

DTU Health Technology Bioinformatics

Quantitative metagenomics

Trine Zachariasen, PhD
Post doc at Copenhagen University

Menu

- Diversity measurements
 - Abundance
 - Alpha & beta diversity

Classical measures of diversity

- Richness
- Rarefaction
- Diversity
 - Alpha
 - Beta

9. January 2024 DTU Health Technology Quantitative metagenomics Quantitative metagenomics

Describing biodiversity: Alpha-diversity

Describes the diversity WITHIN a sample

SAMPLE1

Different microorganisms

Alpha diversity: 3

9. January 2024 DTU Health Technology Quantitative metagenomics Quantitative metagenomics

Describing biodiversity: Beta-diversity

Describes the diversity **BETWEEN** samples,

$$(\alpha_{Sample1} - c) + (\alpha_{Sample2} - c) = \beta$$

c = species in common

Describing biodiversity: Beta-diversity

$$(\alpha_{Sample1} - c) + (\alpha_{Sample2} - c) = \beta$$

$$(3-2) + (4-2) = 3$$

Abundance (counts)

Lion	64
Zebra	128
Giraffe	64
leopard	64
rhinoceros	64
hippopotamus	128
gazelle	128
elephant	64
monkey	9

Species richness

• The number of different species in a system

Rarefaction

- Species richness is a function of our no. observations
- When have we sampled enough?
- Mostly used for 16s rRNA amplicons...why?

Shannon index

- Incorporates species richness & eveness
- Quantify the entropy (information content)
- Quantifies the uncertainty (degree of surprise)
- The Shannon index increases as both the richness and the evenness of the community increase
- Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4

$$H' = -\sum_{i=1}^{R} p_i \ln p_i \qquad H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$$

P_i = species proportion

R = observed species = richness

Shannon index

Lion	1
Zebra	2
Giraffe	1
Leopard	1
Rhinoceros	1
Hippopotamus	2
Gazelle	2
Elephant	1
Monkey	0

$$H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$$

11 animals (NOT species) meaning each animal is 0.09 of the total abundance $H' = -(\ln(0.09^{0.09}) + \ln(0.18^{0.18}) + \dots = 2.0$

Bray-curtis dissimilarity

$$0 \le B \le 1$$

$$B_{ij} = 1 - 2C_{ij} / (S_i + S_j)$$

C = sum of the lowest count of all common species

S = total count of the sample

1 means that they do not share anything

$$B_{s1s2} = 1 - 2*(2+1) / (9 + 13) = 0.73$$

Lion	0	2
Zebra	3	2
Giraffe	0	4
Leopard	0	2
Rhinoceros	1	2
Hippodrome	4	0
Gazelle	0	1
Elephant	1	0
Total	9	13

9. January 2024 Quantitative metagenomics DTU Health Technology

Sampling effect

• To be fair we should sample equally in the systems we investigate

9. January 2024 DTU Health Technology Quantitative metagenomics Quantitative metagenomics

Sample sizes

Sample sizes

- Accounting for different sample sizes:
 - Normalize to sample size
 - Rarefy (downsize) samples
 - -Statistically model the variance

9. January 2024 DTU Health Technology Quantitative metagenomics Quantitative metagenomics

Normalizing

$$N = n_i/n_{tot}$$

Total	713	11	
Monkey	9	0	
Elephant	64	1	
Gazelle	128	2	
Hippopotamus	128	2	
Rhinoceros	64	1	
Leopard	64	1	
Giraffe	64	1	
Zebra	128	2	
Lion	64	1	

Total	100	100
Monkey	1.26	0
Elephant	8.98	9.09
Gazelle	17.95	18.18
Hippopotamus	17.95	18.18
Rhinoceros	8.98	9.09
Leopard	8.98	9.09
Giraffe	8.98	9.09
Zebra	17.95	18.18
Lion	8.98	9.09

Issue with different sampling power (higher chance of observing rare species) and does not take compositional nature into account

Downsize / rarefy

Resample x amount of observations

Monkey Total	9 713	0 11	_
Elephant	64	1	
Gazelle	128	2	
Hippopotamus	128	2	
Rhinoceros	64	1	
Leopard	64	1	
Giraffe	64	1	
Zebra	128	2	
Lion	64	1	

Total	10	10	
Monkey	0	0	
Elephant	0	0	
Gazelle	1	2	
Hippopotamus	3	2	
Rhinoceros	0	1	
Leopard	1	1	
Giraffe	0	1	
Zebra	3	2	
Lion	2	1	

Downsize / rarefy

- Select the target depth carefully
- The more reads we keep the more sensitive
- We may have to remove samples with few counts
- We might throw away a lot of data
- Still does not take compositional nature of data into account

Compositional data

- Arbitrary total
 - Sequencing depth never 100%

- Independence between abundance is affected by the capacity of the sequencing instrument
- Sequencing instrument has fixed number of slots

Bacterial population

Compositional data problems

Example: an environment containing both tigers and ladybugs

- The abundances of the two are not affected by each other
- If the abundance of the ladybugs increases some of the slots with tigers must instead be filled by ladybugs
- i.e. the two environmentally independent species are affecting the read count of each other

Relative abundance

 The counts we get is not the absolute, but their proportions relative to each other

Dealing with compositional data

- Statistically model the variance & heteroscedasticity
- Use packages developed for RNA-seq such as DESeq2 and edgeR
- DESeq2 takes raw counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene