

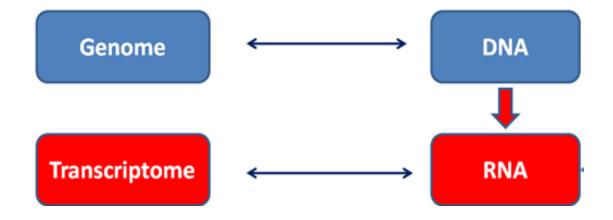
RNA-Seq Next Generation Sequencing Analysis, 2022

Francesca Bertolini DTU Aqua franb@aqua.dtu.dk

· · ·

Lecture program

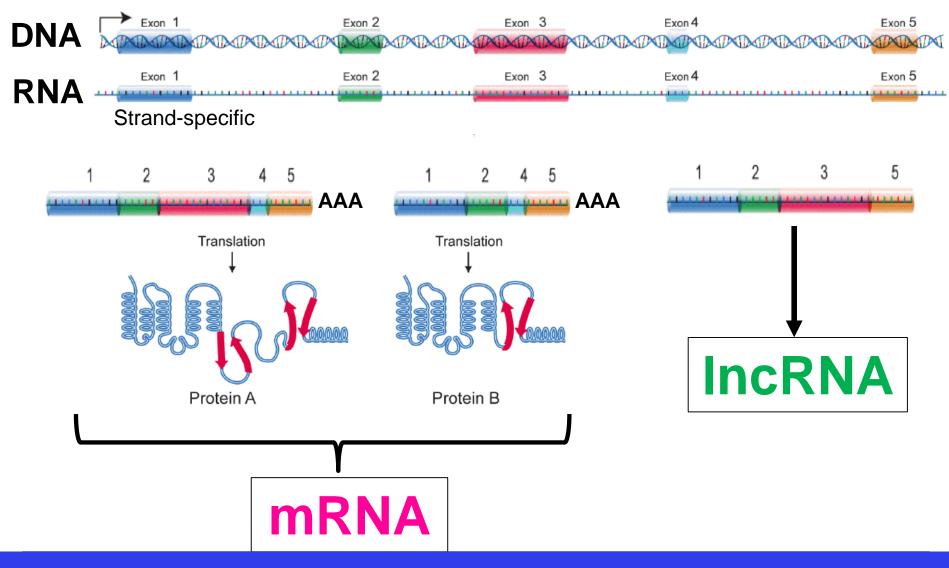
- 1. Types of RNAs and RNA quality
- **2.** RNA-seq: the basics
- 3. RNA-seq: some variations
- 4. Data analyses
 - Alignment
 - Read count
 - Differential expression
 - Gene enrichment


Lecture program

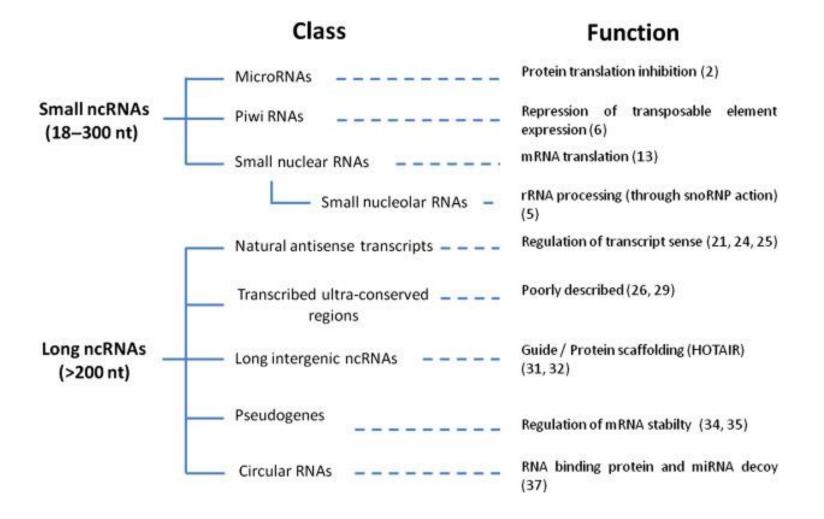
- 1. Types of RNAs and RNA quality
- 2. RNA-seq: the basics
- 3. RNA-seq: some variations
- 4. Data analyses
 - Alignment
 - Read count
 - Differential expression
 - Gene enrichment

Transcriptome

- The transcriptome is defined as the complete set of transcripts (RNA) in a cell, and their quantity, for a specific developmental stage or physiological condition (Wang et al. 2009).
- Transcriptome is therefore dynamic and a good representative of the cellular and tissue state (Srivastava et al 2019).



