

DTU Health Technology
Bioinformatics

de novo assembly

Gabriel Renaud

Associate Professor

Section of Bioinformatics
Technical University of Denmark
gisves@dtu.dk

Menu

« Assembly approaches

» Assembly graphs

» Graph postprocessing filtering
» The woes of repetition

« Benchmarking your assembly

Generalized NGS analysis

()
N
)
©
e
@©
A
: Raw Pre-
Question .
reads | | processing

Assembly:

A /
de novo

N~—_

Application
specific:
Variant calling,
count matrix, ...

Compare
samples /
methods

Answer?

Whole genome sequencing

Genome

D

S,

Wednesday Thursday

N N o N
/-\vv N N

=" B

reference

new reference

Output

Input

Input

@MISEQ423 0:+:7218:7278:60-2
GTTACTCGGACTACCCCGATGCATACACCACATGAAACA
T

+
JIVIPIINTIIITINTIIDIIDTITCIIINTITIOIID]I0TIN
]

@MISEQ423 0:-:15245:15305:60-2
AGGGCAAGATGAAGTGAAAGGTAAAGAATCGTGTGAGGG
T

1111021100001 1 100011111111 111111111111]
]

GMISEQ423 0:-:242:302:60-2
TTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGAAAG
T

1111101123101 1001110012100N1101211111111
]

@MISEQ423 0:-:1729:1789:60-2
TGCGGTACTATATCTATTGCGCCAGGTTTCAATTTCTAT
C

+
TT7TT7TTTTIT<TT7TTTTTTTTTTTTTTTTTTTT7TT1T71T1T1 117

Output

>contig#25 0
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCA
GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCT
CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGG
ATTAATTAATGCTTGTAGGACATAATAATAACAATTGAATGTCTG
ATAACAAAAAATTTCCACCAAACCCCCCCTCCCCCGCTTCTGG
AACCCCAAAAACAAAGAACCCTAACACCAGCCTAACCAGATTTCA
TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCAC
CAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACC
AAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAAGCAAT
ACATCACCCCATAAACAAATAGGTTTGGTCCTAGCCTTTCTATTA
GCATCCCCGTTCCAGTGAGTTCACCCTCTAAATCACCACGATCAA
AATGCAGCTCAAAACGCTTAGCCTAGCCACACCCCCACGGGAAAC
ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGT

Important definitions

Contigs Scaffolds Chromosome

= e

Important definitions

Contigs

>contig#l
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCA
GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCT
CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGG
>contig#2
ATTAATTAATGCTTGTAGGACATAATAATAACAATTGAATGTCTG
ATAACAAAAAATTTCCACCAAACCCCCCCTCCCCCGCTTCTGGCC
>contig#3
AACCCCAAAAACAAAGAACCCTAACACCAGCCTAACCAGATTTCA
TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCAC
CAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACC
AAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAAGCAAT
>contig#4
ACATCACCCCATAAACAAATAGGTTTGGTCCTAGCCTTTCTATTA
GCATCCCCGTTCCAGTGAGTTCACCCTCTAAATCACCACGATCAA
AATGCAGCTCAAAACGCTTAGCCTAGCCACACCCCCACGGGAAAC
ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGT

Important definitions

>scaffold#1l
AACCCCAAAAACAAAGAACCCTAACACCAGCCTAACCAGATTTCA
TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCAC
CAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACC
AAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAAGCAAT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATCACAGGTCTATC
ACCCTATTAACCACTCACGGGAGCTCTCCA

>scaffold#2
GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCT
CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGG
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTAATTAATGCT
GTAGGACATAATAATAACAATTGAATGTCTGATAACAAAAAATTC
CACCAAACCCCCCCTCCCCCGCTTCTGGCCNNNNNNNACATCACC
CATAAACAAATAGGTTTGGTCCTAGCCTTTCTATTAGCATCCCCT
TCCAGTGAGTTCACCCTCTAAATCACCACGATCAAAATGCAGCTA
AAACGCTTAGCCTAGCCACACCCCCACGGGAAACACGAAAGTTTA
ACTAAGCTATACTAACCCCAGGGT

