Ancient DNA

Next Generation Sequencing Analysis DTU, 10/1/2025

born to

Martin Sikora, PhD Globe Institute University of Copenhagen martin.sikora@sund.ku.dk

Por

of a stand

The week in ancient DNA

 NEWS	SPORT	VOICES	CULTURE	LIFESTYLE	INDYBEST	TRAVEL	MOR
	Nev	vs > Science >	Archaeology				
	I n)NA nigr	stu atio	dy re ns ac	eveal cross	s se Eu	Cr [0]
	a	.go					-
	Mo	ost of the r	nigrations i	nvolved peop	ole speaking	three mair	n brand
	Visl	hwam Sankara	an • Thursda	y 02 January 20	25 11:11 GMT •	••• Comme	ents

Article Open access Published: 01 January 2025

High-resolution genomic history of early medieval Europe

Leo Speidel 🖾, Marina Silva, Thomas Booth, Ben Raffield, Kyriaki Anastasiadou, Christopher Barrington, Anders Götherström, Peter Heather & Pontus Skoglund

Nature 637, 118–126 (2025) Cite this article

71k Accesses | 716 Altmetric | Metrics

Nobel prize in Medicine 2022

The Nobel Prize in Physiology or Medicine 2022

Svante Pääbo

Share this

Svante Pääbo Facts

III. Niklas Elmehed © Nobel Prize Outreach Svante Pääbo The Nobel Prize in Physiology or Medicine 2022

Born: 20 April 1955, Stockholm, Sweden

Affiliation at the time of the award: Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, Okinawa Institute of Science and Technology, Okinawa, Japan

Prize motivation: "for his discoveries concerning the genomes of extinct hominins and human evolution"

```
Prize share: 1/1
```

1984 - the birth of ancient DNA

NATURE VOL. 312 15 NOVEMBER 1984

DNA sequences from the quagga, an extinct member of the horse family

Russell Higuchi*, Barbara Bowman*, Mary Freiberger*, Oliver A. Ryder[†] & Allan C. Wilson^{*}

* Department of Biochemistry, University of California, Berkeley, California 94720, USA † Research Department, San Diego Zoo, San Diego, California 92103, USA

To determine whether DNA survives and can be recovered from the remains of extinct creatures, we have examined dried muscle from a museum specimen of the quagga, a zebra-like species (Equus quagga) that became extinct in 1883 (ref. 1). We report that DNA

Unidentified reading frame 1

C CCA ATC CTG CTC GCC GTA GCA TTC CTC ACA CTA GTT GAA CGA AAA GTC TTA GGC TAC ATA CAA CTT CGT AAA GGA CCC AAC ATC GTA GGC CCC TAT GGC CTA CTA CAA CCC ATT AC Quagga Zebra

Cytochrome oxidase I

Quagga	A GGA GGA TTC GTT CAC TGA TTC CCT CTA TTC TCA GGA TAC ACA CTC AAC CAA ACC TGA GCA AAA ATT CAC TTT ACA ATT ATA TTC GTA GGG GTC AAC ATA ATT TTC TTC CCA
Zebra	G

Fig. 1 Sequences of the coding strands determined for two pieces of quagga mtDNA. The sequences are arranged in triplets corresponding to the amino acids that they encode. At 12 positions, the quagga sequences differ from those of mtDNA from a mountain zebra; only for these positions is the nature of the base specified for the zebra. The two asterisks identify triplets at which the zebra and quagga differ by an amino acid replacement.

1984 - First aDNA sequence _____

USE DNA
First

First anci
First ultra
Sing
Old (560)

