DTU Health Technology
Bioinformatics

Quantitative metagenomics

Trine Zachariasen, PhD
Post doc at Copenhagen University

Menu

- Diversity measurements
- Abundance
- Alpha \& beta diversity

Classical measures of diversity

- Richness
- Rarefaction
- Diversity
- Alpha
- Beta

Describing biodiversity: Alpha-diversity

Describes the diversity WITHIN a sample

SAMPLE1

Alpha diversity: 3

Describing biodiversity: Beta-diversity

Describes the diversity BETWEEN samples,

$$
\left(\alpha_{\text {Sample } 1}-c\right)+\left(\alpha_{\text {Sample } 2}-c\right)=\beta
$$

$\mathrm{c}=$ species in common

Alpha diversity: 3

Alpha diversity: 4

Describing biodiversity:

 Beta-diversity$$
\begin{gathered}
\left(\alpha_{\text {sample } 1}-c\right)+\left(\alpha_{\text {Sample } 2}-c\right)=\beta \\
(3-2)+(4-2)=3
\end{gathered}
$$

SAMPLE1

Alpha diversity: 3

Alpha diversity: 4

Abundance (counts)

Lion	64
Zebra	128
Giraffe	64
leopard	64
rhinoceros	64
hippopotamus	128
gazelle	128
elephant	64
monkey	9

DTU

 ミ
Species richness

- The number of different species in a system

Lion	64
Zebra	128
Giraffe	64
leopard	64
rhinoceros	64
hippopotamus	128
gazelle	128
elephant	64
monkey	9

9 observed species

Operational
Taxonomic

Rarefaction

- Species richness is a function of our no. observations
-When have we sampled enough?
- Mostly used for 16s rRNA amplicons...why?

Shannon index

- Incorporates species richness \& eveness
- Quantify the entropy (information content)
- Quantifies the uncertainty (degree of surprise)
- The Shannon index increases as both the richness and the evenness of the community increase
- Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4

$$
H^{\prime}=-\sum_{i=1}^{R} p_{i} \ln p_{i} \quad H^{\prime}=-\left(\ln p_{1}^{p_{1}}+\ln p_{2}^{p_{2}}+\ln p_{3}^{p_{3}}+\cdots+\ln p_{R}^{p_{R}}\right)
$$

$\mathrm{P}_{\mathrm{i}}=$ species proportion
$R=$ observed species $=$ richness

DTU

 $\stackrel{\rightharpoonup}{-}$
Shannon index

Lion	1
Zebra	2
Giraffe	1
Leopard	1
Rhinoceros	1
Hippopotamus	2
Gazelle	2
Elephant	1
Monkey	0

$$
H^{\prime}=-\left(\ln p_{1}^{p_{1}}+\ln p_{2}^{p_{2}}+\ln p_{3}^{p_{3}}+\cdots+\ln p_{R}^{p_{R}}\right)
$$

11 animals (NOT species) meaning each animal is 0.09 of the total abundance $H^{\prime}=-\left(\ln \left(0.09^{0.09}\right)+\ln \left(0.18^{0.18}\right)+\ldots=2.0\right.$

Bray-curtis dissimilarity

$0 \leq B \leq 1$
$B_{i j}=1-2 C_{i j} /\left(S_{i}+S_{j}\right)$

C = sum of the lowest count of all common species

S = total count of the sample
1 means that they do not share anything

$$
B_{s 1 s 2}=1-2^{*}(2+1) /(9+13)=0.73
$$

Sampling effect

- To be fair we should sample equally in the systems we investigate

0

Sample sizes

- Accounting for different sample sizes:
-Normalize to sample size
-Rarefy (downsize) samples
-Statistically model the variance

Normalizing

$$
N=n_{i} / n_{\text {tot }}
$$

Lion	64	1
Zebra	128	2
Giraffe	64	1
Leopard	64	1
Rhinoceros	64	1
Hippopotamus	128	2
Gazelle	128	2
Elephant	64	1
Monkey	9	0
Total	$\mathbf{7 1 3}$	$\mathbf{1 1}$

Lion	8.98	9.09
Zebra	17.95	18.18
Giraffe	8.98	9.09
Leopard	8.98	9.09
Rhinoceros	8.98	9.09
Hippopotamus	17.95	18.18
Gazelle	17.95	18.18
Elephant	8.98	9.09
Monkey	1.26	0
Total	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

Issue with different sampling power (higher chance of observing rare species) and does not take compositional nature into account

Downsize / rarefy

Resample x amount of observations

Lion	64	1
Zebra	128	2
Giraffe	64	1
Leopard	64	1
Rhinoceros	64	1
Hippopotamus	128	2
Gazelle	128	2
Elephant	64	1
Monkey	9	0
Total	$\mathbf{7 1 3}$	$\mathbf{1 1}$

Lion	2	1
Zebra	3	2
Giraffe	0	1
Leopard	1	1
Rhinoceros	0	1
Hippopotamus	3	2
Gazelle	1	2
Elephant	0	0
Monkey	0	0
Total	$\mathbf{1 0}$	$\mathbf{1 0}$

Downsize / rarefy

- Select the target depth carefully
- The more reads we keep the more sensitive
- We may have to remove samples with few counts
- We might throw away a lot of data
- Still does not take compositional nature of data into account

Compositional data

- Arbitrary total
- Sequencing depth never 100\%
- Independence between abundance is affected by the capacity of the sequencing instrument
- Sequencing instrument has fixed number of slots

Bacterial population

Compositional data problems

Example: an environment containing both tigers and ladybugs

- The abundances of the two are not affected by each other
- If the abundance of the ladybugs increases some of the slots with tigers must instead be filled by ladybugs
- i.e. the two environmentally independent species are affecting the read count of each other

Population: 12 tigers and 8 ladybugs

Relative abundance

- The counts we get is not the absolute, but their proportions relative to each other

Population: $\mathbf{1 2}$ tigers and 8 ladybugs

Dealing with compositional data

- Statistically model the variance \& heteroscedasticity
- Use packages developed for RNA-seq such as DESeq2 and edgeR
- DESeq2 takes raw counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene

