

A Short Introduction to Transcriptomics

Kristoffer Vitting-Seerup, PhD Assistant Professor in Bioinformatics krivi@dtu.dk

Top Global Causes of Death

Share of all global deaths in 2017, by most common causes

Source: World Economic Forum / Institute for Health Metrics and Evaluation

To treat most of these we need to understand the molecular mechanisms and how they are change by disease

Aim: Profile difference between healthy and sick

Solution: Measure all <u>DNA</u>, <u>RNA</u> or all <u>protein in healthy and sick</u>

Genomics Transcriptomics Proteomics

RNA-sequencing 101

More detailed workflow

Gene Count Matrix

The results from a single sample RNA-seq datasets:

		sample1		
	DDR1	884		
ier	RFC2	422	←───	Read count of each "feature"
	HSPA6	621		
	PAX8	658		
	GUCA1A	426		
	UBA7	524		
	THRA	564		
tif	PTPN21	909		
len	CCL5	771		
Id	CYP2E1	315		
	EPHB3	362		
	ESRRA	911		
	CYP2A6	409		
	GAS6	368		
	MMP14	3		
	TRADD	102		
	FNTB	368		
	PLD1	661		

Typically, 20,000 – 50,000 genes

Gene Count Matrix

sample1 sample2 sample3 sample4 sample5 DDR1 RFC2 HSPA6 PAX8 **GUCA1A** UBA7 THRA PTPN21 CCL5 CYP2E1 EPHB3 ESRRA CYP2A6 GAS6 MMP14 TRADD FNTB PLD1

Samples —

Genes

RNA-sequencing Count Matrix

- 3 minutes with neighbour:
- You are analysing 2 genes (gene A and B) in two conditions (condition 1 and 2) on the basis of a RNA-seq experiment that resulted the following number of reads:

	Condition 1	Condition 2
Gene A	1000	3000
Gene B	2000	4000

 Question: Is the following statement correct: "Both gene A and B are more expressed in condition 2" Explain why/why not.

More detailed workflow

Downstream Analysis

Two of the hundreds of possible uses

What question do you want to answer?

Typically, we use transcriptomics to compare between two or more groups, generally referred to as a case/control study.

Examples include:

- Disease vs. normal
- Drug treatment vs. control
- Good prognosis vs. bad prognosis
- Timepoint 1 vs timepoint 2

Case/Control Study

2 Min with neighbor:

• What would we like to know/summarize?

Differential Expression Analysis

- Done by advanced well-tested bioinformatics tools
 - DESeq2
 - EdgeR
 - Voom-limma
- Count matrix as input (do normalization internally)
- They use (generalized) linear models
 - Can take unwanted effects into account

In the real world

- We recently did a systematic analysis of 100 RNA-seq datasets
- On average thousands of genes change significantly between conditions (!)
- How do you make sense of such a list?

Gene-sets

- Collection of genes that have something in common
 - Participate in the same process (e.g. cell cycle)
 - Have the same molecular function (e.g. DNA binding)
 - Cellular location (e.g. nucleus)
 - Identified by Kristoffer (e.g. what I just found in my data)
- Many databases
 - Gene Oncology (GO-terms) (<u>http://geneontology.org/</u>)
 - MSigDB (<u>https://www.gsea-msigdb.org/gsea/msigdb/</u>)
 - Enrichr (<u>https://maayanlab.cloud/Enrichr/#libraries</u>)

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) can be done in two ways:

- 1. Overrepresentation Analysis (OA/ORA)
- 2. Functional Class Scoring (FSC)

Confusingly these are both referred to as GSEA

Overrepresentation Analysis

Overrepresentation Analysis

Overrepresentation Analysis

Note on Overrepresentation Analysis

Can be use for anything where you can divide observations into 4 groups based on two binary categories

- Are significant genes enriched for genes in a gene-set?
- Are people with horn-rimmed glasses also typically taller than 2m?
- Are people with biking helmets enriched amongst students at DTU?
- Etc...