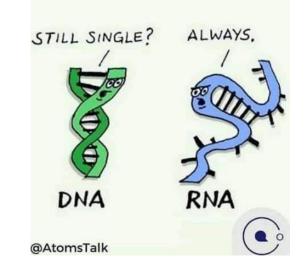
RNA classification


- Ribosomal RNA (rRNA): catalytic component of ribosomes (about 80-85%)
- Transfer RNA (tRNA): transfers amino acids to polypeptide chain at the ribosomal site of protein synthesis (about 15%)
- Coding RNA(mRNA): carries information about a protein sequence to the ribosomes
- Other Non coding regulatory RNAs

mRNAs: splicing

Non coding regulatory RNAs

Delpu et al. 2016. Drug Discovery in Cancer Epigenetics

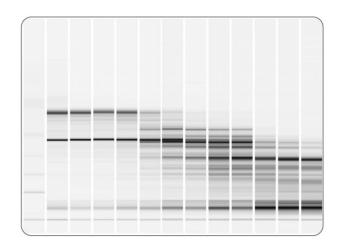


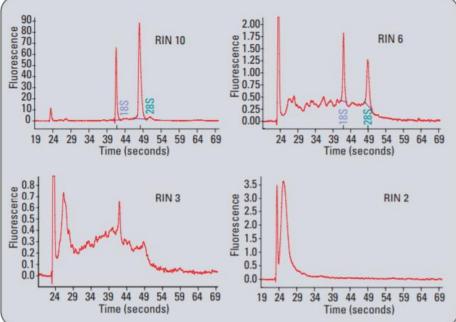
Before RNA extraction

RNA is more unstable than DNA, therefore higher precautions are needed to avoid degradation

TISSUE COLLECTION:

- Liquid nitrogen
- RNA later (for solid tissues)
- Tempus/Pax tubes (for liquid tissue)





After RNA extraction

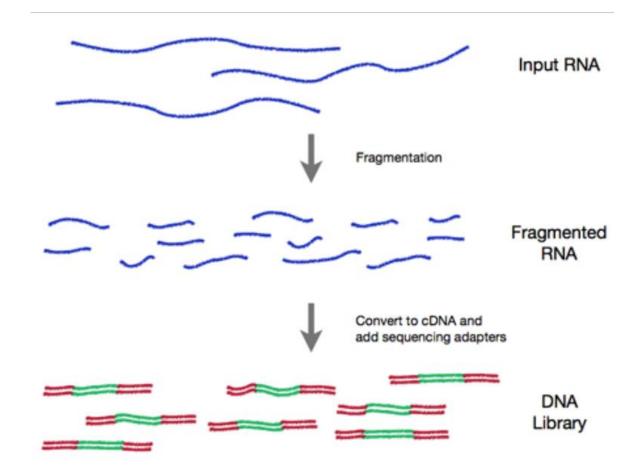
RIN (RNA integrity number): algorithm for assigning integrity values to RNA measurements. *RIN* >7 is ok

Lecture program

1. Types of RNAs and RNA quality

2. RNA-seq: the basics

- 3. RNA-seq: some variations
- 4. Data analyses
 - Alignment
 - Read count
 - Differential expression
 - Gene enrichment



High-throughput sequencing technology used for probing the transcriptome of a sample

- Alternative splicing
- RNA editing
- Novel transcripts
- Allele specific expression
- Fusion transcripts
- Abundance estimation/differential expression

