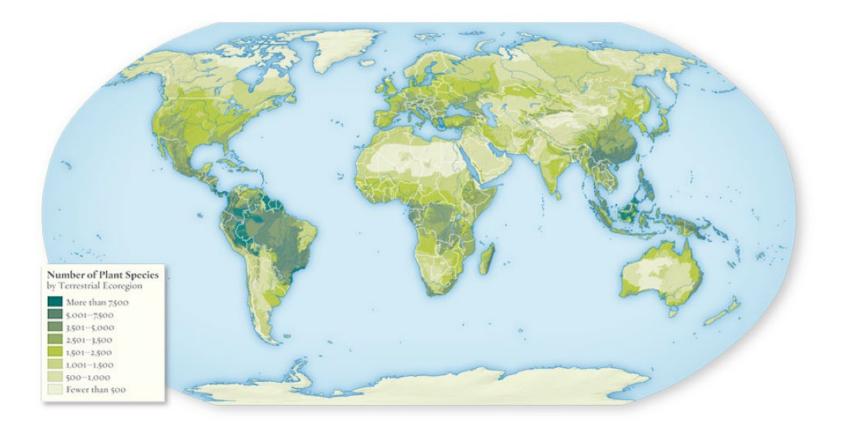


DTU Health Technology Bioinformatics

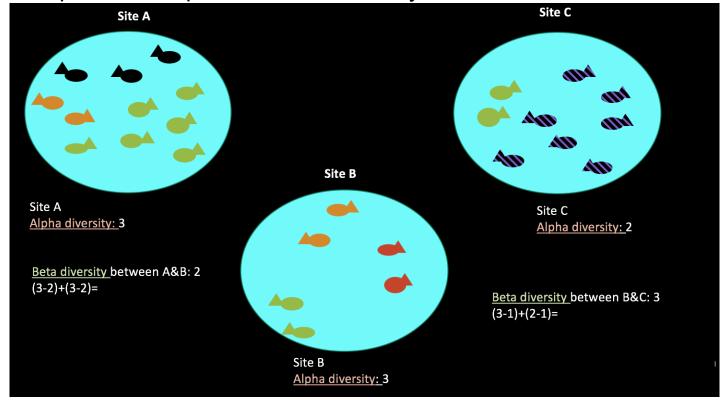
Quantitative metagenomics

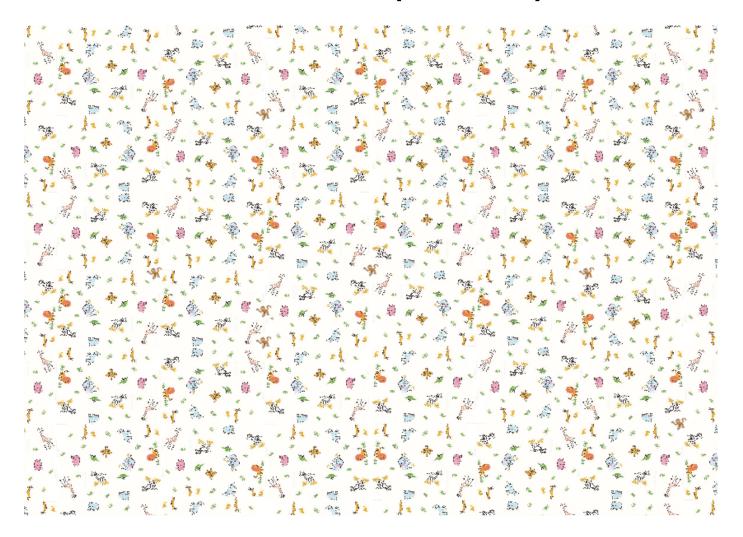
Gisle Vestergaard Associate Professor Section of Bioinformatics Technical University of Denmark gisves@dtu.dk


Menu

- Diversity measurements
 - Alpha & beta diversity
- Normalization
- Sequencing data is compositional data