		First aDNA sequence	1984			
		First aDNA PCR	1988			
		First nuclear	1989			
		First bone aDNA	1000			
		extraction	1990			
		ancient mitogenome	2001			
		First environmental aDNA	2003			
		First reverse engineering of an ancient virus	2005	First Bayesian Skyline plot using deep aDNA time series		
		First application of NGS to ancient remains	2006			
Fi	irst ch	aracterization of post-mortem	2007			
D	NA da	First metagenomic	2009			
Promoval of most most	m	analysis of paleofaeces	2008	Authentication criteria for Ne sequence data	GS	
ancient hominin genom	nes	• First expression and	2010	 D statistics applied to aDNA 	data	 First PSMC demography based on
metataxonomic analysis	s of	functional testing of ancient gene and protein	2011	Post-mortem DNA damage, ma	apDamage	complete ancient genomes
ent dental calculus extraction method for short DNA fraaments		 First ancient bacterial genome 	2012 -	 D and f statistics, admixtools Procrustes PCA projection 		mapping and genotyping, PALEOMI
le-stranded DNA librarie est genome	es		2013	 mtDNA contamination estime contamMix Recalibration and base-callir 	ates, ng, freelBIS	 Population ancestry modelling, qpAdm and qpWave
Eir	rst con	tamination removal through	2014	Analysis of NGS data, ANGSI)	Damage selective filtering of
• Fir	st con st-mo st met	rtem DNA damage agenome and metaproteome	2015		Nuclear	ONA contamination
of • Dis in	ancier scover petroi	nt dental calculus ry of high endogenous content us	2015 -	Read processing, mapping and construction, EACEP	estimate • mtDNA c	s, DICE contamination
• Fir	st anc	ient epigenome	2016 -	 Ancient metagenomic profiling, metaBIT 	• Kinship ii	nference, lcMLkin
		First automated capture of aDNA	2017		Ancient e epiPALEC	epigenetic inference DMIX
			2018	Tree-based selection scans, LSD Kinship informer, DEAD	aDNA rea	au simulator, Gargammel
			2019	• KIISHIP ITHERENCE, KEAD	• Damage- ROH esti	aware heterozygosity and mates, ROHan
			2020	 High-accuracy phylogenetic assignation 	 Graph-av sweeps, 0 Ancient r 	vare detection of selective GRoSS netagenomic profiling.
			2020	of metagenomic data • Paleofaeces host species	HOPS	
				 Admixture date estimates, DATE 		
				• LIMS for aDNA CASCADE		

1984 - First aDNA sequence

2001 - First ancient mitogenome

• USE DN/ • First

> First anc
> First ultra
> Sing
> Old (560)

			First aDNA	1084			
			sequence	1504			
			First aDNA PCR amplification	1988			
			First nuclear aDNA fragment	1989			
			First bone aDNA	1990			
		E	extraction	1990			
		anc	cient mitogenome	2001			
		Fi	rst environmental DNA	2003			
		First rev of an ar	verse engineering ncient virus	2005	First Bayesian Skyline plot using deep aDNA time series		
		First a	pplication of	2006			
	First cha	aracterizatio	n of post-mortem	2007			
	DNA da	mage seque	nce footprints	2007			
		First analy	metagenomic sis of paleofaeces	2008	Authentication criteria for N	GS	
R removal of post-mo A damage	rtem			2010	 sequence data D statistics applied to aDNA 	data	• First PSMC
t ancient hominin gen	omes	 First exp function ancient 	pression and nal testing of gene and protein	2011	Post-mortem DNA damage, ma	apDamage	demography based on complete ancient genomes
ient dental calculus t extraction method fo	or	 First and genome 	cient bacterial	2012 -	 <i>D</i> and <i>f</i> statistics, admixtools Procrustes PCA projection 		 Read processing, mapping and genotyping, PALEOMIX
gle-stranded DNA libra lest genome	aries			2013	 mtDNA contamination estim contamMix Recalibration and base-callir 	ates, na. freelBIS	 Population ancestry modelling, qpAdm and qpWave
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2014	 Analysis of NGS data, ANGSE)	 Damage selective filtering of
•	post-mor	rtem DNA da agenome an	emoval through amage d metaproteome				contamination, PMD
•	of ancien Discover	nt dental calo y of high end	culus dogenous content	2015 -	Read processing, mapping	 Nuclear estimate mtDNA c 	ontamination s, DICE
•	in petrou First anci	ent epigeno	me	2016	 and genotyping, EAGER Ancient metagenomic 	estimate • Kinship in	s, Schmutzi nference, lcMLkin
			First automated	2017	profiling, metaBH	Ancient	epigenetic inference
				2018	• Tree-based selection scans, LSD	• aDNA rea	ad simulator, Gargammel
					Kinship inference, READ	• Damage	aware heterozygosity and
				2019 _	• High-accuracy	Graph-av Sweeps	mates, ROHan ware detection of selective GRoSS
				2020	 phylogenetic assignation of metagenomic data Paleofaeces host species 	 Ancient i HOPS 	netagenomic profiling,
					 identifier, coproID Admixture date estimates, DATF 		

