DTU

DTU Health Technology Bioinformatics

Introduction to NGS

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

Menu

What is sequencing? why?

Basic nomenclature

What is sequencing?

Remember high school?

DNA

A few reminders about DNA ...

The "4" bases of DNA

methylation

Genetics:

• A, C, G, T

Epigenetics:

- Methylation
- Nucleosome positions

Human genome 3 billion letters

If we study Next-Generation Sequencing (NGS), why "next"? What was before?

1000 bases x 96

Frederick Sanger 1918 - 2013

First generation: Sanger

- Fragment DNA
- Clone into plasmid and amplify
- DNA polymerase and only 1 primer
- Sequence using labeled dinucleotides which cap seqs.
- Run capillary electrophoresis/gel and "read" DNA code
- Low output, long reads (~800-1200 nt), high quality
- Produces 96 reads / run

Why sequence?

AGGATTATCGGTACT

Investigate differences within a species

"Nothing in Biology Makes Sense Except in the Light of Evolution"

Theodosius Dobzhansky, 1973

"Nothing in Biology Makes Sense Except in the Light of Evolution" NGS

me, I made that up just now

What can we use it for?

- Whole genome re-sequencing
- Population genomics
- Diagnostics
- Cancer genomics
- Ancient genomes
- Metagenomics
- RNA sequencing
- Single cell sequencing
- Genomic Epidemiology
- anything with DNA

Basic concepts

3 key concepts

- Read length
- Throughput
- Types of errors

throughput def. 1

throughput def. 2

template

Key concept: basecalling

mismatch

template

AGCAATCTCAATTACAAATATACACCAACAAA AGCAATCTCAATTACAGATATACACCCAACAAA

read

insert

template

AGCAATCTCAATTACA-AATATACACCAACAA AGCAATCTCAATTACACAATATACACCAACAA

read

deletion

template

read

1977 1983 1989 1995 2001 2006 2012 2018 2024

DNA can be sequenced

1st generation of NGS

- 454 Life Sciences.
- Bought by Roche 2007.
- Illumina/BGI is currently cheapest per GB
- Long-read sequencing is revolutionizing assembly

Sequencing costs

Computer speed and storage capacity is doubling every
18 months and this rate is steady

•DNA sequence data is doubling faster than computer speeds!

1990 - 2003

Picture: The Guardian

~5.54G USD (adj. for FY 2022) 20 research centers, 6 countries

Human sequencing

- First draft genome of human in 2001, final 2004
- Estimated costs \$5.54 billion USD, time 13 years
- Today:
 - -200-1000 USD for one genome
 - A couple of days
 - -Will go down to 100 USD soon

Storage and analysis

- Cost of sequencing is almost less than the cost of storage and analysis
- One Illumina NovaSeq system: almost 10k-20k human genomes per year! 1 year+300 NovaSeqs to sequence every person in Denmark...
- A standard human (30-40x) whole-genome sequencing exp. would create 30-150 Gb of data

Sequence Read Archive (SRA)

What is 16Pb?

- At 4 GB per HD movie, 16 PB could store approximately 4 million HD movies.
- If you watched these back-to-back (24/7), it would take you about 912 years to finish them all.

Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C. The Sequence Read Archive: a decade more of explosive growth. *Nucleic Acids Res.* 2022 Jan 7;50(D1):D387-D390. doi: 10.1093/nar/gkab1053. PMID: 34850094; PMCID: PMC8728234.

The X Genomes projects

- Human population projects
 - -1000 genomes project (2500 individuals)
 - -Genomics England (100k individuals)
 - -US Precision Medicine (1 million individuals)
- 100K pathogens project, Earth Microbiome project,
 Cancer genome project, Plants and animals, insects,...

NGS in the clinic

- Diagnostics of patients (+ fetus)
- Focused treatment of cancer patients
- Sequencing of bacterial isolates
- More and more: mRNA vaccines
- Country-wide projects:
- UK, UAE, Qatar, Finland, China, ...
- DK: Danish regions want to sequence 100k individuals
- USA: 245k individuals, "All of US" published 2024

Personalized medicine

- Giving the same medication to all will not work
- Personalized medicine initiative in DK
- Sequence 100,000 patients on hospitals
- Use extensive registry data
- Current: 100M DKK (estimated 2G DKK)

Preventive medicine/prenatal via cell-free DNA

Ofman, Joshua J., et al. "GRAIL and the quest for earlier multi-cancer detection." Nature (2018).

https://emea.illumina.com/clinical/reproductive-genetic-health/nipt.html

Cancer vaccines

What To Know About Personalized mRNA Cancer Vaccines After Promising Trials From Moderna And Merck

Robert Hart Forbes Staff

Robert Hart is a London-based Forbes senior reporter.

Jun 4, 2024, 11:12am EDT

TOPLINE Cancer vaccines are finally showing promise as Moderna and Merck touted promising data on an experimental skin cancer vaccine and the U.K. announced plans for a "landmark" scheme to test the technology across the country this week, after decades of research that could bring a new era of personalized medicine.

Multiomics: everything, everywhere, all at once

NGS & bioinformatics

- Extreme data size causes problems
- Just transferring and storing the data
- Need computer clusters, large storage
- Think in fast and parallel programs
- Cloud computing increasingly used

Whole genome sequencing

