

DTU Health Technology Bioinformatics

Introduction to NGS technology

Gabriel Renaud Associate Professor Section of Bioinformatics Technical University of Denmark gabriel.reno@gmail.com

Outline

- 2nd generation NGS
- Illumina movietime!
- Your turn to basecall
- 3rd generation NGS

2 main types of approaches

1) Amplify and sequence one base at a time

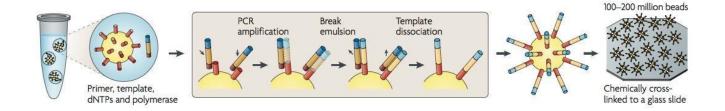
1:A 2:G 3:G 4:T = AGGT

2) Amplify and count how many of the same base

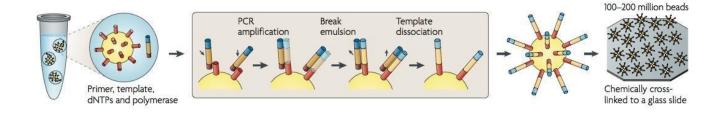
 $1:1A \quad 2:2G \quad 3:1T = AGGT$

Second generation sequencing

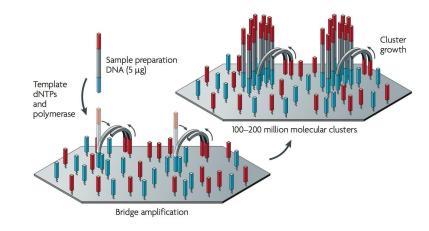
• Illumina sits on 75% of the market


General library preparation steps

- 1.Create library molecules
- 2.Amplification (PCR)
- 3. Massive parallel sequencing (strength over Sanger)


Amplification and immobilization

• Emulsion PCR (454, SOLiD, IonTorrent): Water, oil, beads, one DNA template/droplet



Amplification and immobilization

 Emulsion PCR (454, SOLiD, IonTorrent): Water, oil, beads, one DNA template/droplet

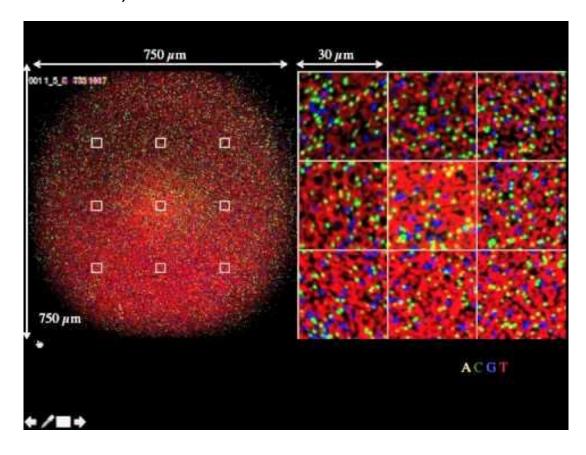
Bridge PCR (Illumina): One DNA template/cluster, primers on surface, grow by bridging primers

2 main types of approaches

1) Amplify and sequence one base at a time

1:A 2:G 3:G 4:T = AGGT

2) Amplify and count how many of the same base

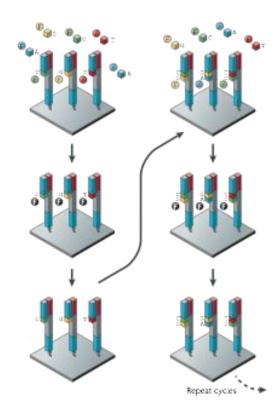

 $1:1A \quad 2:2G \quad 3:1T = AGGT$

Illumina sequencing

corporate propaganda: https://www.youtube.com/watch?v=HMyCqWhwB8E

Amplicon sequencing on Illumina

• Why can't you just fill your Illumina flow cell with amplicon libraries (i.e. the same sequence over and over)?


