

Brief refresher on conditional probabilities and the Bayesian theorem

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

Brief probability reminder ... but first a little game!

Brief probability reminder

Events: *E* = our player picked a red ball

$$P(E) = \frac{1}{10} = 0.1$$

Brief probability reminder

- E = S =
 - = our player picked a red ball

= our player picked the 's' urn

$$P(S)$$
 = $rac{1}{2}$
 $P(E|S)$ = $rac{1}{10}$ = 0.1

conditional probability (assuming our player picked the 's' urn)

- H = our player picked a red ball
 - = our player picked the 's' urn
- T = our player picked the 't' urnP(T) = $rac{1}{2}$ P(E|T) = $rac{5}{10}$ = $rac{1}{2}$ = 0.5

S

P(E) = P(S)P(E|S) + P(T)P(E|T)

$\mathcal{F}(E) = ($ Our player picked urn 's' and picked a red ball) + (Our player picked urn 't' and picked a red ball)

P(E) = P(S)P(E|S) + P(T)P(E|T)P(E) =5 $\frac{1}{2}$ 10 2 $\frac{5}{20}$ $\frac{1}{20}$ P(E) $=\frac{6}{20}$ P(E)

$P(E) = \frac{6}{20}$

There is a 30% chance of getting a red ball

- = our player
 - = our player picked a red ball
 - = our player picked the 't' urn

We seek:

- $E \\ T$
- = our player picked a red ball
- = our player picked the 't' urn

Thomas Bayes (1701 - 1761)

P(T)P(E|T)P(T|E) = -P(E)

What is the **prior** probability of picking urn 't'? P(E|T)(1 P(T|E)E)

= our player picked the 't' urn

What is the **prior** probability of selecting urn 't'? E|T)P(T|E) $\mathbf{2}$ E

- $E \ T$
- = our player picked a red ball
- = our player picked the 't' urn

P(T|E)

What is the probability of sampling a red ball given than I selected the urn 't'?

E

2

- $E \\ T$
- = our player picked a red ball
- = our player picked the 't' urn

P(T|E)

What is the probability of sampling a red ball given than I selected the urn 't'?

5

10

E

- = our player picked a red ball
 - = our player picked the 't' urn

- = our player picked a red ball
- = our player picked the 't' urn

- = our player picked a red ball
 - = our player picked the 't' urn

- $E \\ T$
- = our player picked a red ball
- = our player picked the 't' urn

Another way to visualize:

RED	RED	RED	RED	RED
RED	BLUE	BLUE	BLUE	BLUE
BLUE	BLUE	BLUE	BLUE	BLUE
BLUE	BLUE	BLUE	BLUE	BLUE

 $P(T|E) = rac{rac{5}{20}}{rac{6}{20}}$

- $E \ T$
 - = our player picked a red ball
 - = our player picked the 't' urn

P(T|E)

Another way to visualize:

- = our player picked a red ball
 - = our player picked the 't' urn

$P(T|E) = rac{5}{6} pprox 83\%$

- = our player picked a red ball
- = our player picked the 't' urn

Let us think about Bayes' theorem a bit more...

- The color of the ball is an observation
- The urn that was selected is a piece of information I cannot have access to, a mental model
- I made a prediction about the probability of a model being correct given an observation

 $P(T|E) = rac{P(T)P(E|T)}{P(E)}$

Let us think about Bayes' theorem a bit more...

- The color of the ball is an observation
- The urn that was selected is a piece of information I cannot have access to, a mental model
- I made a prediction about the probability of a model being correct given an observation

 $P(M|D) = rac{P(M)P(D|M)}{P(D)}$

Let us think about Bayes' theorem a bit more...

- Say our player:
 - o selects an urn at random
 - \circ picks a ball
 - \circ records it
 - picks a ball again the **same** urn
- Our player does this 5 times
- When he leaves, he reports his observations

Observations 1:

Let us think about Bayes' theorem a bit more...

- Say our player:
 - o selects an urn at random
 - \circ picks a ball
 - \circ records it
 - picks a ball again the **same** urn
- Our player does this 5 times
- When he leaves, he reports his observations

Observations 1:

What is the probability that urn 't' was selected? ~97%

Observations 1:

What is the probability that urn 't' was selected? ~97%

Let's get 100 people to repeat this experiment and see if we can predict which urn they picked.

source: renover.dk

If 100 people picked urn 's'

If 100 people picked urn 't'

If 100 people picked urn 's'

If 100 people picked urn 't'

Posterior probability for urn 't' for 30 draws for 100 trials (Sampled from urn 's')

Key ideas

- Additional independent observations can give us more confidence in a model being the correct one
- Confidence is **never** absolute