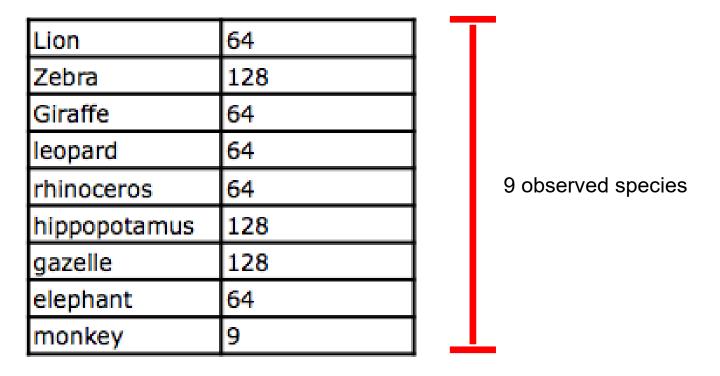
Classical measures


- Abundance
- Richness
- Rarefaction
- Diversity
 - Alpha
 - Beta


Describing the spatial component of biodiversity

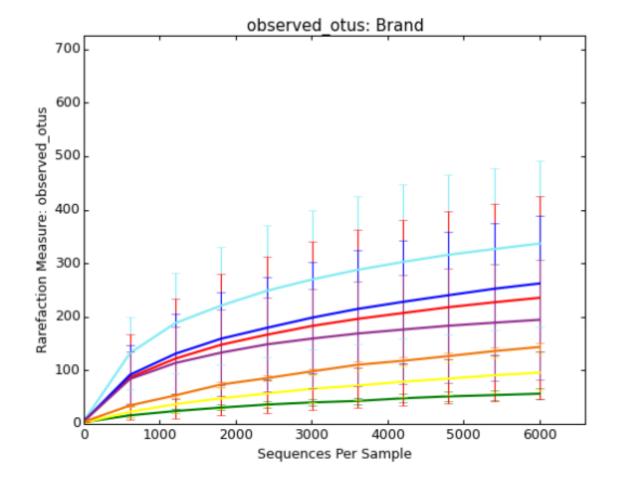
- Alpha diversity (within sample)
- Beta diversity (between samples)
- We can compare both alpha and beta diversity

Abundance (counts)



Lion	64
Zebra	128
Giraffe	64
leopard	64
rhinoceros	64
hippopotamus	128
gazelle	128
elephant	64
monkey	9

Species richness


• The number of different species in a system

Rarefaction

- Species richness is a function of our no. observations
- When have we sampled enough?
- Mostly used for 16s rRNA amplicons...why?

Shannon index

- Incorporates species richness & eveness
- Quantify the entropy (information content)
- Quantifies the uncertainty (degree of surprise) associated with a prediction
- The Shannon index increases as both the richness and the evenness of the community increase
- Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4

$$H' = -\sum_{i=1}^{R} p_i \ln p_i \qquad H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$$

 P_i = species proportion

R = observed species

Alpha diversity

Lion	1
Zebra	2
Giraffe	1
Leopard	1
Rhinoceros	1
Hippopotamus	2
Gazelle	2
Elephant	1
Monkey	0

$$H' = -(\ln p_1^{p_1} + \ln p_2^{p_2} + \ln p_3^{p_3} + \dots + \ln p_R^{p_R})$$

11 animals (NOT species) meaning each animal is 0.09 of the total abundance

$$H' = -(In(0.09^{0.09}) + In(0.18^{0.18}) + ... = 2.0$$

Bray-curtis dissimilarity

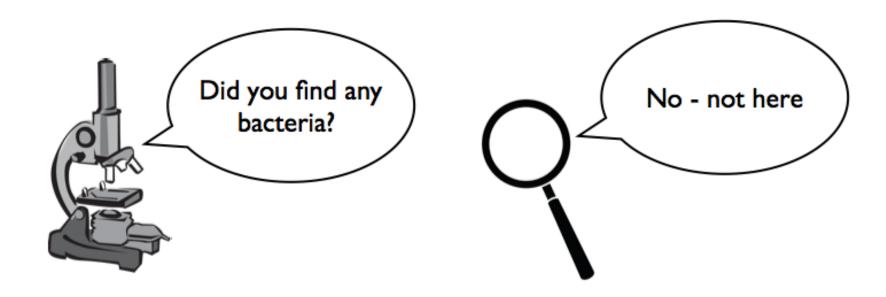
$$0 \le B \le 1$$

$$B_{ij} = 1 - 2C_{ij} / (S_i + S_j)$$

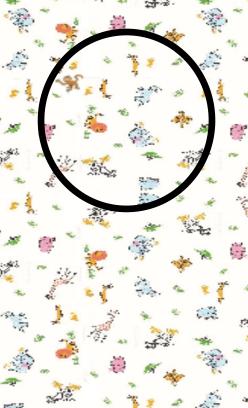
C = sum of the lowest count of all common species

S = total count of the sample

1 means that they do not share anything


$$B_{s1s2} = 1 - 2*(2+1) / (9 + 13) = 0.73$$

Lion	0	2
Zebra	3	2
Giraffe	0	4
Leopard	0	2
Rhinoceros	1	2
Hippodrome	4	0
Gazelle	0	1
Elephant	1	0
Total	9	13