Scaffolds

Important definitions

>chr22
GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCT
T
CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGG
G
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTAATTAATGCT
TGTAGGACATAATAATAACAATTGAATGTCTGATAACAAAAAATT
TCCACCAAACCCCCCCTCCCCCGCTTCTGGCCNNNNNNNACATCA
CCCCATAAACAAATAGGTTTGGTCCTAGCCTTTCTATTAGCATCC
CCGTTCCAGTGAGTTCACCCTCTAAATCACCACGATCAAAATGCA
GCTCAAAACGCTTAGCCTAGCCACACCCCCACGGGAAACACGAAA
GTTTAACTAAGCTATACTAACCCCAGGGTNNNNNNNAACCCCAAA
AACAAAGAACCCTAACACCAGCCTAACCAGATTTCATTTTAACAG
TCACCCCCCAACTAACACATTATTTTCCCCTCCCACCAACCCCCG
CCCATCCTACCCAGCACACACACACCGCTGCTAACCAAAGACACC
CCCCACAGTTTATGTAGCTTACCTCCTCAAAGCAATNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNGATCACAGGTCTATCACCCTATTA
ACCACTCACGGGAGCTCTCCA

Chromosom

Important definitions

Contigs Scaffolds Chromosome

= e

Which approaches?

 Overlap-Layout-Consensus (OLC)

* de Bruijn graphs

Overlap-Layout-Consensus

 Create overlap graph by all-vs-all alignment (Overlap)

« Build graph where each node is a read, edges are overlaps between reads
(Layout)

reads:
TCTCAACG CGATTGTC

ATTGTCTC CTCAACGT

TGTCTCAA

TTGTCTCA

Overlap-Layout-Consensus

 Create overlap graph by all-vs-all alignment (Overlap)
« Build graph where each node is a read, edges are overlaps between reads

(Layout)
overlap of at least 4bp in bold
reads:
TCTCAACG [CGATTGTC]
ATTGTCTC
TGTCTCAA CTCAACGT

TTGTCTCA

Overlap-Layout-Consensus

 Create overlap graph by all-vs-all alignment (Overlap)
« Build graph where each node is a read, edges are overlaps between reads

(Layout)

reads:
readl CGATTGTC
read? ATTGTCTC
read3 TTGTCTCA
read4 TGTCTCAA
read)b TCTCAACG

reado CTCAACGT

readl
read?
read3
read4
readb
reado6

Overlap-Layout-Consensus

 Create overlap graph by all-vs-all alignment (Overlap)
« Build graph where each node is a read, edges are overlaps between reads

(Layout)

CGATTGTC
ATTGTCTC
TTGTCTCA
TGTCTCAA
TCTCAACG
CTCAACGT

£/ A= A, ==

(et)

(s | [reads | [oad

])

N~

Take a path that goes through each read once

Take a path that goes through each read once

Take a path that goes through each read once

read5]

(o2

Take a path that goes through each read once

stuck,
cannot
go to
read 2

—

) (resas)

(reaar)

(roacd

y

EORCS

Take a path that goes through each read once

Overlap-Layout-Consensus

@
 Create consensus sequence ‘
* We need to use graph theory to solve the , ©
raph
Jrap o ® 2
* Find the Hamiltonian path ® |
« i.e. visit each node exactly once K0 ® ®
* NP-complete P ©
[: 0 o
[® [

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

@
 Create consensus sequence | ‘
* We need to use graph theory to solve the ‘ ©
raph
oap o ® 2
* Find the Hamiltonian path ®)
* i.e. visit each node exactly once B ® ®
* NP-complete P ©

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

L}

» Create consensus sequence | ‘

* We need to use graph theory to solve the ‘ ® .

raph ‘
orap o & e

* Find the Hamiltonian path (<])

« i.e. visit each node exactly once) ® ’

« NP-complete | P ©
® @

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

-3

 Create consensus sequence | ‘

* We need to use graph theory to solve the ‘ , ° ,

raph ‘ .
oap o , ® o

* Find the Hamiltonian path (] e

* i.e. visit each node exactly once) _’ ’

* NP-complete 0' ©
S)

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

-
» Create consensus sequence LT
* We need to use graph theory to solve the el Qo ,. sl

graph e R ,_°

 Find the Hamiltonian path e ST,
- i.e. visit each node exactly once Vo ’/' °
* NP-complete 0' °

e)

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

 Create consensus sequence

* We need to use graph theory to solve the
graph

* Find the Hamiltonian path

* i.e. visit each node exactly once

* NP-complete

Imagine trying to solve this for a graph of hundred of
thousands of nodes (=reads)

Overlap-Layout-Consensus

 Create overlap graph by all-vs-all alignment (Overlap)

« Build graph where each node is a read, edges are overlaps between reads
(Layout)
» Call a consensus

reads:

CGATTGTC
ATTGTCTC

TTGTCTCA

TGTCTCAA

TCTCAACG
CTCAACGT

CONSENSUS. CGATTGTCTCAACGT

Overlap-Layout-Consensus

» Not good with many short reads O(n*2) -> lots of alignment!
 With short read lengths, hard to resolve repeats

» Good for large read lengths:
— PacBio, Oxford Nanopore, 10X Genomics, 454, lon Torrent, Sanger

« Example assemblers: Canu, Celera, Newbler, PenguiN, CarpeDeam

de Bruijn graph

* Directed graph of overlapping items (here DNA sequences)
* Instead of comparing reads, decompose reads into k-mers
— Graph is created by mapping the k-mers to the graph
— Each k-mer only exists once in the graph

— Problem is reduced to walking Eulerian path (visiting each edge once) -
this is a solve-able problem

Drawbacks ...