Fluorescence detection

Illumina - Cyclic reversible termination

Add all dNTPs labelled w. diff dye

Create four-color image

Cleave dye and repeat next cycle

2G: Imaging handout

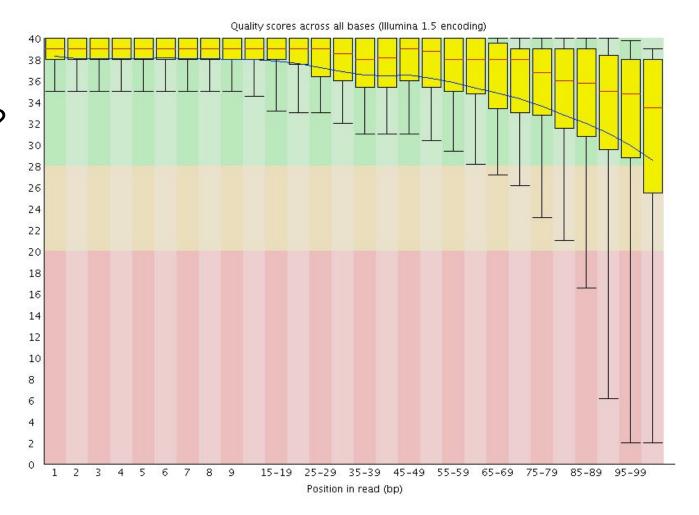
Illumina 1:_____

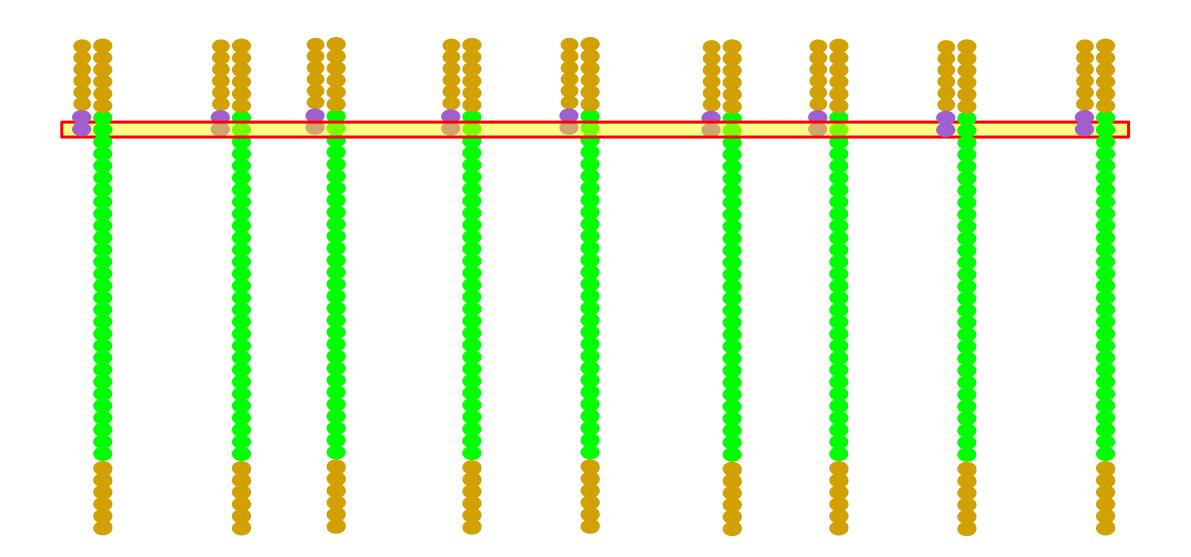
Illumina 2:_____

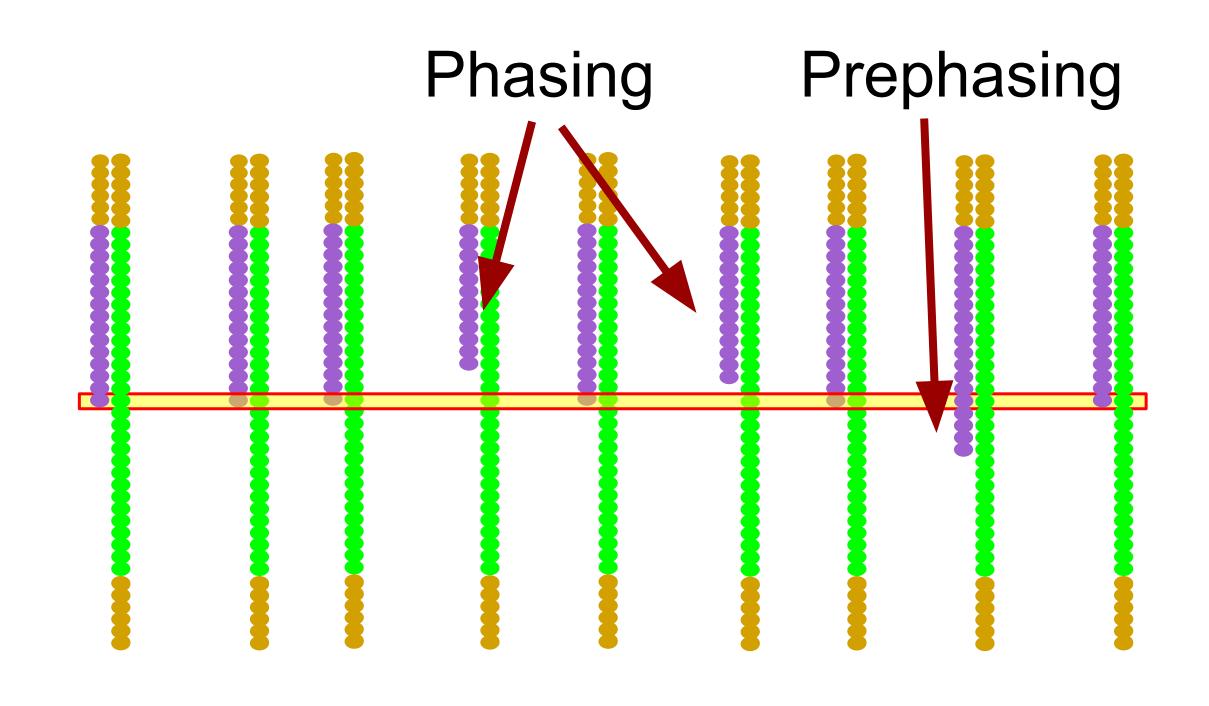
_

2G: Imaging handout Answers!

Illumina 1:_____

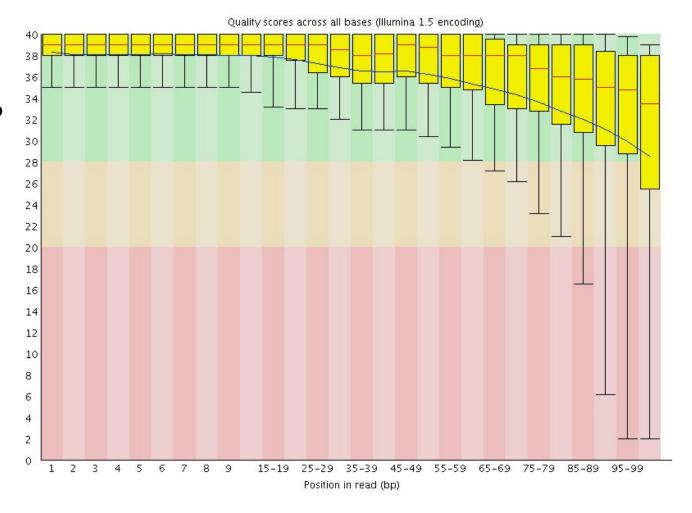

Illumina 2:_____


TOP: CATCGT


BOTTOM: CCCCCC

Illumina: Quality deterioration

- Quality goes down
- Especially 2nd read
- Can you think of why?



Illumina: Quality deterioration

- Quality goes down
- Especially 2nd read
- Can you think of why?

