

DTU Health Technology
Bioinformatics

Brief refresher on conditional probabilities and the Bayesian theorem

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

Brief probability reminder ... but first a little game!

Brief probability reminder

$$
\begin{aligned}
& \text { ? } \\
& \\
& \\
& P(E)=\frac{1}{10}=0.1
\end{aligned}
$$

Brief probability reminder

$$
\begin{aligned}
P(S) & =\frac{1}{2} \\
P(E \mid S) & =\frac{1}{10}=0.1 \longleftarrow \underbrace{\text { picked the 's' urn) }}_{\text {conditional probability (assuming our player }}
\end{aligned}
$$

$$
\begin{aligned}
\text { E }
\end{aligned}
$$

$\boldsymbol{P}(\overrightarrow{\boldsymbol{H}})=$ (Our player picked urn 's' and picked a red ball) + (Our player picked urn 't' and picked a red ball)

$$
P(E)=P(S) P(E \mid S)+P(T) P(E \mid T)
$$

$$
\begin{aligned}
& \xrightarrow[\text { LT }]{\square} \text { ? } \\
& P(E)=P(S) P(E \mid S)+P(T) P(E \mid T) \\
& P(E)=\frac{1}{2} \quad \frac{1}{10} \quad+\quad \frac{1}{2} \quad \frac{5}{10} \\
& P(E)=\frac{1}{20}+\frac{5}{20} \\
& P(E)=\frac{6}{20}
\end{aligned}
$$

$$
P(E)=\frac{6}{20}
$$

There is a 30% chance of getting a red ball

What is the probability that urn ' t ' was selected given that our player came out with a red ball?

It seems more
likely that I
came from urn
' 1 '... but how much more likely?

$\underset{\text { I }}{\boldsymbol{Z}}=$ our player picked a red ball

We seek:

$$
P(T \mid E)
$$

攻 = our player picked a red ball

$\underset{\text { H }}{\boldsymbol{H}}=$ our player picked a red ball

$\underset{\text { I }}{\boldsymbol{Z}}=$ our player picked a red ball

$$
P(T \mid E)=\frac{\frac{5}{20}}{\frac{6}{20}}
$$

Another way to visualize:
$\boldsymbol{H}=$ our player picked a red ball
$\mp=$ our player picked the ' t ' urn

RED	RED	RED	RED	RED
RED	BLUE	BLUE	BLUE	BLUE
BLUE	BLUE	BLUE	BLUE	BLUE
BLUE	BLUE	BLUE	BLUE	BLUE

$$
P(T \mid E)=\frac{\frac{5}{20}}{\frac{6}{20}}
$$

$\underset{\text { I }}{\boldsymbol{Z}}=$ our player picked a red ball

$$
P(T \mid E)=\frac{5}{6} \approx 83 \%
$$

$M=$ a model
$D=$ our data, our observation

Let us think about Bayes' theorem a bit more...

- The color of the ball is an observation
- The urn that was selected is a piece of information I cannot have access to, a mental model
- I made a prediction about the probability of a model being correct given an observation

$$
P(M \mid D)=
$$

Let us think about Bayes' theorem a bit more...

- Say our player:
- selects an urn at random
- picks a ball
M = a modelrecords itpicks a ball again the same urn
- Our player does this 5 times
D = our data, our observation
- When he leaves, he reports his observations

Observations 1:

Let us think about Bayes' theorem a bit more...

- Say our player:
- selects an urn at random
- picks a ball
M = a modelrecords itpicks a ball again the same urn
- Our player does this 5 times
D = our data, our observation
- When he leaves, he reports his observations

Observations 1:

What is the probability that urn 't' was selected? ~97\%

key ideas:

- Additional independent observations can give us more confidence in a model being the correct one
M = a model
D = our data, our observation
- Confidence is never absolute

Observations 1:

What is the probability that urn 't' was selected? $\sim 97 \%$