1984 - First aDNA sequence

2001 - First ancient mitogenome

2010 - First ancient human genome

• USE DN/ • First

First anc
First ultra
Sing
Old (560)

			First aDNA	1084			
			sequence	1504			
			First aDNA PCR amplification	1988			
			First nuclear aDNA fragment	1989			
			First bone aDNA	1990			
		E	extraction	1990			
		anc	cient mitogenome	2001			
		Fi	rst environmental DNA	2003			
		First rev of an ar	verse engineering ncient virus	2005	First Bayesian Skyline plot using deep aDNA time series		
		First a	pplication of	2006			
	First cha	aracterizatio	n of post-mortem	2007			
	DNA da	mage seque	nce footprints	2007			
		First analy	metagenomic sis of paleofaeces	2008	Authentication criteria for N	GS	
R removal of post-mo A damage	rtem			2010	 sequence data D statistics applied to aDNA 	data	• First PSMC
t ancient hominin gen	omes	 First exp function ancient 	pression and nal testing of gene and protein	2011	Post-mortem DNA damage, ma	apDamage	demography based on complete ancient genomes
ient dental calculus t extraction method fo	or	 First and genome 	cient bacterial	2012 -	 <i>D</i> and <i>f</i> statistics, admixtools Procrustes PCA projection 		 Read processing, mapping and genotyping, PALEOMIX
gle-stranded DNA libra lest genome	aries			2013	 mtDNA contamination estim contamMix Recalibration and base-callir 	ates, na. freelBIS	 Population ancestry modelling, qpAdm and qpWave
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2014	 Analysis of NGS data, ANGSE)	 Damage selective filtering of
•	post-mor	rtem DNA da agenome an	emoval through amage d metaproteome				contamination, PMD
•	of ancien Discover	nt dental calo y of high end	culus dogenous content	2015 -	Read processing, mapping	 Nuclear estimate mtDNA c 	ontamination s, DICE
•	in petrou First anci	ent epigeno	me	2016	 and genotyping, EAGER Ancient metagenomic 	estimate • Kinship in	s, Schmutzi nference, lcMLkin
			First automated	2017	profiling, metaBH	Ancient	epigenetic inference
				2018	• Tree-based selection scans, LSD	• aDNA rea	ad simulator, Gargammel
					Kinship inference, READ	• Damage	aware heterozygosity and
				2019 _	• High-accuracy	Graph-av Sweeps	mates, ROHan ware detection of selective GRoSS
				2020	 phylogenetic assignation of metagenomic data Paleofaeces host species 	 Ancient i HOPS 	netagenomic profiling,
					 identifier, coproID Admixture date estimates, DATF 		

1984 - First aDNA sequence

2001 - First ancient mitogenome

2010 - First ancient human genome

• USE DNA • First

First anc
First ultra
Sing
Old (560)