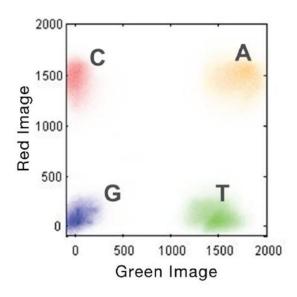
- Efficiency of incorporation
- Phasing
- Prephasing

Brief side note about multiplexing/demultiplexing

- If we sequence a small virus (ex: bacteriophage Phi-X174 with a genome size of 5386 nucleotides), do we need 1B reads?
- Idea to save costs: pool multiple samples together on the same run

teknologi Introduction to NGS technology

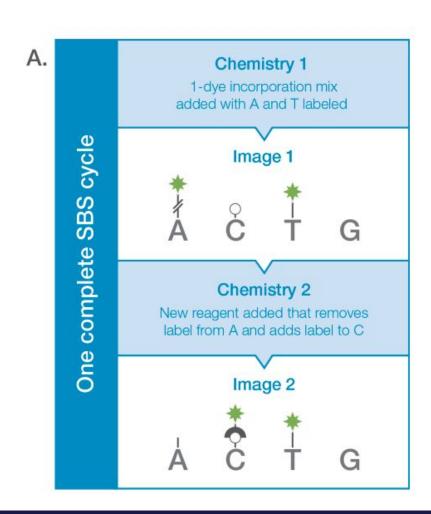
Brief side note about spike-in


- How to know if the sequencing run was successful (low error rate)?
- Idea: Let's spike-in a small virus (ex: bacteriophage Phi-X174 with a genome size of 5386 nucleotides)

steknologi Introduction to NGS technology

NextSeq/NovaSeq (2015-)

