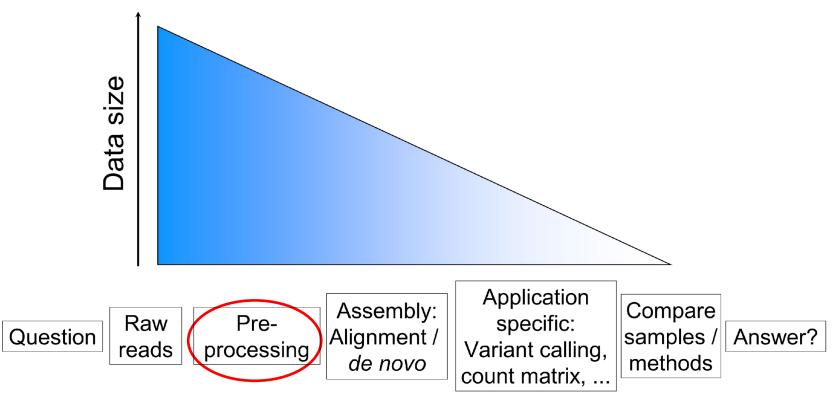

DTU

DTU Health Technology Bioinformatics


Data Preprocessing

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

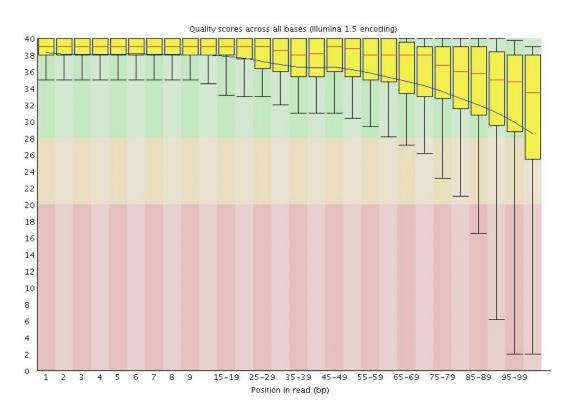
Menu

- The main steps in NGS analysis
- Why is preprocessing important?
- Preprocessing
 - Fastqc reports for quality scores
 - Adapters
 - Depth of coverage vs Breadth of coverage

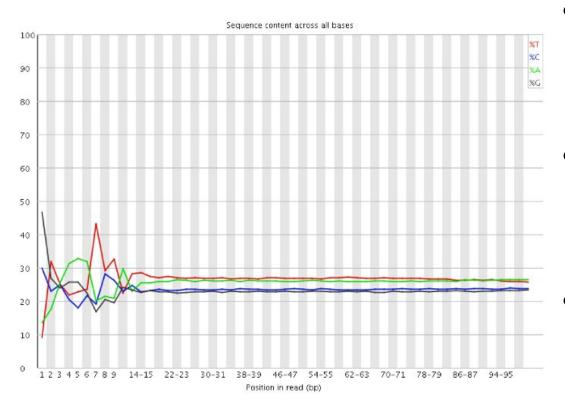
Generalized NGS analysis

Quality scores

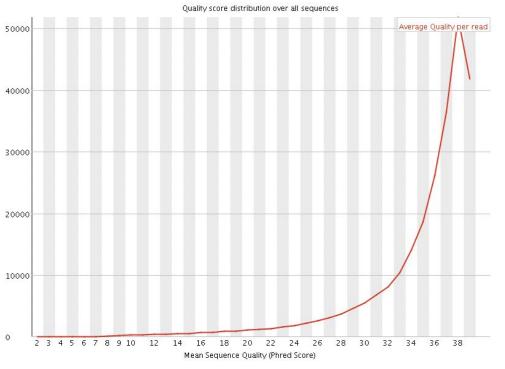
FastQC reports


- Report basic statistics on your data
- Identify issues with your data
- Use at each step of preprocessing to check progress

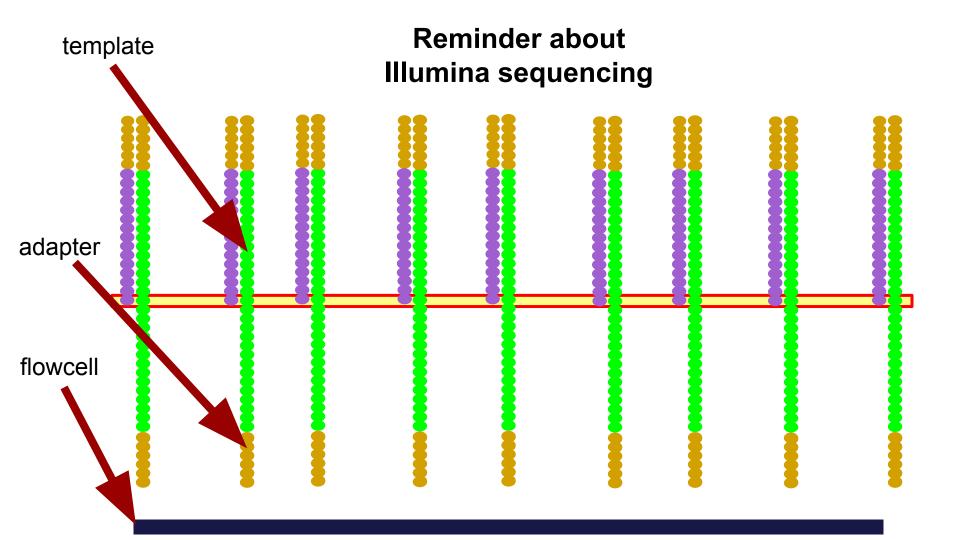
Summary


- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- **Kmer Content**

Per base sequence quality


Do not panic Quality often decreases over the read.