— Lots of RAM required (1-1000 GB !)

— Optimal k can not be identified a priori, must be experimentally tested for
each dataset

— small k: very complex graph, large k: limited overlap in low coverage
areas

— Iterative approach to find best assembly

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads:
TCTCAACG CGATTGTC

ATTGTCTC CTCAACGT

TGTCTCAA

TTGTCTCA

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads:

TCTCAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads:
[TCT]

TCTCAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads: \
[TCT »[cm]

TCTCAACG ’
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads:

TCTCAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

[

TCT

J

>[CTC

»| TCA |

How is the graph constructed?

» Same 10 reads, extract k-mers from reads and map onto graph, k = 3:

reads:

TCTCAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

[

TCT >[CTC >[TCA]

N\
[ACGHAACHCAA]

reads:

TCTCAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

goes through
each edge once

Take a path that [CGA]—P[GAT]—P[

reads: \ \

[TCT >[CTC >[TCA]
TCTCAACG
CGATTGTC

TGTCTCAA [ACG |<—| AAC]4—[CAA]
CTCAACGT

ATTGTCTC
TTGTCTCA CGT

goes through
each edge once

Take a path that [CGA]—P[GAT]—P[

reads: \ \

[TCT >[CTC >[TCA]
TCTCAACG
CGATTGTC

TGTCTCAA [ACG |<—| AAC]4—[CAA]
CTCAACGT

ATTGTCTC
TTGTCTCA CGT

Take a path that goes [CGA I .l GAT I Il ATT]
through each edge
once l
consensus.
CGATTGTCTCAACGT [GTC I | TGT I | TG]
reads: l \ .

[TCT >[CTC >[TCA]
TCTCAACG ’
CGATTGTC

TGTCTCAA [ACG I l AAC l [CAA]
CTCAACGT

ATTGTCTC
TTGTCTCA CGT

Sequencing error!

reads:

TCTGAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

—
G)
k|
O

Take a path that

goes through

each edge once

IMPOSSIBLE

reads:

TCTGAACG
CGATTGTC
TGTCTCAA
CTCAACGT
ATTGTCTC
TTGTCTCA

—
G)
k|
O

Create the de Bruijn graph of this genome using
k=3

AAGACTCCGACTGGGACTTT

AAGACTCCGACTGGGACTTT

CCE~—TCCx
CGA> CTO>
(KA@——(EQE—}GAO—-@; SCTO—~CTTD
d}c{; CTG
NG6G-~<T6EY

A de Bruijn graph of a sequence

After building: Simplify

Clip tips ,_)’P

(seq err,end) v —C

After building: Simplify
Clip tips

(seq err,end)

Pinch bubbles

(seq err, middle,
SNP)

30

2
30
[

-

2

28

After building: Simplify
Clip tips

(seq err,end)

Pinch bubbles

(seq err, middle,
SNP)

Remove low cov.
links

28

Mate pair reads

10,000 bases >

-

-

Mate pair reads

< 10,000 bases >
e

= .
N e

Mate pair reads

10,000 bases

>

-

-

| know that these
reads are on the
same chromosome
within ~10kb

Create contigs and scaffolds

Which goes with
which?

C1 C2

>ReLeat_<

C3 C4

Create contigs and scaffolds

Which goes with
which?

Create contigs and scaffolds

Which goes with
which?