GSEA

- Literally hundreds of tools for doing it!
- R packages
 - <u>fgsea</u>
 - <u>clusterProfiler</u>
 - <u>limma</u>
 - <u>gProfiler</u>
 - pairedGSEA
- Web tools
 - http://geneontology.org/
 - <u>http://cbl-gorilla.cs.technion.ac.il/</u>
 - <u>https://david.ncifcrf.gov/</u>
 - <u>https://biit.cs.ut.ee/gprofiler/gost</u>
- Pay attention to your background!

RNA-sequencing 101 – Done!

Extention #1

Bulk vs Single cell vs Spatial

Modified from @BoXia7, https://twitter.com/adj_23/status/1261928476811997184

• 2 Min with neighbors: What potential problems are there with just measuring the average signal (compared to single cell)?

Single Cell RNA-seq

Single Cell RNA-seq

(SC) Spatial RNA-seq

Modified from @BoXia7, https://twitter.com/adj_23/status/1261928476811997184

- The workhorse for the last almost 20 years
- Cannot be understated how important it has been!
- Have pushed the reductionistic → integrative (holistic?) research paradigm
- Will continue to be relevant due to limitations of single-cell / spatial

(Spatial) Single Cell RNA-sequencing

- What everybody wants to do!
- Enables exciting insights into both normal and disease states
- Many limitations including much harder to analyze(!)
 Only the 300-5000 highest expressed genes (fewer for spatial)
 Very labor intensive and expensive!
- Is the subject of a new advanced master course I am making

Single Cell Multi Omics

Joint analysis of multiple modalities (DNA, RNA, etc) pushes us towards a holistic research paradigm

nature methods

Explore content V About the journal V Publish with us V

<u>nature</u> > <u>nature methods</u> > <u>editorials</u> > article

Editorial Published: 06 January 2020

Method of the Year 2019: Single-cell multimodal omics

Extention #2

There is no such thing as a "gene"

Alternative Splicing

Genes vs Isoforms

The terms isoforms and transcripts are (unfortunately) used interchangeably

Isoforms/Transcripts can easily be quantified from RNA-seq data via pseudo-alignment

Genes vs Isoforms

Take 2 min with your neighbor and discuss: What would you gain by profiling the transcriptome with isoform resolution (instead of gene resolution)?

Analysis of isoforms

- Mostly called differential transcript usage (DTU)
- Good tools:
 - DEXSeq (in family with DESeq2)
 - limma
 - satuRn
- Can be done at two levels
 - Gene level: This gene have changes in isoform usage (unknown which)
 - Transcript level: This isoform has changed usage
- Long read RNA-seq is really useful (both PacBio and ONT)

Isoforms have different function

- Opposite effects in apoptosis
- Interact with different proteins
- Located different places in the cell
- P53

Differential Splicing is Omnipresent

93% of all multi-isoform genes

Splicing Mediate Distinct Biological Signals

Dam et. al. 2022

Splicing Mediate Distinct Biological Signals

Dam et. al. 2022

Isoforms are important

- For analysis of high-throughput data including single cell analysis
- In clinical settings
 - Diagnosis
 - Treatment
- In genetics
- In most diseases especially cancer

Exceptionally understudied!

Main take-aways

- Transcriptomics profile the RNA content of a cell
 - Bulk
 - Single Cell
 - Spatial
- The resulting count/expression matrix enables downstream analysis
 - Differential Expression
 - Gene set enrichment analysis
- Isoforms are important and overlooked
- Enable high-level Integrative Analysis

Transcriptomics Enable high-level Integrative Analysis

DNA Transcripts Proteins Pathways Cell

Jel.

Activating Investor &

Deregalatin cellular anargetica Cellular interactions

Tissue/Cancer organization

Functional phenotype

Original Slide by Lars Rønn Olsen

Come work with me

Projects

- BSc
- MSc
- Special Courses

Technologies

- RNA-seq (bulk/SC)
- Proteomics

Assignment Time! shorturl.at/nzBPQ

Remember the -X when you log in