

Brief refresher on conditional probabilities and the Bayesian theorem

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

Brief probability reminder ... but first a little game!

Brief probability reminder

Brief probability reminder

$$
\begin{aligned}
\text { E } & \text { = our player picked a red ball } \\
S & \text { = our player picked the 's' urn } \\
T & =\text { our player picked the 't' urn } \\
P(T) & =\frac{1}{2} \\
P(E \mid T) & =\frac{5}{10}=\frac{1}{2}=0.5
\end{aligned}
$$

$$
\begin{aligned}
& P(E)=P(S) P(E \mid S)+P(T) P(E \mid T)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 品 } \\
& P(E)=P(S) P(E \mid S)+P(T) P(E \mid T) \\
& P(E)=\frac{1}{2} \quad \frac{1}{10}+\quad \frac{1}{2} \quad \frac{5}{10} \\
& P(E)=\frac{1}{20}+\frac{5}{20} \\
& P(E)=\frac{6}{20}
\end{aligned}
$$

$$
P(E)=\frac{6}{20}
$$

There is a 30% chance of getting a red ball

What is the probability that urn ' t ' was selected given that our player came out with a red ball?

$\frac{\boldsymbol{H}}{}=$ our player picked a red ball

We seek:

$$
P(T \mid E)
$$

Thomas Bayes (1701-1761)

$$
P(T \mid E)=\frac{P(T) P(E \mid T)}{P(E)}
$$

= our player picked a red ball
\boldsymbol{Z}

= our player picked a red ball
\boldsymbol{Z}

= our player picked a red ball
$\mp=$ our player picked the 't' urn

$$
P(T \mid E)=\frac{\frac{5}{20}}{\frac{6}{20}}
$$

M =a mode
$D=$ our data, our obsevation

Let us think about Bayes' theorem a bit more.

- The color of the ball is an observation
- The urn that was selected is a piece of mental model
- I made a prediction about the probability of a model being correct given an observation

$$
P(M \mid D)=\frac{P(M) P(D \mid M)}{P(D)}
$$

$M=$ a model
$D=$ our data, our observation
Let us think about Bayes' theorem a bit more...

- Say our player:
- selects an urn at random
- picks a ball
- records it
- picks a ball again the same urn
- Our player does this 5 times
- When he leaves, he reports his observations

Observations 1:

Let us think about Bayes' theorem a bit more...

- Say our player:
- selects an urn at random
- picks a ball
- records it
M = a modelpicks a ball again the same urn
- Our player does this 5 times
D = our data, our observation
- When he leaves, he reports his observations

Observations 1:

What is the probability that urn ' t ' was selected? $\sim 97 \%$

key ideas:

- Additional independent observations can give us more confidence in a model being the correct one
$M=$ a model
$D=$ our data, our obseration
- Confidence is never absolute

Observations 1:

What is the probability that urn 't' was selected? $\sim 97 \%$