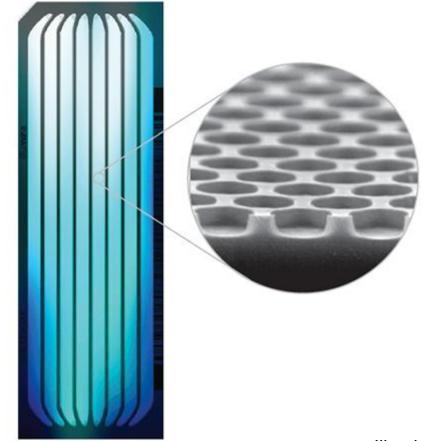
- Chemistry is not based 4 dyes (as before) but 2 dyes
 - T (red), C (green), A (both) and G (none = "dark")
 - Faster processing rate and cheaper reagents
 - Slightly increases error rate
 - Problem with G stretches because G is not dyed



source: Illumina

26

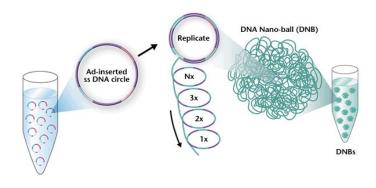
1 dye, 2 images


В.	Image 1	Image 2	Result
	ON	OFF	А
	OFF	ON	С
	ON	ON	Т
	OFF	OFF	G

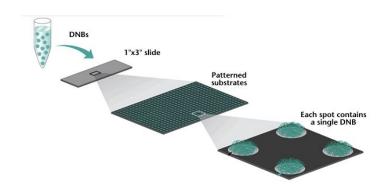
source: Illumina

Patterned flowcell

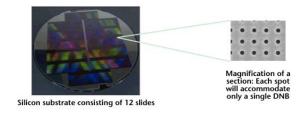
- Patterned wells
- Solves overloading flowcell
- More duplicates

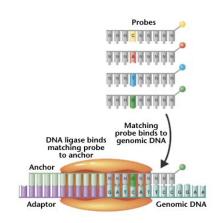


source: Illumina



BGI-Seq


ssDNA -> DNA nanoballs


Place DNBs into each spot

Use silicon chips with sticky spots

Sequence using ligase and fluorescent labeled probes

29

BGI-Seq

2020

PLOS ONE

RESEARCH ARTICLE

Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing

Dmitriy Korostin¹, Nikolay Kulemin^{1,2}, Vladimir Naumov², Vera Belova_©¹*, Dmitriy Kwon³, Alexey Gorbachev_©²

1 Pirogov Russian National Research Medical University, Moscow, Russia, 2 Zenome.io, Ltd., Moscow, Russia, 3 Company Helicon, Ltd., Moscow, Russia

* verusik.belova@gmail.com

Abstract

The MGISEQ-2000 developed by MGI Tech Co. Ltd. (a subsidiary of the BGI Group) is a new competitor of such next-generation sequencing platforms as NovaSeq and HiSeq (Illumina). Its sequencing principle is based on the DNB and the cPAS technologies, which were also used in the previous version of the BGISEQ-500 device. However, the reagents for MGISEQ-2000 have been refined and the platform utilizes updated software. The cPAS method is an advanced technology based on the cPAL previously created by Complete Genomics. In this paper, the authors compare the results of the whole-genome sequencing of a DNA sample from a Bussian female donor performed on MGISEQ-2000 and Illumina HiSeq 2500 (both PE150). Two platforms were compared in terms of sequencing quality, number of errors and performance. Additionally, we performed variant calling using four different software packages: Samtools mpileaup, Strelka2, Sentieon, and GATK. The accuracy of SNP detection was similar in the data generated by MGISEQ-2000 and HiSeq 2500, which was used as a reference. At the same time, a separate indel analysis of the overall error rate revealed similar FPR values and lower sensitivity. It may be concluded with confidence that the data generated by the analyzed sequencing systems is characterized by comparable magnitudes of error and that MGISEQ-2000 and HiSeq 2500 can be used interchangeably for similar tasks like whole genome sequencing.