A typical RNA-seq experiment on a 2nd generation seq platform

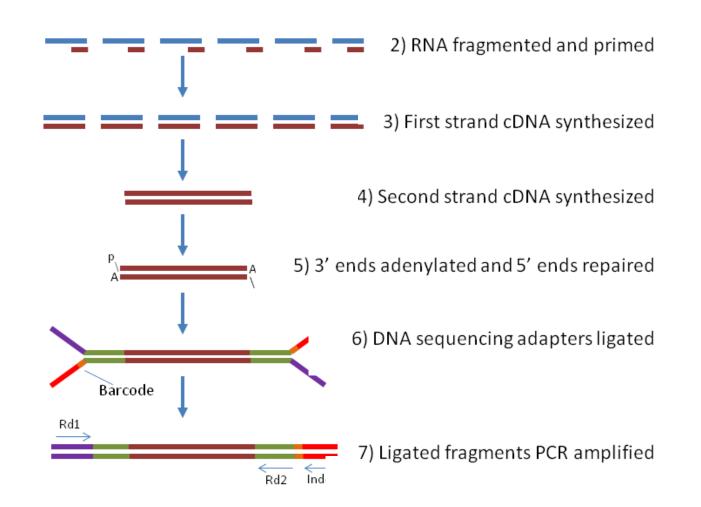
Different steps for different RNAs

Total RNA seq

DTU

 Ξ

- 1. DNase treatment
- 2. Ribosomal depletion
- 3. Fragmentation
- 4. library preparation


mRNA seq

- 1. DNase treatment
- 2. polyA enrichment (oligo-dT)
- 3. Fragmentation
- 4. library preparation

miRNA seq

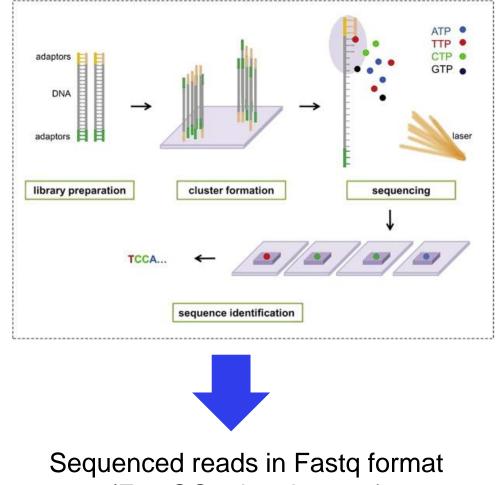
- 1. DNase treatment
- 2. Size selection
- 3. library preparation