The "big data" era of ancient genomics

			First aDNA	1084			
			sequence	1504			
			First aDNA PCR amplification	1988			
			First nuclear aDNA fragment	1989			
			First bone aDNA	1990			
		E	extraction	1990			
		anc	cient mitogenome	2001			
		Fi	rst environmental DNA	2003			
		First rev of an ar	verse engineering ncient virus	2005	First Bayesian Skyline plot using deep aDNA time series		
		First a	pplication of	2006			
	First cha	aracterizatio	n of post-mortem	2007			
	DNA da	mage seque	nce footprints	2007			
		First analy	metagenomic sis of paleofaeces	2008	Authentication criteria for N	GS	
R removal of post-mo A damage	rtem			2010	 sequence data D statistics applied to aDNA 	data	• First PSMC
t ancient hominin gen	omes	 First exp function ancient 	pression and nal testing of gene and protein	2011	Post-mortem DNA damage, ma	apDamage	demography based on complete ancient genomes
ient dental calculus t extraction method fo	or	 First and genome 	cient bacterial	2012 -	 <i>D</i> and <i>f</i> statistics, admixtools Procrustes PCA projection 		 Read processing, mapping and genotyping, PALEOMIX
gle-stranded DNA libra lest genome	aries			2013	 mtDNA contamination estim contamMix Recalibration and base-callir 	ates, na. freelBIS	 Population ancestry modelling, qpAdm and qpWave
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2014	 Analysis of NGS data, ANGSE)	 Damage selective filtering of
•	post-mor	rtem DNA da agenome an	emoval through amage d metaproteome				contamination, PMD
•	of ancien Discover	nt dental calo y of high end	culus dogenous content	2015 -	Read processing, mapping	 Nuclear estimate mtDNA c 	ontamination s, DICE
•	in petrou First anci	ent epigeno	me	2016	 and genotyping, EAGER Ancient metagenomic 	estimate • Kinship in	s, Schmutzi nference, lcMLkin
			First automated	2017	profiling, metaBH	Ancient	epigenetic inference
				2018	• Tree-based selection scans, LSD	• aDNA rea	ad simulator, Gargammel
					Kinship inference, READ	• Damage	aware heterozygosity and
				2019 _	• High-accuracy	Graph-av Sweeps	mates, ROHan ware detection of selective GRoSS
				2020	 phylogenetic assignation of metagenomic data Paleofaeces host species 	 Ancient i HOPS 	netagenomic profiling,
					 identifier, coproID Admixture date estimates, DATF 		

The ancient human DNA revolution

Over 10,000 ancient humans with genome-wide data since 2010

Mallick et al (2024) Sci Data

Ancient DNA primer Characteristics and challenges

Ancient DNA primer Characteristics and challenges

Ancient DNA showcase

Kinship and plague in Stone Age Scandinavia

Ancient DNA primer Characteristics and challenges

Ancient DNA showcase Kinship and plague in Stone Age Scandinavia

Characteristics of ancient DNA

5,000 year-old human remains from the Provadia salt mine, Bulgaria

How does DNA degrade?

Fragmentation of DNA

Depurination and nicking results in DNA fragmentation

Characteristics of ancient DNA

Ancient DNA is short and fragmented

Accumulation of DNA damage

Deamination results in base substitutions

Characteristics of ancient DNA

Ancient DNA is damaged with characteristic substitution patterns

Sample

DNA sequences

Analysis results

Sample

DNA recovery

Preservation Sample material

DNA sequences

Analysis results

Data quality

Contamination Genome coverage Error rates

Sample

DNA recovery

Preservation Sample material

DNA sequences

Analysis results

Challenges - Ancient DNA preservation

Ancient DNA fragmentation follows exponential decay dynamics

4000

Allentoft et al (2012) Proc R Soc B

Challenges - Ancient DNA preservation

half-life (years), 100 bp	half-life (years), 500 bp	average length at 10 kyr	time (years) until average length = 1 bp
150	30	2 bp	22 000
900	180	13 bp	131 000
6000	1200	88 bp	882 000
47 000	9500	683 bp	6 830 000

Average fragment length of 6.8 million-year old DNA 1 base pair

4000

Allentoft et al (2012) Proc R Soc B

Challenges - Ancient DNA preservation

Adycha

DNA from a 1.2 million year old mammoth tooth is highly fragmented

Challenges - Endogenous DNA content

Low endogenous

Endogenous DNA

Other DNA

Challenges - Endogenous DNA content

Low endogenous

Endogenous DNA content varies substantially between samples

High endogenous

Endogenous DNA

Other DNA

Challenges - Endogenous DNA content

Low endogenous

DNA capture enrichment (targeted or whole genome) to increase endogenous DNA

High endogenous

Endogenous DNA

Other DNA

Impact of sample material

,990–5,2	210		4,950	-5,300		1,110-	-1,270	830-	-980
NE5			N	Ξ6		BF	72	IF	R 1
14.7	14.6	14.5	14.4	14.2	14.3	8.5	8.4	10.2	10.1
20.72		7.99	5.31			N.A.		0.26	
R			R						

Impact of sample material

,990–5,2 NE5_	210		4,950- NE	-5,300 E6		1,110- BF	-1,270 72	830–980 IR1								
14.7 20.72	14.6 75.21	14.5 7.99	14.4 5.31	14.2 85.44	14.3 61.95	8.5 N.A.	8.4 56.58	10.2 0.26	10.1 46.73							
2			R	1												