Comparative Performance of the MGISEQ-2000 and Illumina X-Ten Sequencing Platforms for Paleogenomics

Kongyang Zhu^{1†}, Panxin Du^{2†}, Jianxue Xiong², Xiaoying Ren³, Chang Sun², Yichen Tao², Yi Ding³, Yiran Xu², Hailiang Meng², Chuan-Chao Wang^{1*}and Shao-Qing Wen^{2,3*}

¹State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China, ³MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China, ³Institute of Archaeological Science, Fudan University, Shanghai, China

The MGISEQ-2000 sequencer is widely used in various omics studies, but the performance of this platform for paleogenomics has not been evaluated. We here compare the performance of MGISEQ-2000 with the Illumina X-Ten on ancient human DNA using fou samples from 1750 BCE to 60 CE. We found there were only slight differences betweer the two platforms in most parameters (duplication rate, sequencing bias, θ , δS , and λ) MGISEQ-2000 performed well on endogenous rate and library complexity although X-Ter had a higher average base quality and lower error rate. Our results suggest that MGISEQ-2000 and X-Ten have comparable performance, and MGISEQ-2000 can be an alternative platform for paleogenomics sequencing.

GigaScience, 10, 2021, 1-9

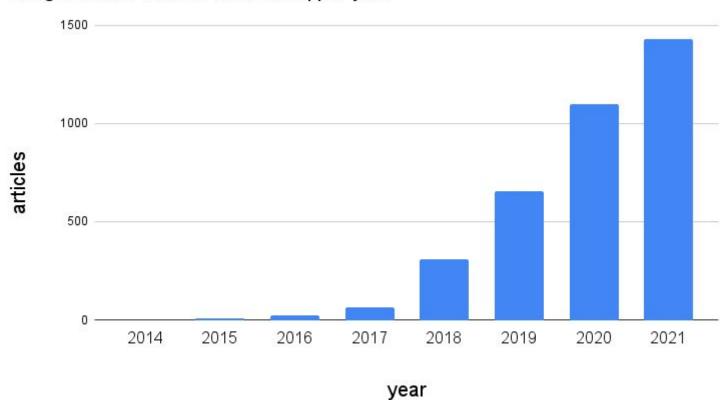
doi: 10.1093/gigascience/giab01/ Data Note

30

DATA NOTE

Comparative analysis of 7 short-read sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing

Hak-Min Kim¹, Sungwon Jeon^{2,3}, Oksung Chung¹, Je Hoon Jun¹, Hui-Su Kim², Asta Blazyte^{2,3}, Hwang-Yeol Lee¹, Youngseok Yu¹, Yun Sung Cho¹, Dan M. Bolser ^{0,4}, and Jong Bhak ^{0,1,2,3,4,5},*


¹Clinomics Inc., Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea; ²Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea; ³Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea; ⁴Geromics Ltd., 222 Mill Road, Cambridge, CB1 3NF, United Kingdom and ⁵Personal Genomics Institute (PGI), Genome Research Foundation, Osong saengmyongiro, Cheongiu, 28160, Republic of Korea