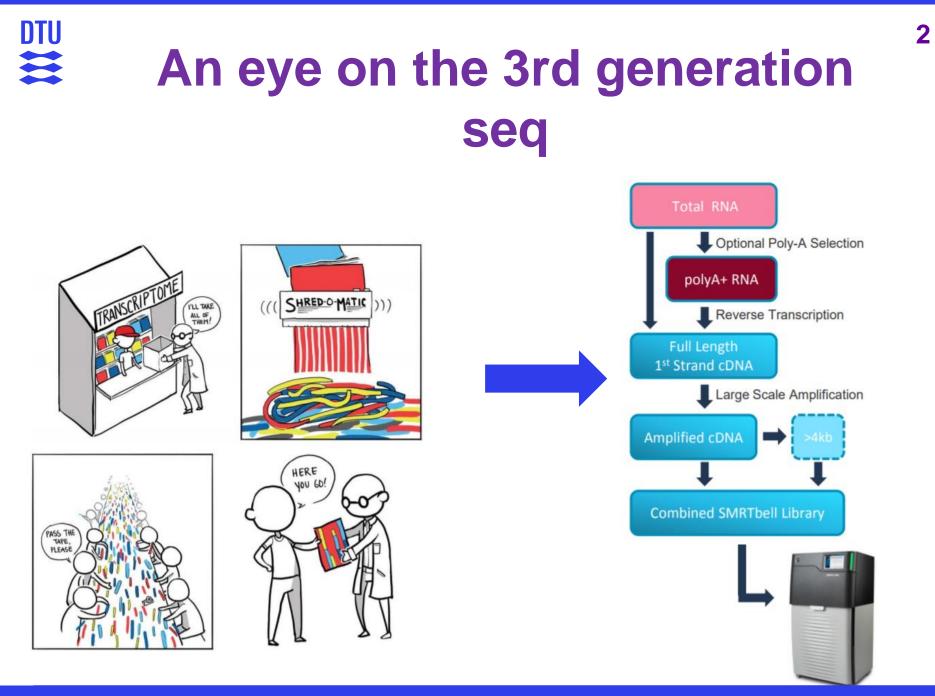
Library preparation: mRNA-seq

2

Library preparation: miRNA-seq

2

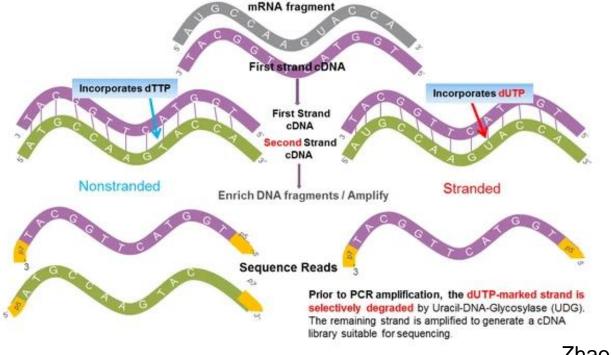

https://www.rna-seqblog.com/preparation-of-highly-multiplexed-smallrna-sequencing-libraries/


2nd Generation seq

After library prep, the workflow is the same as the DNA-seq

E.g.

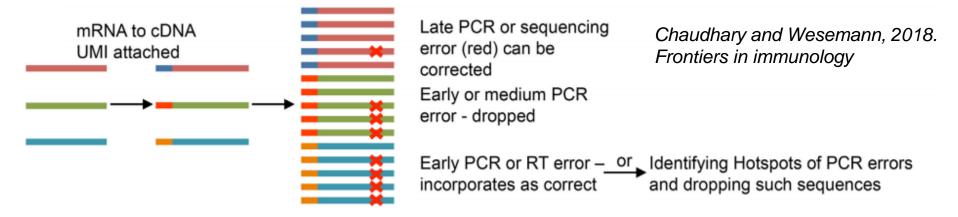
(FastQC, trimming,....)


Lecture program

- 1. Types of RNAs and RNA quality
- 2. RNA-seq: the basics
- 3. RNA-seq: some variations
- 4. Data analyses
 - Alignment
 - Read count
 - Differential expression
 - Gene enrichment

Stranded sequencing

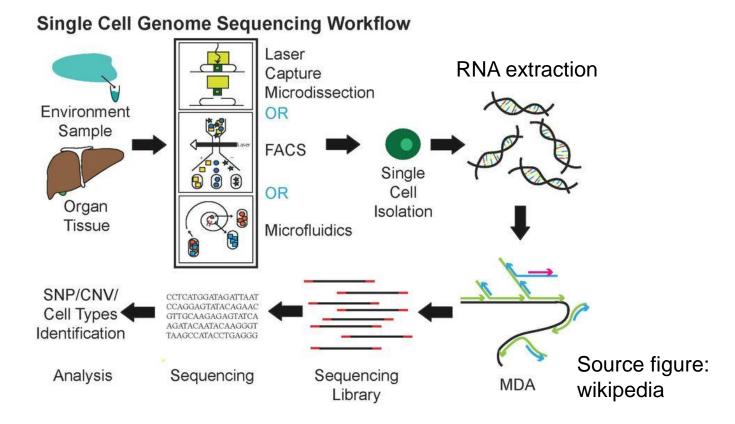
Standard RNA-seq protocol does not retain the strand specificity of origin for each transcript. Without strand information it is difficult and sometimes impossible to accurately quantify gene expression levels for genes with overlapping genomic loci that are transcribed from opposite strands.



Zhao et al. 2015, BMC genomics

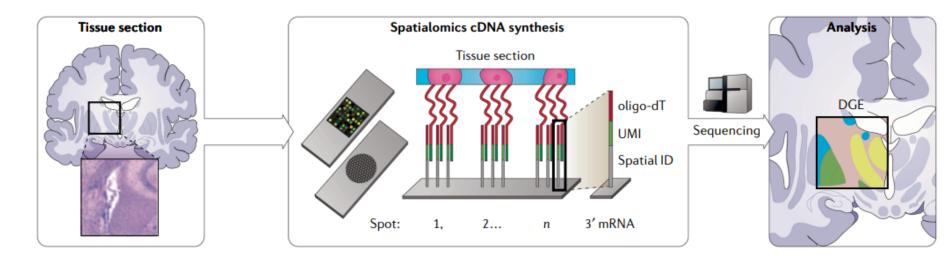
Unique molecular identifiers (UMI)

Unique molecular identifiers (UMIs), or molecular barcodes (MBC) are short sequences or molecular "tags" added to DNA fragments in some next generation sequencing library preparation protocols to identify the input DNA or RNA molecules. These tags are added before PCR amplification, and can be used to reduce errors and quantitative bias introduced by the amplification.


