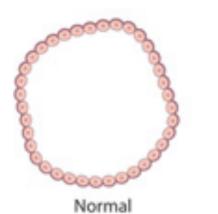
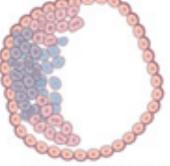

Technical University of Denmark

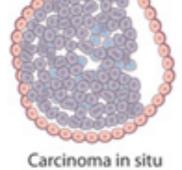
Understanding cancer genomics

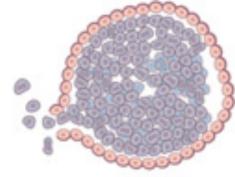

Adrian Otamendi Laspiur, Research Assistant (iCOPE) Original slides: Jose MG Izarzugaza

DTU Bioinformatics Department of Bio and Health Informatics


What is cancer?

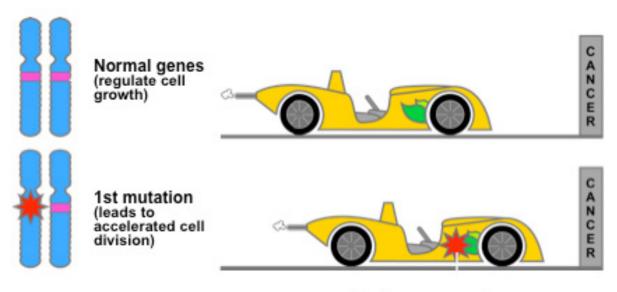
The disease caused by an uncontrolled division of *abnormal* cells in a part of the body





Hyperplasia

Atypical hyperplasia



Microinvasive

Need for speed: Oncogenes vs Tumour suppressors

Oncogenes:

- Mutated proto-oncogenes
- Turn abnormal cell growth on
- 70 protooncogenes
- gain of function genes
- primarily somatic activated
- [throttle pedal in a car]

Proto-oncogene to oncogene

"Oncogenes are mutated genes whose PRESENCE can stimulate the development of cancer"

Examples: HER-2/neu. RAS, MYC, SRC, hTERT

RAS, MYC, SRC are protein kinases \rightarrow Cell cycle regulation

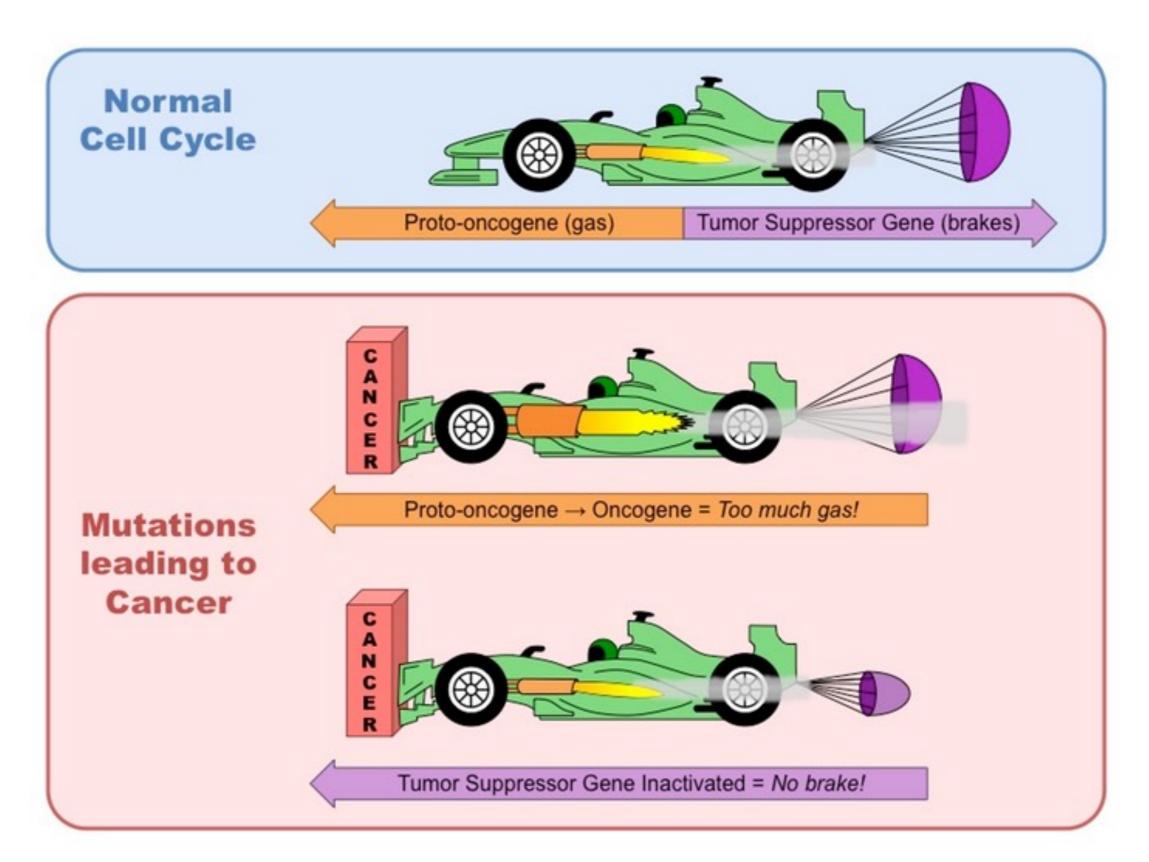
(Adapted from Nat. Cancer Inst.)