Create contigs and scaffolds

Cut graph at repeat
boundaries to create

contigs
C1 C2

>_R3Leat_<

C3 C4

Create contigs and scaffolds

Cut graph at repeat
boundaries to create

contigs
C1 C2

C3

Create contigs and scaffolds

Cut graph at repeat
boundaries to create

contigs
C1 C2

C1

C3

C2

C3

C4

Create contigs and scaffolds
Use paired-end or

Cut graph at repeat mate-pair information to

boundaries to create resolve repeats and

5 contigs N combine to scaffolds
C1 C2 C3 C4

Repeat T | ||: [
v

C3

Create contigs and scaffolds
Use paired-end or

Cut graph at repeat mate-pair information to

boundaries to create resolve repeats and

5 contigs N combine to scaffolds
C1 C2 C3 C4

Repeat T | ||: [
v

S1 S2

C3

Iterate parameters

« Re-run with different k-sizes, find optimum

« Run with multiple k-mers at the same time! (eg.
SPAdes)

« Compare assembly statistics such as, assembly length,
NS5O, no. contigs

« Assembly refinement
— Break contigs not supported by PE/MP reads
— Analyze assembly using REAPR or QUAST

Successful de novo assembly

* Success is a factor of:
— Genome size, genomic repeats(!), ploidy < vz

— High coverage, long read lengths, PE/MP PN
libraries o 2. -

:';_.._"!‘ iz - \ % :, %

AT
Repeats in E.
coli

Improving de novo assemblies

« Paired-end & Mate-pair for long range continuity
« Hybrid approaches (combine lllumina with PacBio/Oxford Nanopore)

« Synthetic long reads: lllumina Synthetic Reads (Moleculo) or 10X
Genomics

* Hi-C contact maps

Two bacterial genomes de Bruijn graphs
“more”
repeats

Few
repeats

Flicek & Birney, Nat.Methods 2009

Zerbino, 2009

« Calculate sum of assembly

» Order contigs by size

« Sum contigs starting by largest

* When half the sum is reached, N50 is the

N50: Assembly quality

N50: What is the smallest piece in the largest half of the
assembly?

length of the contig

NSO example

5 scaffolds, calculate
N50:

I 200kb

-] 150kb

I 140kDb

I 125kDb

I O5kDb

200kb + 150kb = 350kb
350kb + 140kb = 490kb
490kb > 355kb => N50: 140kb

Sum: 200+150+140+125+95=710kb
Half: 710 / 2 = 355kb

Some assemblers

* OLC: Canu, Newbler, Penquin, CarpeDeam

« de Bruijn: Allpaths-LG, SPAdes, Velvet(best), SOAPdenovo, Megahit (very lean), ...

« other: MIRA, SGA, Flye (very good for 3g NGS)

Used in exercises today

https://www.nature.com/articles/s41587-019-0072-8

reference:

gene a

You have your assembly,
done QC, now what?

gene annotation!

gene b

gene c

reference:

W

genome

#ID

scaffold#292
scaffold#403
scaffold#562

start
1000
2231
1023

end

2000
5032
4168

tag

genel
gene?2
gene3

Bioinformatics

Issues Advance articles Submit v Alerts About v Bioinformatics

JOURNAL ARTICLE

Prokka: rapid prokaryotic genome annotation @

No cover
image Torsten Seemann Author Notes
available

Bioinformatics, Volume 30, Issue 14, July 2014, Pages 2068-2069,
https://doi.org/10.1093/bioinformatics/btu153

Published: 18 March2014 Article history v
Volume 30, Issue 14

July 2014 PDF NN SplitView ¢¢ Cite A Permissions «§ Share v
Article Contents

Abstract
Abstract g e . .

Summary: The multiplex capability and high yield of current day DNA-
1INTRODUCTION sequencing instruments has made bacterial whole genome sequencing a routine
2 DESCRIPTION affair. The subsequent de novo assembly of reads into contigs has been well

addressed. The final step of annotating all relevant genomic features on those
3RESULTS contigs can be achieved slowly using existing web- and email-based systems,
ACKNOWLEDGEMENTS but these are not applicable for sensitive data or integrating into computational

Research | Open access | Published: 31 August 2023
Galba: genome annotation with miniprot and
AUGUSTUS

Tomas Brina, Heng Li, Joseph Guhlin, Daniel Honsel, Steffen Herbold, Mario Stanke, Natalia Nenasheva
Matthis Ebel, Lars Gabriel & Katharina J. Hoff &

BMC Bioinformatics 24, Article number: 327 (2023) | Cite this article

2412 Accesses | 1 Citations | 24 Altmetric | Metrics

Abstract

DacrkaraiimA

BRAKER2: automatic eukaryotic genome annotation
with GeneMark-EP+ and AUGUSTUS supported by a
protein database @

Tomas Briina, Katharina J Hoff, Alexandre Lomsadze, Mario Stanke, Mark Borodovsky =
Author Notes

NAR Genomics and Bioinformatics, Volume 3, Issue 1, March 2021, lqaal08,
https://doi.org/10.1093/nargab/lqaal08
Published: 06 January2021 Article history v

PDF W SplitView ¢¢ Cite / Permissions «§ Share v

Abstract

The task of eukaryotic genome annotation remains challenging. Only a few
genomes could serve as standards of annotation achieved through a
tremendous investment of human curation efforts. Still, the correctness of all
alternative isoforms, even in the best-annotated genomes, could be a good
subject for further investigation. The new BRAKER2 pipeline generates and
integrates external protein support into the iterative process of training and
gene prediction by GeneMark-EP+ and AUGUSTUS. BRAKER2 continues the line
started by BRAKER1 where self-training GeneMark-ET and AUGUSTUS made

How to store annotations?