3

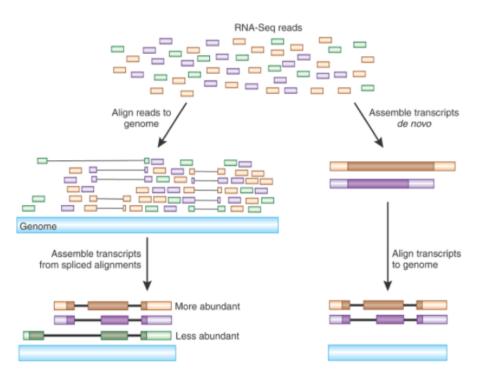
Single cell RNA-seq

The first, and most important, step in conducting scRNA-seq has been the effective isolation of viable, single cells from the tissue of interest.



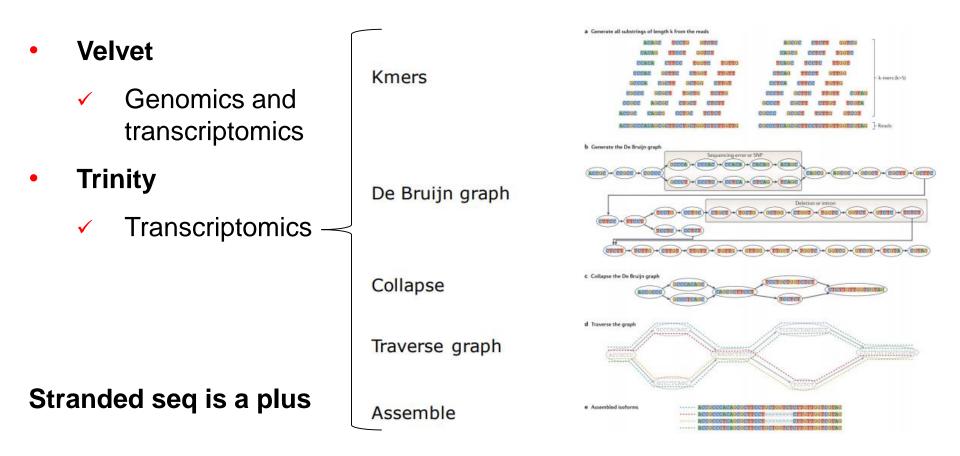
Due to the efficiency of reverse transcription and other noise introduced in the experiments, more cells are required for accurate expression analyses and cell type identification

Current bulk and scRNA-seq methods provide users with highly detailed data regarding tissues or cell populations but do not capture spatial information, which reduces the ability to determine how cellular context relates to gene expression.



Lecture program

- 1. Types of RNAs and RNA quality
- 2. RNA-seq: the basics
- 3. RNA-seq: what more
- 4. Data analyses
 - Alignment
 - Read count
 - Differential expression
 - Gene enrichment


Read mapping strategies

- Reference genome-based an assembled genome exists for a species for which an RNAseq experiment is performed. It allows reads to be aligned against the reference genome and significantly improves our ability to reconstruct transcripts.
- Reference genome-free no genome assembly for the species of interest is available. In this case one would need to assemble the reads into transcripts using *de novo* approaches.