Need for speed: Oncogenes vs Tumour suppressors

Tumour suppressor genes: Stop the cell cycle, G1 phase Slow the cell cycle before S phase Can induce apoptosis Primarily somatic de-activated loss-of-function mutations

- [brake pedal in a car]

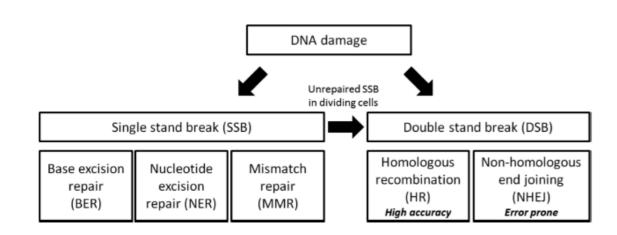
"Tumour suppressors are normal genes whose ABSENCE can stimulate the development of cancer"

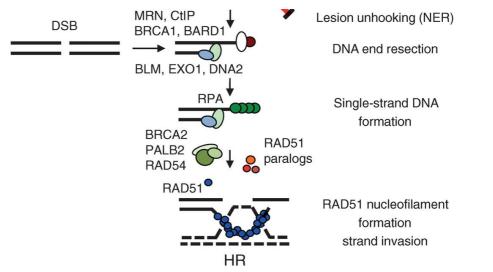

Examples: p53, Rb, APC

Sometimes, a single functional copy (heterozygous) is enough to prevent cancer

(Adapted from Nat. Cancer Inst.)

Need for speed: Oncogenes vs Tumour suppressors




Need for speed: DNA repair genes

DNA damage repair genes

- Correct damage during DNA duplication
- Active in cell cycle, primarily G2
- After DNA replication, before Chr divides

loss-of-function mutations → increased mutation burden
 Examples: BRCA1 and BRCA2 in breast cancer
 Also, mDDRG in hereditary colon cancer

(Adapted from Nat. Cancer Inst.)