Conclusion: BGI = Illumina in terms of errors but cheaper

BGI-Seq

Google scholar articles on BGISeq per year

DTU Sundhedsteknologi Introduction to NGS technology

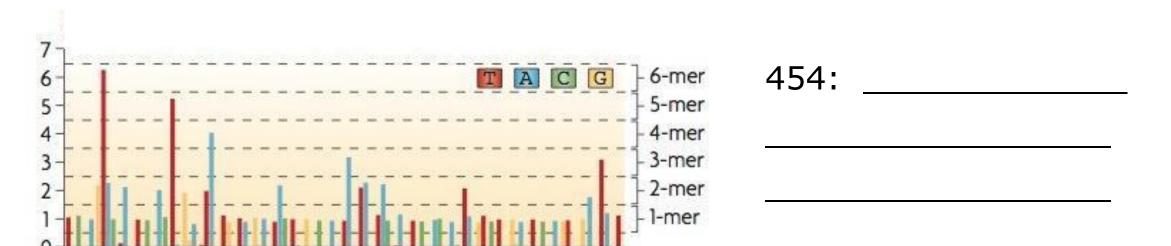
31

2 main types of approaches

1) Amplify and sequence one base at a time

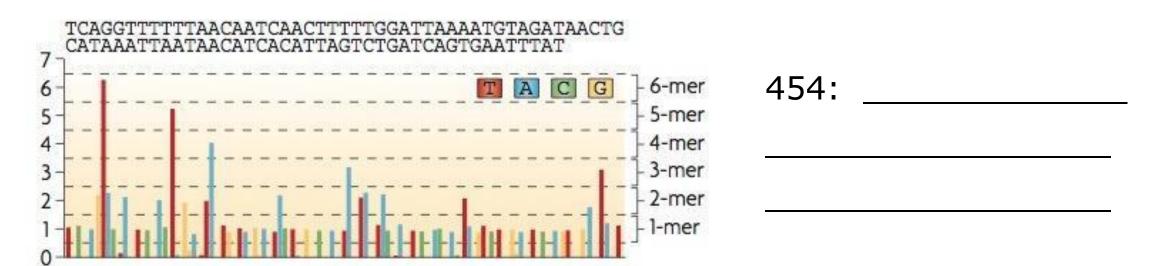

1:A 2:G 3:G 4:T = AGGT

2) Amplify and count how many of the same base


 $1:1A \quad 2:2G \quad 3:1T = AGGT$

454: Pyrosequencing

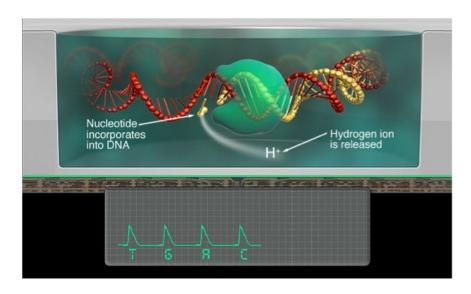
- 1. Load template beads into wells
- 2. Flow one dNTP across wells
- 3. Polymerase incorporates nucleotide
- 4. Release of PPi leads to light
- 5. Light intensity= # of bases
- Imaging, next dNTP

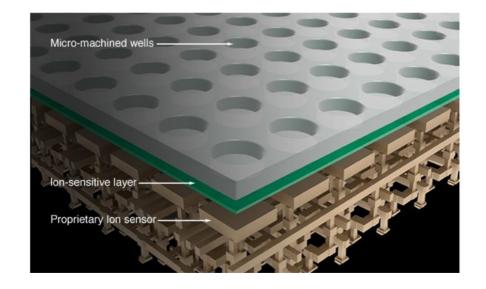


2G: Imaging handout

-

2G: Imaging handout Answers!




-

Ion Torrent

- Corporate propaganda: https://www.youtube.com/watch?v=zBPKj0mMcDg
- Similar principle to 454
- Library: Emulsion PCR
- Based on semiconductors
- Detection is based on H ions (pH) changes

37

Let's remember the types of errors

mismatch

AGCAATCTCAATTACAGATATACACCAACAAA
AGCAATCTCAATTACAGATATACACCAACAAA

insert

AGCAATCTCAATTACACAATATACACCAACAA
AGCAATCTCAATTACACAATATACACCAACAA

deletion

AGCAATCTCAATTACAATTACACCAACAA
AGCAATCTCAATTACAAATATACACCAACAA

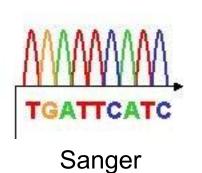
Which of the the 2 main types of approaches would be more prone to indels?

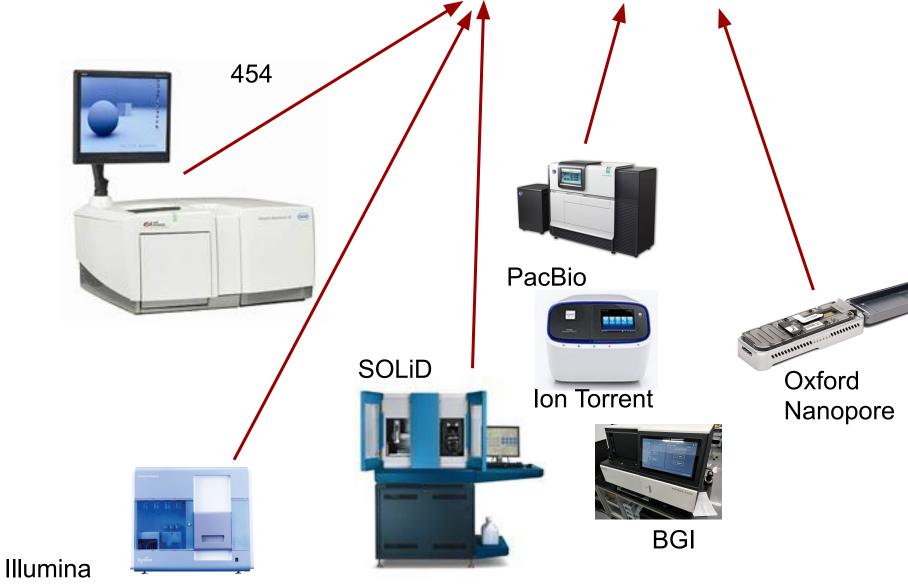
1) Amplify and sequence one base at a time

