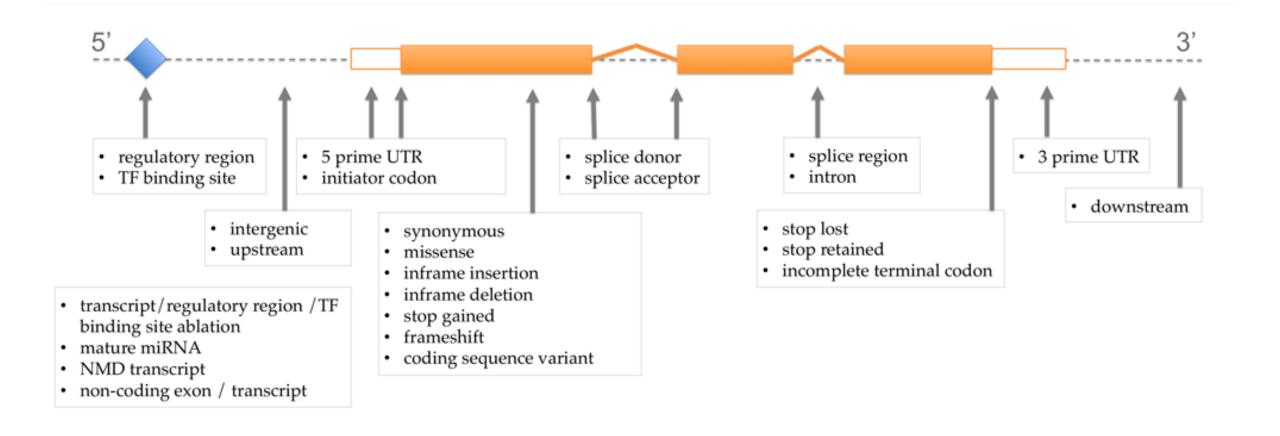


- Family-based refinement
 - -Enforces Mendelian consistency in trios and pedigrees
 - -Corrects genotypes inconsistent with inheritance
- Population-based refinement
 - Uses allele frequency priors
 - -Penalizes unlikely genotypes given population context
- Recalculation of genotype likelihoods
 - –Updates genotype probabilities using:
 - Depth, base quality, allele balance


Family-based refinement



Family-based refinement



- Requires accurate pedigree or population information
- Population priors can bias:
 - -Rare variants
 - Population-specific alleles
- Limited benefit for:
 - -Single samples
 - -Small datasets
 - –Non-model organisms

- Understand biological relevance
 - -Clinical Significance (pathogenic or not)
 - –Effects on protein
 - –Drug-response interpretation
 - Enable filtering & prioritisation of variants in analysis pipelines

- Protein functional categories
 - -Synonymous (same amino acid)
 - -Missense (difference amino acid)
 - –Nonsense (loss of function)
- Impact predictions
- Splice-site and regulatory variants

- Protein functional categories
 - -Synonymous (same amino acid)
 - -Missense (difference amino acid)
 - –Nonsense (loss of function)
- Impact predictions
- Splice-site and regulatory variants

Reflection prompt:

A variant is classified as 'likely pathogenic'—what additional information would convince you it really causes disease?

ETHICS

Date

Technical University of Denmark

Ethics in Variant Analysis

Privacy and re-identification

- -Genomic data is inherently identifiable
- -Even "anonymised" variant data can enable re-identification
- -Data sharing requires strict access control and consent

Population ancestry inference

- -Variants are often correlated with ancestry
- -Can lead to misinterpretation or misuse
- -Risk of reinforcing biological determinism or social bias

Interpretation/reporting responsibility

Actionable vs non-actionable variants

- Actionable: established clinical relevance and available intervention
- -Non-actionable: uncertain significance or no available treatment
- -Many variants fall into variants of uncertain significance (VUS)

Reporting guidelines

- Not all detected variants should be reported
- -Clinical reporting follows strict standards
- Over-reporting increases anxiety and misinterpretation

Reflection prompt

- If you discovered a potentially pathogenic variant in yourself, would you want to know? Why or why not?
- Points to consider
 - -Psychological impact
 - -Medical usefulness
 - -Implications for family members
 - -Right to know vs right *not* to know

Not only medical related...

A prosecutor reveals new details about the capture of one of America's most notorious serial killers

UPDATED NOV 20, 2025 [∨]

By Faith Karimi

Not only medical related...

- Golden state killer
 - -Series of violent crimes in California (1970s–1980s)
 - -Genetic approach
 - DNA recovered from historical crime scene evidence
 - Profile uploaded to a public genealogy database
 - No direct match to the suspect
 - Familial matching
 - Partial matches to distant relatives
 - Construction of extended family trees

Not only medical related...

- Golden state killer
 - –Key ethical issues
 - Relatives' genetic data used without their consent
 - Identification possible even if the individual never shared DNA
 - –Original intent of data use:
 - Genealogy and recreation
 - Not law enforcement
 - Broader implications
 - Demonstrates re-identification risk
 - Genomic data affects families, not just individuals
 - Blurred boundaries between:
 - Consumer genomics, Research, Forensic use