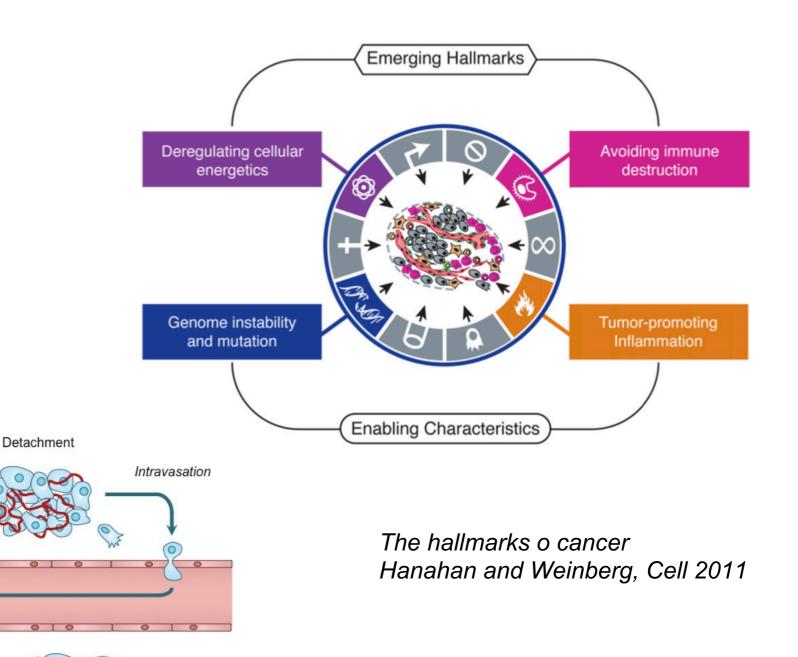
The hallmarks of cancer

Vascularization

Secondary tumour

Acquire functional capabilities

- Sustaining proliferative signaling
- Evading growth suppressors
- Resisting cell death
- Enabling replicative immortality
- Inducing angiogenesis
- Activating invasion and metastasis
- Emerging Hallmarks

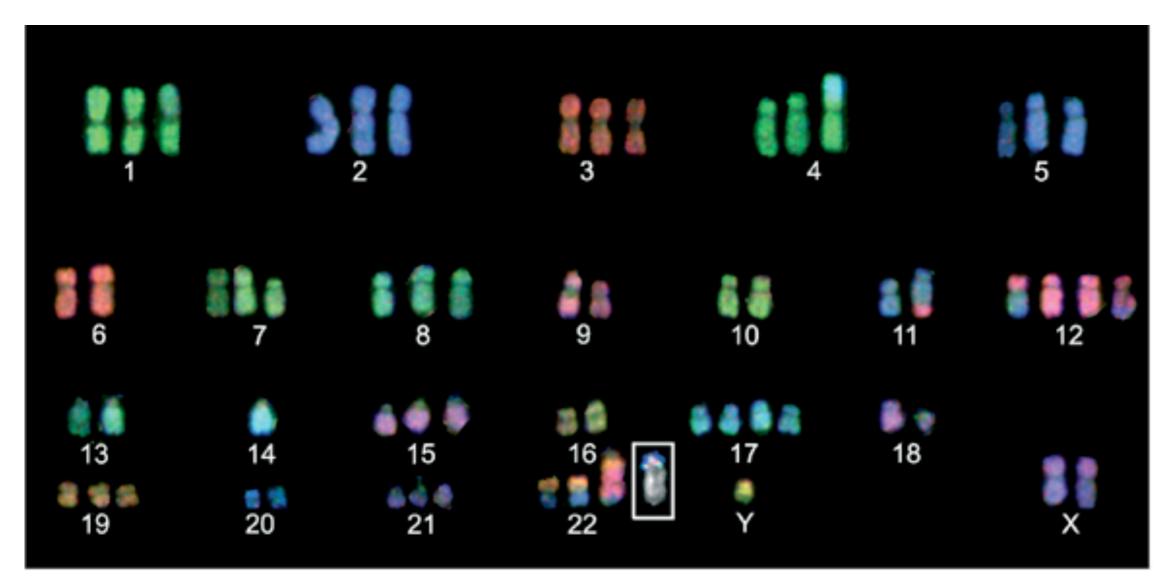

Primary tumour

Invasion

Mutation

Extravasation

• Enabling characteristics


(ib.bioninja.com.au)

Vascularization

What is cancer?

Cancer is a genetic disease: chromosomal aberrations

Spectral karyotyping

Chromosomal gain, loss Translocation, inversion Focal amplification

What is cancer?

Cancer is a genetic disease: point mutations

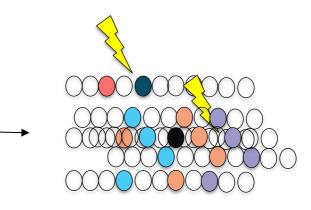
Substitution Insertion Deletion

KRAS-wt

ATGACTGAATATAAACTTGTGGTAGTTGGAGCT<mark>GGT</mark>GGCGTAGGCAAG...

-M--T--E--Y--K--L--V--V--G--A-**-G**--G--V--G--K-...