DNA sequences

Analysis results

Data quality

Contamination Genome coverage Error rates

Stoneking and Krause (2011) Nat Rev Genet

Ancient DNA data is a complex mixture of DNA from different sources

Stoneking and Krause (2011) Nat Rev Genet

Monti Lessini (L906-H924)

в.2.1

в.2.2

- в.2.3
 - B.2.4 в.2.5
- Barcelona lab
- в.2.6 в.2.7 в.2.8
- в.2.9
- B.2.10
- B.2.11 B.2.12

Monti Lessini (L884-H936)

TGCAATGCCATCATCGACCCCCTCATCTACGCCTTCCACAGCCAGGAGCTCCGCAGGACGCTCAAGGAGGTGCTGACATG

FTGA

Florence lab

CTC	CTGG
F.1	.1
F.1	.2
F.1	.3
F.1	.4
F.1	.5
F.1	.6
F.1	.7
F.1	.8
F.1	.9
F.1	.10
F.1	.11
F.1	.12
F.1	.13
F.1	.14
F.1	.15
F.1	.16
F.1	.17
F.1	.18
F.1	.19
F.1	.20
F.1	.21
F.1	.22
F.1	.23
-	

TCATCTACGCCTTCCACAGCCAGGAGCTCCGCAGGACGCTCAAGGAGGTGCTGACAT

....G....G....G.... <mark>.</mark>

																																		C															
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
																																		G															
-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\overline{a}	-			-	-	-	-	-	-	-	-	-	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
							С																																										
•	•	-	•	•	•	•	Ŭ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	
•	• (-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	·	•	·	•	•	•	•	•	•	•	·	·	·	·	·	•	•	•	•	•	•	·	•	•	۰.	•			•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
							-		-			-									-																						-		-				
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
																																																•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
																																																•	
					-		_	_	_	_	-	_	_				~			_		_	~	2	~	-					-											_	_	_	_	-			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•

MC1R gene fragments amplified from Monti Lessini Neandertal DNA extract

Lalueza-Fox et al (2007) Science

Monti Lessini (L906-H924)

в.2.1

B.2.2

- B.2.3
 - B.2.4 B.2.5
- Barcelona lab
- в.2.6 в.2.7 B.2.8
- B.2.9
- B.2.10
- B.2.11 B.2.12

Monti Lessini (L884-H936)

FTGA

Florence lab

CTC	CTGG
F.1	.1
F.1	.2
F.1	.3
F.1	.4
F.1	.5
F.1	.6
F.1	.7
F.1	.8
F.1	.9
F.1	.10
F.1	.11
F.1	.12
F.1	.13
F.1	.14
F.1	.15
F.1	.16
F.1	.17
F.1	.18
F.1	.19
F.1	.20
F.1	.21
F.1	.22
F.1	.23
-	

TCATCTACGCCTTCCACAGCCAGGAGCTCCGCAGGACGCTCAAGGAGGTGCTGACAT

-	_	-	-		-	-	_	-	-	-	-	_	-	-		
•	•	•	•	•	•	•	•	•	•	•	•	G	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	G	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	G	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•			•	•	•			•		•		•	
						•										
		ĺ										ĺ				-
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•

