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Why is structure important?

- Structure is more conserved than sequence
- Similar structures tend to have similar function.
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DNA organizes in the nucleus
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DNA organizes in the nucleus

How long do you think DNA inside a human cell is? ~2 m.

(] seiglerfone - 6y ago

The distance to the moon is 363,104 km to 405,696 km from the Earth.

The length of a human's DNA is 2-3m.

There is one copy of DNA in a cell normally (not during replication) and there are 37.2T cells in the human
body.

2 to 3 meters x 37.2T = 74,400,000,000 km to 111,600,000,000 km. Even if we only use the farthest away the
moon is, and the lower estimate for DNA length, that's stillovereatrips to the moon and back.
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I the sun 30 times, and the moon 6,000 times! I



Why is the 3D genome structure important?

v" Gives information on cell and metabolic regulation

v" Tells us about the expressed genes on a tissue in a certain
timepoint

v Helps us with assemblying new de novo reference genomes
v" Fundamental to understand embryo development
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The resolution gap:

Techniques used to study 3D DNA conformation. Knowledge gap in the between?
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Chromosome
Conformation
Capture
Techniques

Or... 3C derived techniques.

Hakim & Misteli, Cell, 2012
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HiC-technique 101

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using e T O T S T high
restriction and mark pull down biotin paired-ends B
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Figs adapted from:
Ulyanov et al., 2015.
Lieberman-Aiden et al., 2009



How to
read a HiC 2
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Molecular reconstruction of the 3D genome.




Nature Reviews | Genetics

Bonev and Cavalli, Nat. Rev. Gen, 2016. https://doi.org/10.1038/nrg.2016.112
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Chromosome territories and genome
compartmentalization

Interchromosomal

chrl - chr2 chr3 chr4

Nature Reviews | Genetics

Bonev and Cavalli, Nat. Rev. Gen, 2016. https://doi.org/10.1038/nrg.2016.112
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Lin et al, Cell and Tissue Research, 2025. 10.1007/s00441-025-03974-2
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b 10kb Resolution

§3TAD w CTCF () Cohesin

H3K27me3
H3K36me3
65.5Mb chr2 73.2Mb
&
¢ 50kb Resolution &

H3K27me3 - PO
H3K36me3 mddsidontmnsdadd Alal 4 YUY PO TV IDY W o BN
41Mb chr2 79Mb

Bonev and Cavalli, Nat. Rev. Gen, 2016. https://doi.org/10.1038/nrg.2016.112



TADs are functional units

- ,'x_ Alfonso Martinez Arias @AMartinezArias - 23 abr. 2019 (A e
’f}q TADs/ fate decisions (again) nature.com/articles/s4158.... How much

correlation -sometimes that's it-, how much causation -sometimes there's
some. Something missing in this field. Contradictions (in Science) a sign
that something interesting lurks within them
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Long-range interactions between topolbgically associating domains shape the...

1

a 0 A h - r Number of TADs

De nature.com

Q2 015 Q s7 ihi [N

>

Lupiafiez et al, Cell, 2015. 10.1016/j.cell.2015.04.004

Victor Corces (A -
@CorcesVictor '
Everything would make more sense if people would acknowledge that
Triangles At Diagonal (TADs) is a visual and computational concept
devoid of . .
2 Erez Lieberman Aiden @erezaterez - 24 abr. 2019 (4
TAD intel N :
Totally agree with @CorcesVictor
Traducir po}
Q 7 Q2 I||| m \1;
4:39 p. m.
Stefan Mundlos @StefanMundlos - 23 abr. 2019 &)

O 10

What else has to be done to convince people that triangles at diagonal
(TADs) are of biological significance ? They confine regulatory domains and
their rearrangement can cause misexpression and disease.

Qa4 17 Q 22 ihi N &

Marc A. Marti-Renom @mamartirenom - 25 abr. 2019 (4
(2/4) *Definition of TAD was (and is) welcomed®. Without the definition of
TADs by @ElphegeNoralab et al, @Jesse R Dixon et al, @erezaterez et al,
and others, we would have not advanced on understanding the
mechanisms that form them. Think of CTCF without the definition of a TAD




TADs are functional units

S ; : A S TAD structure
Structural variations affecting TAD boundaries . 2w s
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Loops
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Loop extrusion as a TAD forming mechanism
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How does the genome look like?

LLPS is how cells form dynamic, membrane-less compartments by condensing specific proteins
and RNAs into liquid droplets to regulate biochemical reactions.
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Lin et al, Cell and Tissue Research, 2025. 10.1007/s00441-025-03974-2
Feric and Misteli, Trends in Cell Biology, 2021. 10.1016/j.tcb.2021.03.001



How does the genome look like?