KRAS-G12D

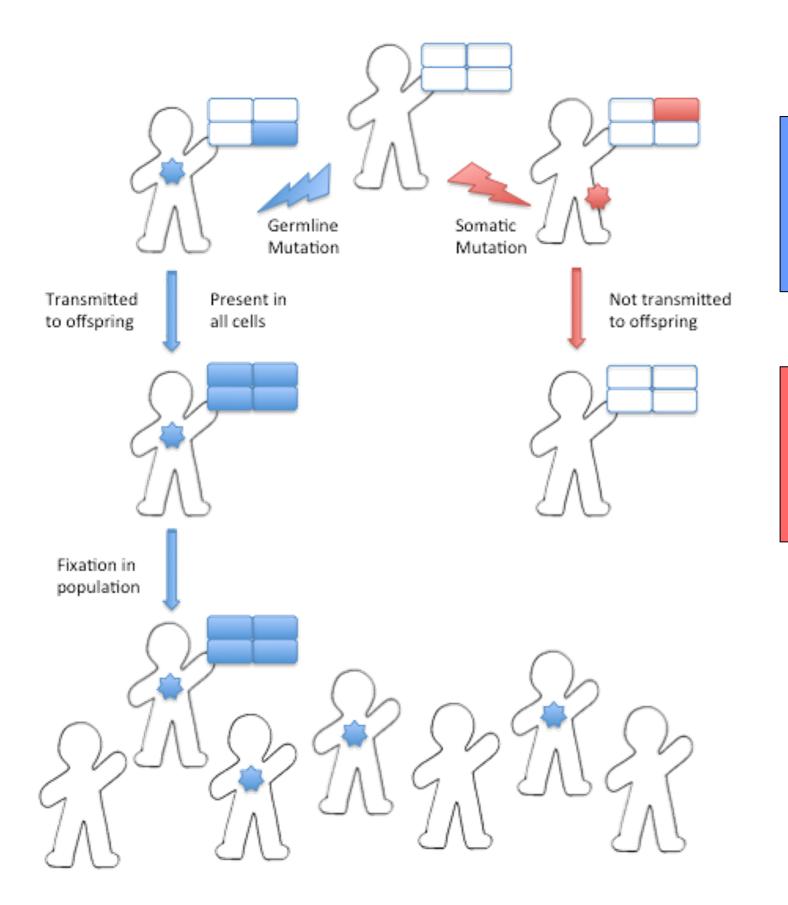

ATGACTGAATATAAACTTGTGGTAGTTGGAGCT -M--T--E--Y--K--L--V--V--G--A--D-G--V--G--K-...

- Frequent driver mutation for tumors of the lung, colon, etc.
- Predicts lack of benefit from EGFR inhibitors