1:A 2:G 3:G 4:T =

2) Amplify and count how many of the same base

 $1:1A \quad 2:2G \quad 3:1T = AGGT$


DTU Sundhedsteknologi Introduction to NGS technology


AGGT

Technology	read length	# of reads	errors?
Sanger	400 to 900 bp	96	mm 0.01%
Illumina MiSeq	2x 200-300bp	20-30 M per flow cell	mm 0.1-0.2%
Illumina HiSeq	2x 100-150bp	~2G per flow cell	mm 0.1-0.2%
Illumina NovaSeq	2x 100-250bp	~6-10G per flow cell	mm 0.1%?
DNBSEQ-T7	2x 100-200bp	~5-10G per flow cell	<mm 0.1%<="" td=""></mm>
Ion Torrent	~200-400 bp	5-50M reads	indel 0.46 to 2.4%

3rd generation

1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019

3rd generation

- Single-molecule sequencing
- No amplification -> less bias -> observations are more independent

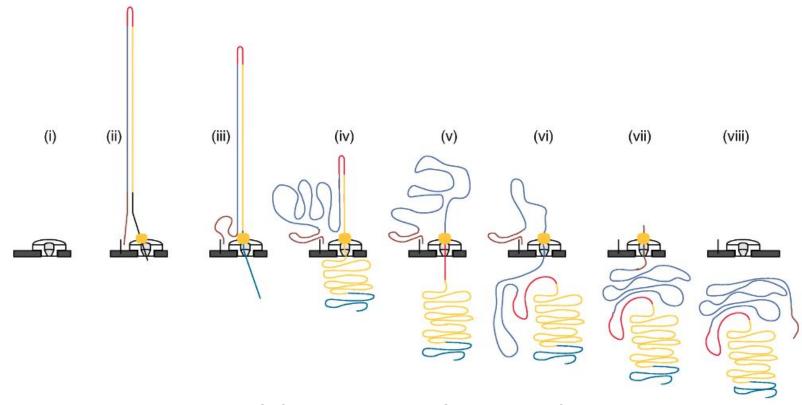
PacBio

Oxford Nanopore

42

Oxford Nanopore

- Literal nanopores
- Current per base
- Non-random errors
- https://www.youtube.com/watch?v=RcP85JHLmnl
- Very high error rate


"If a nanopore was the size of a fist, a 1MB strand of DNA passing through that nanopore would be 2 miles (3.2 km) long"
-Adam Philippy, NHGRI

Oxford Nanopore

Hairpin allows double sequencing (2D)

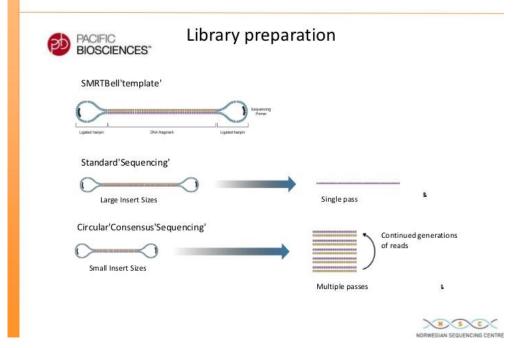
Jain, M., Olsen, H.E., Paten, B. et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17, 239 (2016). https://doi.org/10.1186/s13059-016-1103-0

Cheap & mobile

- Long reads, low quality
- Low establishment and maintenance costs
- Portability

PacBio: Single-molecule real-time (SMRT) sequencing

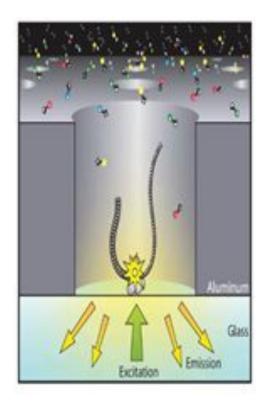
- Expensive machinery
- Not very portable