The BED (Browser Extensible Data) format:

chromosome/ first base -1 last base -1
scaffold ID l /
chr? 3924893 3929684
chr? 4483132 4493023

chr3 5000342 5004066

How to store annotations?

The GFF (General Feature Format) format:

browser position chr22:10000000-10025000
browser hide all
track name=regulatory description="TeleGene(tm) Regulatory Regions" visibility=2

chr22 TeleGene enhancer 10000000 10001000 500 + ; touchl
chr22 TeleGene promoter 10010000 10010100 900 + . touchl
chr22 TeleGene promoter 10020000 10025000 800 - - touch2

source: https://genome.ucsc.edu/FAQ/FAQformat.html#format3

er types of genome annotations

Repeats: LINE1 etc
Comparitive genomics: conserved elements

Transcription regulation

UCSC Genome Browser on Human (GRCh38/hg38)
Move [<<< << < | > > >>>|Zoomin[15x 3x 10x Base|Zoomout[15x 3x 10x 100x

New to the Genome Browser? See our short (2-3 minute) guided tutorial. All tutorials can be found in the top blue bar menu under Help > Interactive Tutorial.
Starttutorial | | Don't show again

omosome ra

Mutti-region | chr7:155,799,529-155,812,871 13,343 bp. [gene

[e7 e0) I

Scale

ohr7 | 155,801,000 155,812,000]

516f)
155,802,000 155,803,000] 155,804,000] 155,805,000] 155,806,000] 155,807,000] 155,808,000] 155,809,000 155,810,000] 155,811,000]

Reference Assembly Altamate Haplotyps Searrce dignmrts

s
GENCODE V47 (4 items filtered out)
ENSGO0000296770 M-}

-
-
RefSeq genes lrom NCBI

RefSeq Curated
OMIM Alleic Variant Phenotypes i

OMIM Alleles mi U]

|
OVl G Phinoiyzes Dtk Green Gan Be Disoase-causi
OMM Gones -

Gene Expression in 54 tissues from GTEx RNA-seq of 17382 samples, 948 donors (V8, Aug 2019)

ENCODE Candidate Cis-Requlatory Elements (cCRES) combined from all celltypes

ENCODE cCRES
HK27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

M_MWWMWVM N A s il

ayered HKe7Ac

ons 100 Verts
Multiz Alignments of 100 Vertebrates
¢+ N T U O Y O Y d-— A N N T A T T O
Mous | il TTTIHE
Dog i i |11 IIIIII\III\--IIII
Elephant IIII? i 1 I\IIIII\\I\IH [ITEY i
Chicken ——] i H 1 == L
X_tropicalis —HIIMIIME————————"—-1 1l
Zebrafish —————————————|

Short Genetic Variants from dbSNP release 155
POCTIE 1T 1 1] | 1{ Il L | [i I

Repeating Elements by RepeatMasker
1 1 | |

Common doSNP(155) || 1 H [| 1 o

https://genome.ucsc.edu/

bedtools

Bedtools is a fast, flexible
toolset for genome arithmetic.

Bedtools links

Issue Tracker

Source @ GitHub

Old Releases @ Google Code
Mailing list @ Google Groups
Queries @ Biostar

Quinlan lab @ UU

Cnnrrnc

bedtools: a powerful toolset for genome arithmetic

Collectively, the bedtools utilities are a swiss-army knife of tools for a wide-range of genomics analysis tasks. The most
widely-used tools enable genome arithmetic: that is, set theory on the genome. For example, bedtools allows one to inter-
sect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such
as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two inter-
val files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command
line.

bedtools is developed in the Quinlan laboratory at the University of Utah and benefits from fantastic contributions made by
scientists worldwide.

Tutorial

« We have developed a fairly comprehensive tutorial that demonstrates both the basics, as well as some more ad-
vanced examples of how bedtools can help you in your research. Please have a look.

« Robert Aboukhalil has developed sandbox.bio an excellent, web-based playground for the bedtools tutorial and other
widely-used genomics tools.

Important notes

Exercise time!