The drivers and passengers

Cancer

Normal tissue


Mutation

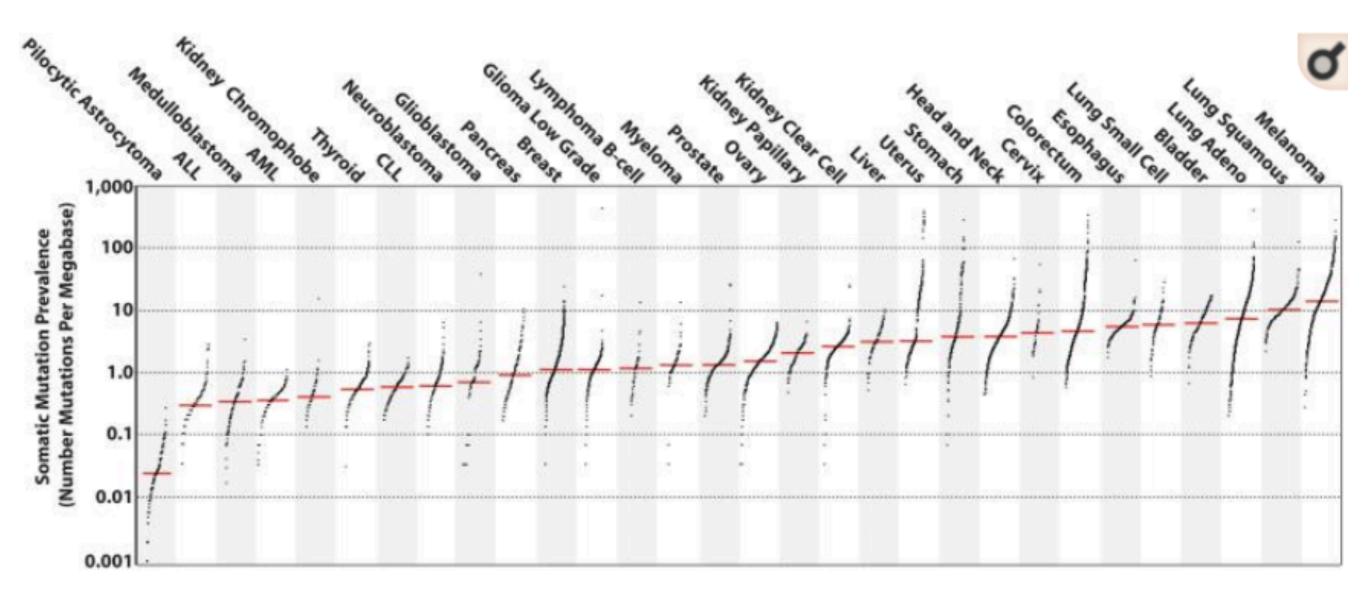
Driver mutation
 Passenger mutations

Driver → Confers selective advantage Disease associated, pathogenic Passenger → Present in the clonal progenitor

Germline vs Somatic mutations

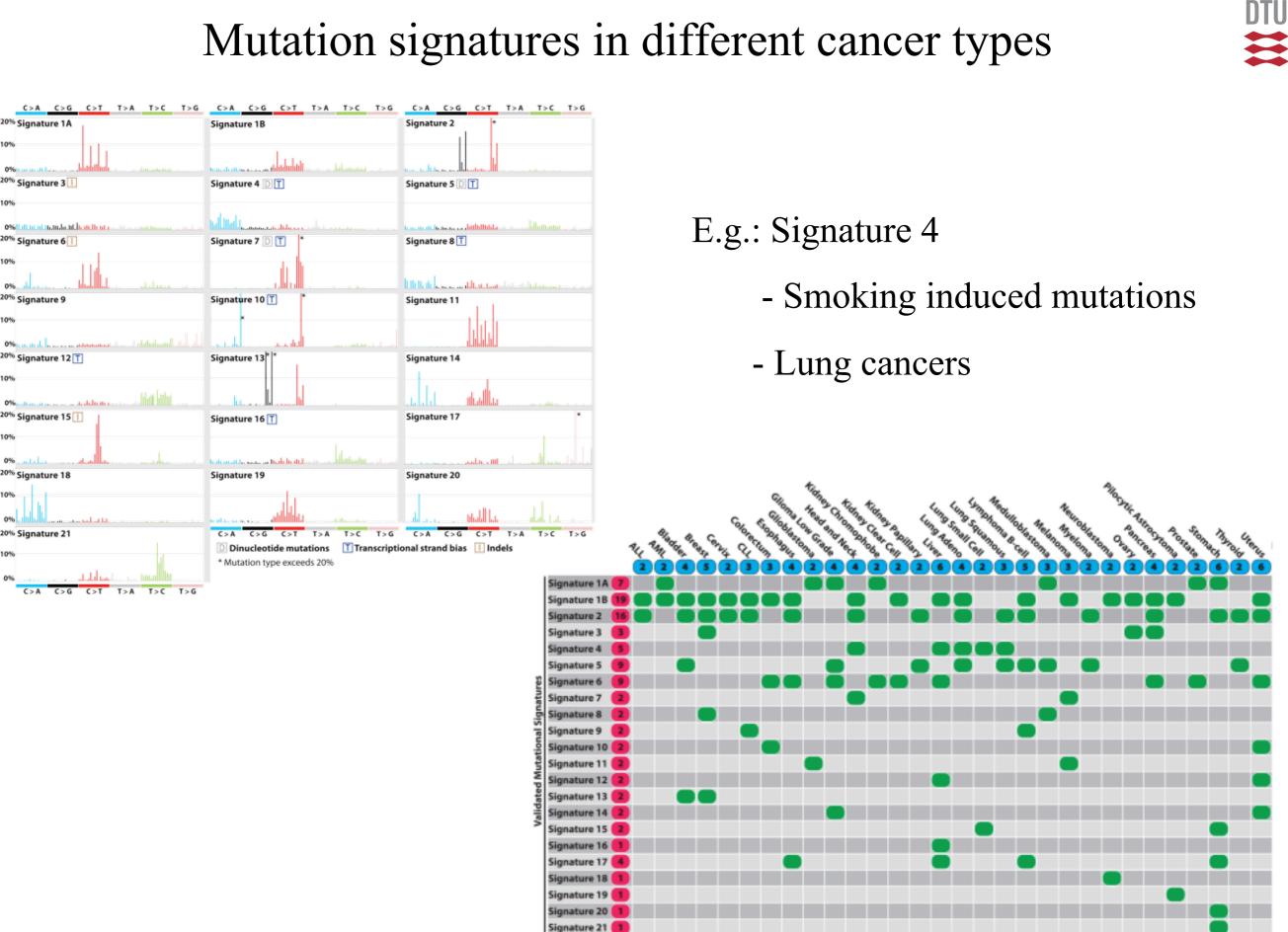
Germline Mutations Present in all cells Transmitted to offspring Fixate in population (SNP)