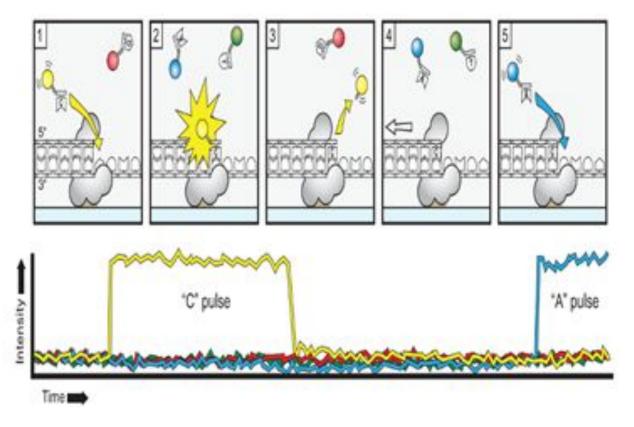


PacBio

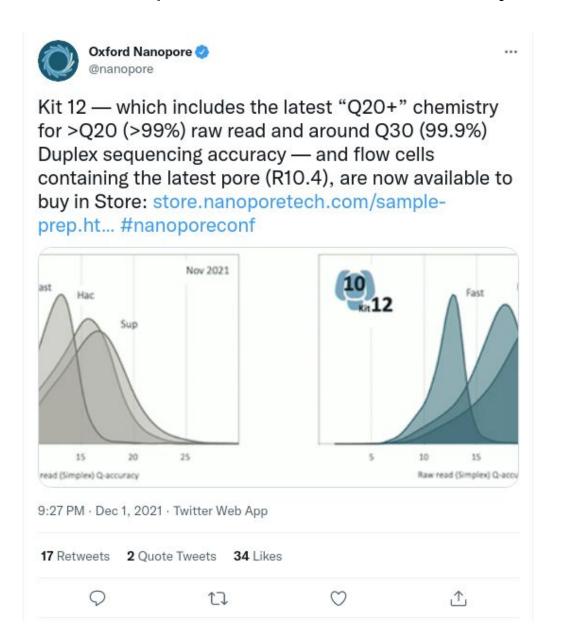
- Flexibility
 - Long but low quality or shorter but better reads
 - Robust
 - https://www.youtube.com/watch?v=_ID8JyAbwEo
 - New 2019: HiFi read same fragment multiple times

High-throughput sequencing




47

Tiny wells


- 1 million wells per cell
- Hit the lights

Technology	read length	# of reads	errors?
Oxford Nanopore	avg. 2 kbp-10 kbp	2M-6G	2021 update: ~3%
			1D: indel+mm 20% 2D: indel+mm 7%
PacBio	10-20 kbp	500k-4M	indel+mm 13-15% HiFi: indel 1%+mm 0.1%

The Oxford Nanopore error rates are already outdated...

Article Published: 09 September 2021

Performance assessment of DNA sequencing platforms in the ABRF Next-Generation Sequencing Study

Jonathan Foox, Scott W. Tighe, [...] Christopher E. Mason ☑

Nature Biotechnology 39, 1129-1140 (2021) Cite this article

5529 Accesses 171 Altmetric Metrics

- 1 An Author Correction to this article was published on 11 October 2021
- 1 This article has been updated

Abstract

Assessing the reproducibility, accuracy and utility of massively parallel DNA sequencing

Takeaways:

Short reads

- Illumina cheapest
- BGI most accurate

Long reads:

- Most mapping with PacBio
- Oxford/Pacbio good with repeats

52

Sanger

BGIseq Illumina

PacBio

53

OxfordNanopore

accuracy

Ion Torrent

read length

font size = throughput

BGIseq
Illumina

Ion Torrent

PacBio

54

OxfordNanopore

accuracy

read length

Summary

- I did not mention a very important factor: cost
- Each tech has advantages, pick the most appropriate for your question
- Illumina is the current workhorse
 - Great for many applications
- Long read technology
 - Adding information
 - Resolves difficult regions during genome assembly

Article Open Access | Published: 14 July 2020

Telomere-to-telomere assembly of a complete human X chromosome

Karen H. Miga , Sergey Koren, Arang Rhie, Mitchell R. Vollger, Ariel Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, Glennis A. Logsdon, Valerie A. Schneider, Tamara Potapova, Jonathan Wood, William Chow, Joel Armstrong, Jeanne Fredrickson, Evgenia Pak, Kristof Tigyi, Milinn Kremitzki, Christopher Markovic, Valerie Maduro, Amalia Dutra, Gerard G. Bouffard, Alexander M. Chang, Nancy F. Hansen, Amy B. Wilfert, Françoise Thibaud-Nissen, Anthony D. Schmitt, Jon-Matthew Belton, Siddarth Selvaraj, Megan Y. Dennis, Daniela C. Soto, Ruta Sahasrabudhe, Gulhan Kaya, Josh Quick, Nicholas J. Loman, Nadine Holmes, Matthew Loose, Urvashi Surti, Rosa ana Risques, Tina A. Graves Lindsay Robert Fulton, Ira Hall, Benedict Paten, Kerstin Howe, Winston Timp, Alice Young, James C.