Sampling effect

• To be fair we should sample equally in the systems we investigate

Sample sizes

Sample sizes

- Accounting for different sample sizes:
 - –Normalise to sample size
 - -Rarefy (downsize) samples
 - -Statistically model the variance

Normalizing

$$N = n_i/n_{tot}$$

Lion	64	1
Zebra	128	2
Giraffe	64	1
Leopard	64	1
Rhinoceros	64	1
Hippopotamus	128	2
Gazelle	128	2
Elephant	64	1
Monkey	9	0
Total	713	11

Lion	8.98	9.09
Zebra	17.95	18.18
Giraffe	8.98	9.09
Leopard	8.98	9.09
Rhinoceros	8.98	9.09
Hippopotamus	17.95	18.18
Gazelle	17.95	18.18
Elephant	8.98	9.09
Monkey	1.26	0
Total	100	100

Issue with different sampling power (higher chance of observing rare species) and does not take compositional nature into account

Downsize / rarefy

Resample x amount of observations

Lion	64	1
Zebra	128	2
Giraffe	64	1
Leopard	64	1
Rhinoceros	64	1
Hippopotamus	128	2
Gazelle	128	2
Elephant	64	1
Monkey	9	0
Total	713	11

Lion	2	1
Zebra	3	2
Giraffe	0	1
Leopard	1	1
Rhinoceros	0	1
Hippopotamus	3	2
Gazelle	1	2
Elephant	0	0
Monkey	0	0
Total	10	10

Downsize / rarefy

- Select the target depth carefully
- The more reads we keep the more sensitive
- We may have to remove samples with few counts
- We might throw away a lot of data
- Still does not take compositional nature of data into account

Compositional data

- Arbitrary total
 - Sequencing depth never 100%
- Species can co-exist without abundance inter-influences
 - Independence between abundance is affected by the capacity of the sequencing instrument
 - Sequencing instrument has fixed number of slots

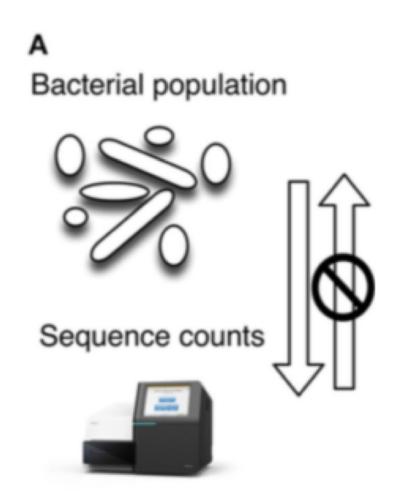
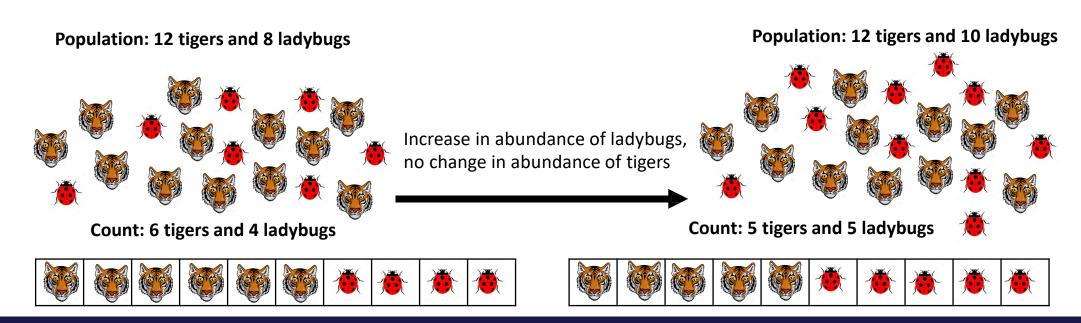



Figure from: Gloor, Gregory B. et al., Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology 8 (2017)

Compositional data problems

- Example: an environment containing both tigers and ladybugs
 - The abundances of the two are not affected by each other
 - If the abundance of the ladybugs increases some of the slots with tigers must instead be filled by ladybugs
 - i.e. the two environmentally independent species are affecting the read count of each other

Dealing with compositional data

- Statistically model the variance & heteroscedasticity
- Use packages developed for RNA-seq such as DESeq2 and edgeR
- DESeq2 takes raw counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene

(See this link for a brilliant explanation)