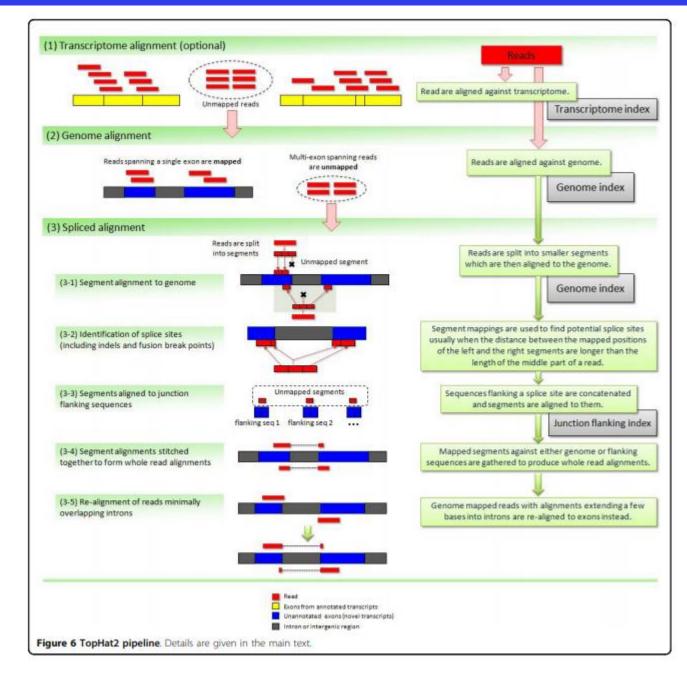
Hass and Zody, Advancing RNA-Seq analysis, Nature Biotechnology 28:421-423

De novo assembly: Most common tools

Do you want to have a complete annotation map? Then different tissues, different developmental stages, different conditions, different sexes,...

Reference-based: Most common tools

- Unspliced read aligner
 - ✓ BWA
 ✓ Bowtie2
 ✓ Novoalign
 ✓ Kallisto


DTU

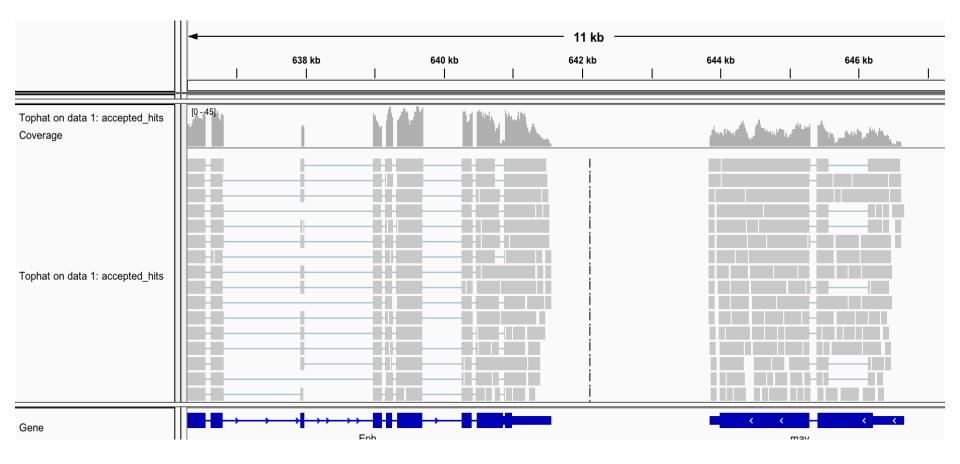
- Splice-junction not considered
 Ideal for mapping against cDNA databases (also from de-novo outputs)
- Spliced read aligner
 - ✓ Tophat2
 ✓ STAR
 ✓ Hisat2

- Novel splice-junction detected
- Better performance for polymorphic regions and pseudogenes