Neandertal sequences

TGCAATGCCATCATCGACCCCCTCATCTACGCCTTCCACAGCCAGGAGCTCCGCAGGACGCTCAAGGAGGTGCTGACATG

MC1R gene fragments amplified from Monti Lessini Neandertal DNA extract

Neandertal sequences

Lalueza-Fox et al (2007) Science

Authentication of ancient DNA

Ancient DNA is short and fragmented

Ancient DNA is damaged with characteristic substitution patterns

Authentication of ancient DNA

Approaches to estimate contamination levels

Peyrégne and Prüfer (2020) BioEssays

Diploid individual

Missing genotype / variant

Missing allele at heterozygous site

Erroneous genotype

genotypes

*

Diploid individual

0 21010000 00 0001 100

Sequencing coverage

1 0

Pseudo-haploid genotypes at preascertained sites

Population genetic analysis of ancient DNA data

Principal component analysis

Allele-frequency based methods suited for low coverage / pseudo-haploid data

Allentoft*, Sikora* et al (2024) Nature

Allentoft*, Sikora* et al (2024) Nature

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- 🕸 SouthAsia
- SouthEastAsia
- EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- 🕸 SouthAsia
- SouthEastAsia
- EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- 🕸 SouthAsia
- SouthEastAsia
- EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- 🕸 SouthAsia
- SouthEastAsia
- EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- 🕸 SouthAsia
- SouthEastAsia
- EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- SouthAsia
- SouthEastAsia
- 🛚 EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- SouthAsia
- SouthEastAsia
- 🛚 EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

- ♦ SouthernEurope
- ♥ WesternEurope
- NorthernEurope
- * CentralEasternEurope
- WesternAsia
- CentralAsia
- SouthAsia
- SouthEastAsia
- 🛚 EastAsia
- NorthAsia
- NorthAmerica
- SouthAmerica
- ▲ Australasia
- Melanesia

Ancient DNA primer Characteristics and challenges

Ancient DNA showcase

Kinship and plague in Stone Age Scandinavia

<section-header>

Social organisation

Endogenous host DNA

<section-header>

Social organisation

Endogenous host DNA

Diet and microbiome

Infectious diseases

Non-host DNA

Population genomics of late Neolithic Scandinavia

109 ancient human genomes from megalithic graves in southern Scandinavia

Genetic diversity of human populations

Repeated use of megalithic graves by peoples with different ancestries

Recent admixture with Pitted-ware culture hunter-gatherers

A five generation pedigree of Neolithic farmers

High prevalence of plague in late Neolithic Scandinavia

Plague detected in $\sim 17\%$ of individuals

Multiple plague strains in Neolithic farmer families

Multiple plague strains in Neolithic farmer families

High prevalence of plague in Fralsegarden (28%) and multiple distinct strains

Multiple plague strains in Neolithic farmer families

Divergence of strains A and B during Fralsegarden pedigree chronology

Did plague play a role in the Neolithic decline?

Novel sources for ancient DNA

ARTICLE

https://doi.org/10.1038/s41467-019-13549-9

OPEN

A 5700 year-old human genome and oral microbiome from chewed birch pitch

Theis Z.T. Jensen (b^{1,2,10}, Jonas Niemann^{1,2,10}, Katrine Højholt Iversen (b^{3,4,10}, Anna K. Fotakis (b¹, Shyam Gopalakrishnan (b¹, Åshild J. Vågene¹, Mikkel Winther Pedersen (b¹, Mikkel-Holger S. Sinding (b¹, Martin R. Ellegaard (b¹, Morten E. Allentoft¹, Liam T. Lanigan¹, Alberto J. Taurozzi¹, Sofie Holtsmark Nielsen¹, Michael W. Dee⁵, Martin N. Mortensen (b⁶, Mads C. Christensen⁶, Søren A. Sørensen⁷, Matthew J. Collins^{1,8}, M. Thomas P. Gilbert (b^{1,9}, Martin Sikora (b¹, Simon Rasmussen (b⁴ & Hannes Schroeder (b^{1*})

Article Open Access Published: 03 May 2023

Ancient human DNA recovered from a Palaeolithic pendant

Elena Essel 🖂, Elena I. Zavala, Ellen Schulz-Kornas, Maxim B. Kozlikin, Helen Fewlass, Benjamin Vernot, Michael V. Shunkov, Anatoly P. Derevianko, Katerina Douka, Ian Barnes, Marie-Cécile Soulier, Anna Schmidt, Merlin Szymanski, Tsenka Tsanova, Nikolay Sirakov, Elena Endarova, Shannon P. McPherron, Jean-Jacques Hublin, Janet Kelso, Svante Pääbo, Mateja Hajdinjak, Marie Soressi 🗠 & Matthias Meyer 🖂

Nature 618, 328–332 (2023) Cite this article

Ancient environmental DNA - the next revolution

Reconstruction of a 2 million year-old ecosystem from ancient environmental DNA

Kjaer et al (2022) Nature

Ancient DNA

Next Generation Sequencing Analysis DTU, 10/1/2025

Interested in a project? martin.sikora@sund.ku.dk