Liquid-liquid phase separation (LLPS)

(A) Phase diagram
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Feric and Misteli, Trends in Cell Biology, 2021. 10.1016/j.tcb.2021.03.001
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How does the genome look like?

Liquid-liquid phase separation (LLPS)

Dynamics/activity

(H) Liquid-like, dynamic (J) Solid, crystalline

Trends in Cell Biology
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What do we need to know about NGS in HiC

& |ADDI

a bioinformatic framework
to analyse Hi-C
experiments
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TADDbit modeling (starting conformation B cell) and TADdyn simulation (B cell to PSC)
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d Analysis of resulting models (contact maps and their correlation to the input Hi-C datasets)
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Serra et al., 2017 PLoS Comp Bio
Stadhouders et al., 2018, Nat Gen



TADbit
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Many alternatives

‘[ TADbit [120]

Short-read Mapping Read Read-pair o o Confidence  Implementation
Tool aligner(s) improvement  filtering filtering ~ 'Normalization Visualization  estimation  languagel(s)
HICUP [46) Bowtie/Bowtie2 Pre-truncation v v - - - Perl, R
Hiclib [47] Bowtie2 Iterative Ve v Matrix balancing v - Python
HiC-inspector [131]  Bowtie - v v - v - Perl, R
HIPPIE [132] STAR v® v v - - — Python, Perl, R
HiC-Box [133] Bowtie2 - v v Matrix balancing v - Python
HiCdat [122] Subread - v v Three options? v - C++,R
HiC-Pro [134] Bowtie2 Trimming v v Matrix balancing - - Python, R
GEM Iterative v v Matrix balancing v - Python ]
HOMER [62] - - v v Two options® v v Perl,R, Java
Hicpipe [54] - - - - Explicit-factor - - Perl,R, C++
HiBrowse [69] - — - — - v v Web-based
Hi-Corrector [57] - - - - Matrix balancing - - ANSI C
GOTHIC [135] - - v v - - v R
HITC [121] = - - = Two options v v R
chromoR [59] - - - - Variance stabilization — — R
HiFive [136] — - v v Three options? v - Python
Fit-Hi-C [20] - - - - - v v Python

Analysis methods for studying the 3D architecture of the genome
Ay, F. & Noble, W. S. Genome Biol. 16, 183 (2015).



TADDiIt tools

............................................................................................................

describe -p1 param1 -p2 param?2 ...
L J

' b - .
: b L _1
‘ TADDit main N o ===
wrapper { Tool wrapper J [ J E<3—>:DatabaseI
1 ' 1 J
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TADDit tools

Appearance of simplicity
Bioinformaticians are familiar with command line

The commands can be easily integrated in batch files and
pipelines

The folder structure created automatically when you run the
tools is consistent and helps you maintaining an organized
environment

The database helps in the traceability and reproducibility



TADDit tools

Reference genome I

FASTQ read1
FASTQ read2 GEM index H FASTA

[ TADbit map }—» MAP files —-{ TADbit parse }—» TSV files —ﬁ TADbit filter :




> TADbit map
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How much do we map?

» 80-90% each end => 64-81% intersection
» 1% multiple contacts
» Many of these will be lost in the filtering...




>TADbit

read1 FASTQ 1

Map File Map File Map File
Window 1 Window 2 Window 3

parse

read2 FASTQ 1

Map File Map File Map File
Window 1 Window 2 Window 3

read1 FASTQ N

Map File Map File Map File
Window 1 Window 2 Window 3

l

Bed file read1

read?2 FASTQ N

Map File Map File Map File
Window 1 Window 2 Window 3

l

Bed file read2




>TADbit parse

Bed file read1 Bed file read2

\\\\\\ //////

Intersect BAM file

e Paired pseudo BAM (compressed and sorted)
« Each pair is categorised (tagged)

 Mirrored for fast access readi-read?2 or read2-
read1
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>TADbit filter

Out of mapped pairs:

~40 % ~10 % ~20 %
(" valid pair Y4 single side Y4 self circles Y4 dangling ends (" unmapped
biotin
- L
sonication
—e
-
) PAY X
s N
L Experiments Y

3D modeling

TAD detection




>TADbit normalize
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TADDit tools

Reference genome I

FASTQ read1
FASTQ read2 GEM index H FASTA

[ TADbit map }—» MAP files —-{ TADbit parse }—» TSV files —ﬁ TADbit filter :