TOPHAT2

Kim et al. 2013

Annotation file


General GFF structure

Position index	Position name	Description				
1	sequence	The name of the sequence where the feature is located.				
2	source	Keyword identifying the source of the feature, like a program (e.g. Augustus or RepeatMasker) or an organization (like TAIR).				
3	feature	The feature type name, like "gene" or "exon". In a well structured GFF file, all the children features always follow their parents in a single block (so all exons of a transcript are put after their parent "transcript" feature line and before any other parent transcript line). In GFF3, all features and their relationships should be compatible with the standards released by the Sequence Ontology Project.				
4	start	Genomic start of the feature, with a 1-base offset. This is in contrast with other 0-offset half-open sequence formats, like BED.				
5	end	Genomic end of the feature, with a 1-base offset . This is the same end coordinate as it is in 0-offset half-open sequence formats, like BED. [<i>citation needed</i>]				
6	score	Numeric value that generally indicates the confidence of the source in the annotated feature. A value of "." (a dot) is used to define a null value.				
7	strand	Single character that indicates the strand of the feature; it can assume the values of "+" (positive, or 5'->3'), "-", (negative, or 3'->5'), "." (undetermined).				
8	phase	phase of CDS features; it can be either one of 0, 1, 2 (for CDS features) or "." (for everything else). See the section below for a detailed explanation.				
9	attributes	All the other information pertaining to this feature. The format, structure and content of this field is the one which varies the most between the three competing file formats.				
		<pre>#gff=yerversion 3</pre>				
	1 reactive by RNASed alignments 21 including 10 samples with support for all annotated introns/product=uncharacterized boths/fins/fins/fins/fins/fins/fins/fins/fin					

Δ

Splice junctions view along the genome

miRNA-seq

The short sequence length makes small RNA difficult to map in large and complex reference genome. Common aligner for long RNA are therefore not accurate for short RNA mapping

Tool	Alignment engine	Reference sequence	Limited species	Local computer	Open source	Citation
miRExpress	Smith-Waterman	miRbase	All miRbase	Yes	Yes	Wang et al. 2009
DSAP	Smith-Waterman	miRbase	All miRbase	Web-server only	NA	Huang et al. 2010
MIReNA	MEGABLAST	Whole genome	Any	Yes	Yes	Mathelier and Carbone 2010
miRDeep	MEGABLAST	Whole genome	Any	Yes	Yes	Friedländer et al. 2008
miRDeep2	Bowtie1	Whole genome	Any	Yes	Yes	Friedländer et al. 2012
miRanalyzer	Bowtie1	miRbase and whole genome	34 species	Web-server only	No	Hackenberg et al. 201
Shortran	Bowtie1	Whole genome	Any	Yes	Yes	Gupta et al. 2012
mirTools2	SOAP2	Whole genome	32 species	Yes, and web-server		Wu et al. 2013b
MiRNAkey	BWA	miRbase	All miRbase	Yes	Yes	Ronen et al. 2010
UEA sRNA workbench	PatMaN	Whole genome	Any	Yes	Yes	Stocks et al. 2012
ShortStack	Any	Whole genome	Any	Yes	Yes	Axtell 2013

TABLE 1. SmRNA/microRNA-seq analysis pipelines in common use

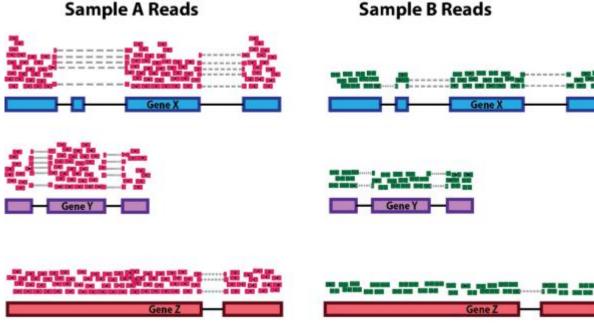
List is nonexhaustive.

READ COUNT

Count the number of reads aligned to each known transcripts/isoform

E.g **HTSeq-count** -It needs a gtf/gff file

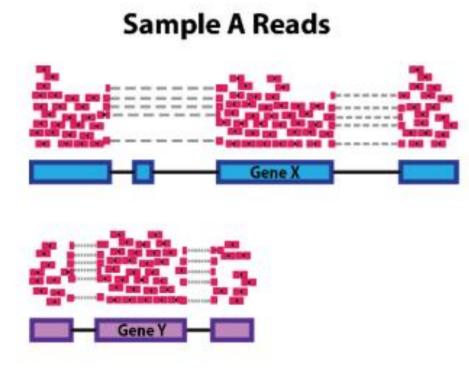
	union	intersection _strict	intersection _nonempty
read gene_A	gene_A	gene_A	gene_A
read gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	gene_A	gene_A
read gene_A gene_B	ambiguous	gene_A	gene_A
read gene_A gene_B	ambiguous	ambiguous	ambiguous


