

Quantitative metagenomics

Asker Brejnrod DTU Bioinformatics section

Slides adapted from Trine Zachariasen

Menu

- Diversity measurements
 - Abundance
 - Alpha & beta diversity

Classical measures of diversity

- Richness
- Rarefaction
- Diversity
 - Alpha
 - Beta

Describing biodiversity: Alpha-diversity

Describing biodiversity: Beta-diversity

Describes the diversity **<u>BETWEEN</u>** samples,

$$(\alpha_{Sample1} - c) + (\alpha_{Sample2} - c) = \beta$$

c = species in common

Abundance (counts)

Lion	64
Zebra	128
Giraffe	64
leopard	64
rhinoceros	64
hippopotamus	128
gazelle	128
elephant	64
monkey	9

Species richness

• The number of different species in a system

Lion	64	
Zebra	128	
Giraffe	64	
leopard	64	
rhinoceros	64	
hippopotamus	128	
gazelle	128	
elephant	64	
monkey	9	

9 observed species

Rarefaction

- Species richness is a function of our no. observations
- When have we sampled enough?
- Mostly used for 16s rRNA amplicons...why?

Shannon index

- Incorporates species richness & eveness
- Quantify the entropy (information content)
- Quantifies the uncertainty (degree of surprise)
- The Shannon index increases as both the richness and the evenness of the community increase
- Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4

$$H' = -\sum_{i=1}^{R} p_i \ln p_i \qquad \qquad H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$$

- P_i = species proportion
- R = observed species = richness

Shannon index

	1.	St 35
18	`**	1
11-	38	* 10
2	٠.	al fac

Lion	1
Zebra	2
Giraffe	1
Leopard	1
Rhinoceros	1
Hippopotamus	2
Gazelle	2
Elephant	1
Monkey	0

 $H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$

11 animals (NOT species) meaning each animal is 0.09 of the total abundance $H' = -(ln(0.09^{0.09}) + ln(0.18^{0.18}) + ... = 2.0$

DTU

Describing biodiversity: Beta-diversity

$$(\alpha_{Sample1} - c) + (\alpha_{Sample2} - c) = \beta$$

(3-2) + (4-2) = 3

Bray-curtis dissimilarity

 $0 \le B \le 1$

$$B_{ij} = 1 - 2C_{ij} / (S_i + S_j)$$

C = sum of the lowest count of all common species

S = total count of the sample

1 means that they do not share anything

 $B_{s1s2} = 1 - 2^{*}(2+1) / (9 + 13) = 0.73$

Lion	0	2
Zebra	3	2
Giraffe	0	4
Leopard	0	2
Rhinoceros	1	2
Hippodrome	4	0
Gazelle	0	1
Elephant	1	0
Total	9	13

PCoA analysis

https://towardsdatascience.com/principal-coordinates-analysis-cc9a572ce6c

Sampling effect

• To be fair we should sample equally in the systems we investigate

Sample sizes

- Accounting for different sample sizes:
 - -Normalize to sample size
 - -Rarefy (downsize) samples
 - -Statistically model the variance

Normalizing

Total	713	11
Monkey	9	0
Elephant	64	1
Gazelle	128	2
Hippopotamus	128	2
Rhinoceros	64	1
Leopard	64	1
Giraffe	64	1
Zebra	128	2
Lion	64	1

N =	n _i /n _{tot}
-----	----------------------------------

Total	100	100
Monkey	1.26	0
Elephant	8.98	9.09
Gazelle	17.95	18.18
Hippopotamus	17.95	18.18
Rhinoceros	8.98	9.09
Leopard	8.98	9.09
Giraffe	8.98	9.09
Zebra	17.95	18.18
Lion	8.98	9.09

Issue with different sampling power (higher chance of observing rare species) and does not take compositional nature into account

Downsize / rarefy

Resample x amount of observations

Total	713	11
Monkey	9	0
Elephant	64	1
Gazelle	128	2
Hippopotamus	128	2
Rhinoceros	64	1
Leopard	64	1
Giraffe	64	1
Zebra	128	2
Lion	64	1

Lion	2	1
Zebra	3	2
Giraffe	0	1
Leopard	1	1
Rhinoceros	0	1
Hippopotamus	3	2
Gazelle	1	2
Elephant	0	0
Monkey	0	0
Total	10	10

Downsize / rarefy

- Select the target depth carefully
- The more reads we keep the more sensitive
- We may have to remove samples with few counts
- We might throw away a lot of data
- Still does not take compositional nature of data into account

Compositional data

- Arbitrary total
 - Sequencing depth never 100%
- Species can co-exist without abundance inter-influences
 - Independence between abundance is affected by the capacity of the sequencing instrument
 - Sequencing instrument has fixed number of slots

А Bacterial population Sequence counts

Figure from: Gloor, Gregory B. et al., Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology 8 (2017)

Compositional data problems

- Example: an environment containing both tigers and ladybugs
- The abundances of the two are not affected by each other
- If the abundance of the ladybugs increases some of the slots with tigers must instead be filled by ladybugs
- i.e. the two environmentally independent species are affecting the read count of each other

Relative abundance

• The counts we get is not the absolute abundance, but their proportions relative to each other

Dealing with compositional data

- Statistically model the variance & heteroscedasticity
- Use packages developed for RNA-seq such as DESeq2 and edgeR
- DESeq2 takes raw counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene (See this link for a brilliant explanation)

If you found it interesting check out the course at DTU Food

23260 Applied methods in metagenomics