Trim from 5'



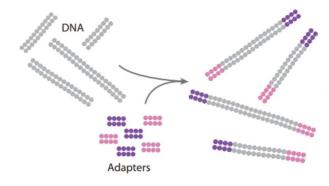
- Sometimes something is fishy in the beginning of the read.
- In case of bad quality, trim the first number of bases from the 5'.
- How many bases would you remove in this case?

Short or low quality reads

- Sliding window to remove low quality regions
- Remove short reads

adapter 1 adapter 2

Single-end:


Single-end:

Paired-end:

- Sometimes adapters / primers are also part of the read
- Short inserts are more prone to contain adapters
- Adapter / primers are non-biological sequences
- The artificial repeats will disturb alignments and de novo assembly
- The sequence is often known, if not, FastQC may still find them

Prepare genomic DNA sample

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
SATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATATCGTATGC	1547768	38.192098035156306	TruSeq Adapter, Index 1 (98% over 50bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGC	146635	3.61830603513262	TruSeq Adapter, Index 1 (100% over 50bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACATCAAGATATCGTATGC	6639	0.16382128255358863	TruSeq Adapter, Index 1 (97% over 41bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATTTCGTATGC	6462	0.15945370204267054	TruSeq Adapter, Index 1 (98% over 50bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACATTACGATATCGTATGC	5433	0.1340625136486891	TruSeq Adapter, Index 1 (97% over 41bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACATAACGATATCGTATGC	5147	0.1270052931621209	TruSeq Adapter, Index 1 (97% over 41bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACACCACGATATCGTATGC	4703	0.11604932849066535	TruSeq Adapter, Index 1 (97% over 41bp)

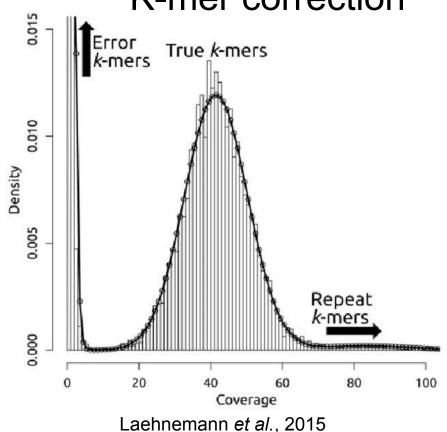
Remove adapters before starting any analyses.

K-mer correction (mostly for *de novo*)

K-mer correction

- kmer = substring of length k
- Create a sliding window of size k, move it over all your reads and count occurrence of kmers
- Example for 1 read, k=4:

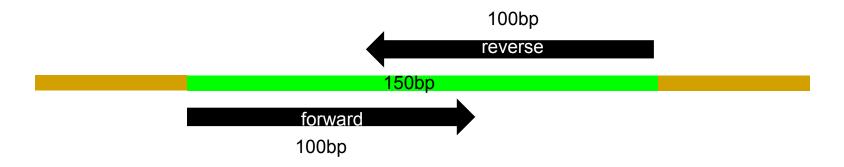
```
read:
ACGTGTAACGTGACGTTGGA


k-mers:
ACGT

CGTG

GTGT

TGTA
```


K-mer correction

Concept: rare k-mers are sequencing errors. In general we need a > 15x sequencing depth

ACGTGGTT<mark>G</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA **ACGTGGTTACCCTTAAA** ACGTGGTT<mark>A</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA ACGTGGTT<mark>A</mark>CCCTTAAA

Merging paired-end reads

- 50 bp have been sequenced twice
- Merge both fwd+rev into a single sequence
- Error correction for free
- Useful for short inserts+de novo assembly

Quality control for long read technologies

We heard about other newer technologies yesterday

- PacBio, Nanopore etc.
- How can we do quality control on reads from these technologies?

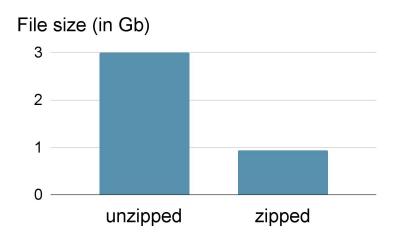
Long reads quality control

Sequence analysis

NanoPack: visualizing and processing long-read sequencing data

Wouter De Coster^{1,*}, Svenn D'Hert², Darrin T. Schultz³, Marc Cruts¹ and Christine Van Broeckhoven¹

¹Neurodegenerative Brain Diseases Group, ²Bioinformatics, Neuromics Support Facility, Center for Molecular Neurology, VIB & University of Antwerp, 2610 Antwerp, Belgium and ³Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA


Article history ▼

https://doi.org/10.1534/g3.119.400864

Published: 01 April 2020

Takeaways

- Lots of data storage is expensive
 - Ex: human genome:
 - 3.0G unzipped
 - 941M zipped

Takeaways

- Keep data compressed whenever possible (gzip, bgzip, bam)
- Several commands can be modified to handle zipped data:
 - o cat -> zcat
 - grep -> zgrep

Takeaways

- Test workflows on subsets
 - Use commands like "head" to get the first X lines of a file
- Remove intermediate files and files that can easily be re-created
- Learn Snakemake or Nextflow