NORMALIZATION

- Longer genes will have more reads mapping to them (within samples)
- Sequencing run with more depth will have more reads mapping on each gene (between samples)

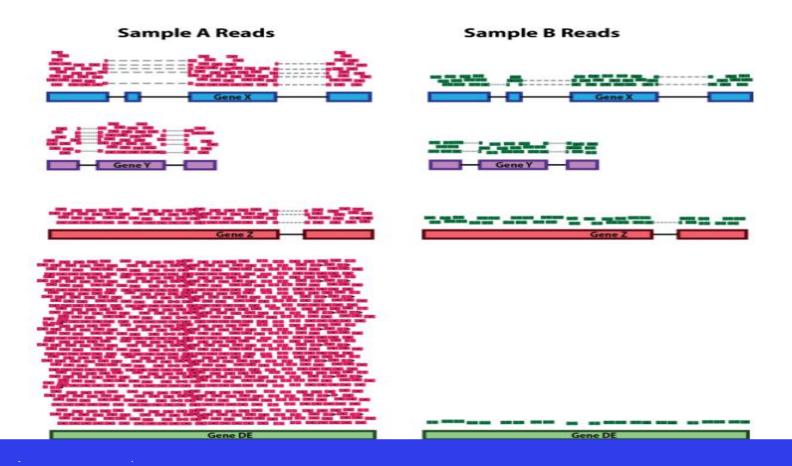
Main factors during normalization

Sequencing depth



Sample B Reads

Main factors during normalization


Gene length

Main factors during normalization

RNA composition Anders and Huber , 2010 Genome Biol.

NORMALIZATION

Common normalization methods

	Normalization method	Description	Accounted factors	Recommendations for use
R m e r m D	i PWI (transcripts per kilohase million)	Transcript (kn) per million	gene length	gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
	RPKM/FPKM(reads/frag ments per kilobase of exon per million reads/fragments mapped)		sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis
	DESeq2's median of ratios		sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis; NOT for within sample comparisons

DTU

Differential expression

DeSeq2

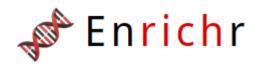
Differential gene expression analysis based on the negative binomial distribution

- Input: Read count tables (HTSeq)
- Output: Table containing statistics for whether a gene is differential expressed between two conditions

log2 fold change (MAP): condition treated vs untreated ## Wald test p-value: condition treated vs untreated

DataFrame with 6 rows and 6 columns

##		baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
##		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
##	FBgn0039155	453	-3.71	0.160	-23.2	4.01e-119	3.11e-115
##	FBgn0029167	2165	-2.08	0.104	-20.1	6.68e-90	2.59e-86
##	FBgn0035085	367	-2.23	0.137	-16.3	1.89e-59	4.87e-56
##	FBgn0029896	258	-2.21	0.159	-13.9	5.85e-44	1.13e-40
##	FBgn0034736	118	-2.57	0.185	-13.9	8.07e-44	1.25e-40
##	FBgn0040091	611	-1.43	0.120	-11.9	1.11e-32	
	Gene id Mean read		Log2 fold change and standard	ld Jerror	rest statistic	P-value adjust	ed p-value


Functional enrichment analysis

Identification of classes of genes that are overrepresented among the differentially expressed genes, and may have an association with the disease/phenotype investigated

Gene Ontology project provides an ontology of **defined terms** representing gene product properties. The ontology covers three domains:

- •Molecular function: molecular activities of gene products
- •Cellular component: where gene products are active
- •Biological process: pathways and larger processes made up of the activities of multiple gene products.

Some GO and pathway analyses websites

http://amp.pharm.mssm.edu/Enrichr/

Gene Ontology enRIchment anaLysis and visuaLizAtion tool

http://cbl-gorilla.cs.technion.ac.il/

https://david.ncifcrf.gov/

https://cytoscape.org/

Useful links

Deseq2 vignette:

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

RNA-seq the teenage years

https://www.nature.com/articles/s41576-019-0150-2.pdf

Pseudoalignment: Kallisto

https://www.nature.com/articles/nbt.3519

You can learn more about NGS and its application in animal breeding and conservation with the course **25334 Genomic methods in breeding and management of aquatic living resources** (fall 2022)