Somatic Mutations -Present only in some cells -Not transmitted to offspring -Do not fixate in population


"Cancer is not a single disease, but rather 150+ different diseases."

Prof. Dr. Mariano Barbacid, former director of the Spanish National Cancer Research Center and discoverer of the first oncogene, RAS.

Number of somatic mutations in different cancer types



Signatures of mutational processes in human cancer

Ludmil B. Alexandrov¹, Serena Nik-Zainal^{1,2}, David C. Wedge¹, Samuel A.J.R. Aparicio^{3,4,5}, Sam Behjati^{1,6}, Andrew V. Biankin^{7,8,9,10,11}, Graham R. Bignell¹, Niccolo Bolli^{1,12,13}, Ake Borg¹⁴, Anne-Lise Børresen-Dale^{15,16}, Sandrine Boyault¹⁷, Birgit Burkhardt^{18,19}, Adam P. Butler¹, Carlos Caldas²⁰, Helen R. Davies¹, Christine Desmedt²¹, Roland Eils²², Jórunn Erla Eyfjörd²³, John A. Foekens²⁴, Mel Greaves²⁵, Fumie Hosoda²⁶, Barbara Hutter²², Tomislav Ilicic¹, Sandrine Imbeaud^{28,29}, Marcin Imielinsk³⁰, Natalie Jäger²², David T.W. Jones²⁷, David Jones¹, Stian Knappskog^{31,32}, Marcel Kool²⁷, Sunil R. Lakhani³³, Carlos López-Otín³⁴, Sancha Martin¹, Nikhil C. Munshi^{35,36}, Hiromi Nakamura²⁶, Paul A. Northcott²⁷, Marina Pajic⁷, Elli Papaemmanuil¹, Angelo Paradiso³⁷, John V. Pearson³⁸, Xose S. Puente³⁴, Keiran Raine¹, Manasa Ramakrishna¹, Andrea L. Richardson^{39,40,41}, Julia Richter⁴², Philip Rosenstiel⁴³, Matthias Schlesner²², Ton N. Schumacher⁴⁴, Paul N. Span⁴⁵, Jon W. Teague¹, Yasushi Totoki²⁶, Andrew N.J. Tutt⁴⁶, Rafael Valdés-Mas³⁴, Marit M. van Buuren⁴⁴, Laura van 't Veer⁴⁷, Anne Vincent-Salomon⁴⁸, Nicola Waddell³⁸, Lucy R. Yates¹, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Jessica Zucman-Rossi^{28,29}, P. Andrew Futreal¹, Ultan McDermott¹, Peter Lichter⁴⁹, Matthew Meyerson^{30,39,40}, Sean M. Grimmond³⁸, Reiner Siebert⁴², Elías Campo⁵⁰, Tatsuhiro Shibata²⁶, Stefan M. Pfister^{27,51}, Peter J. Campbell^{1,12,13}, and Michael R. Stratton¹

Nature et al., 2013

Mutational signature present

Total validated mutational signatures in a cancer type

Total cancer types in which a signature is op

Other

Alexandrov, Nature et al., 2013

20% Signature 1A

20% Signature 3

20% Signature 6

20% Signature 12 T

20% Signature 15

^{20%} Signature 18

20% Signature 21

C > A

10%

0%

10%

10%

0% 20% Signature 9

10% 0%

10% 0%

10% 0%

10% 0%

0%

DTU

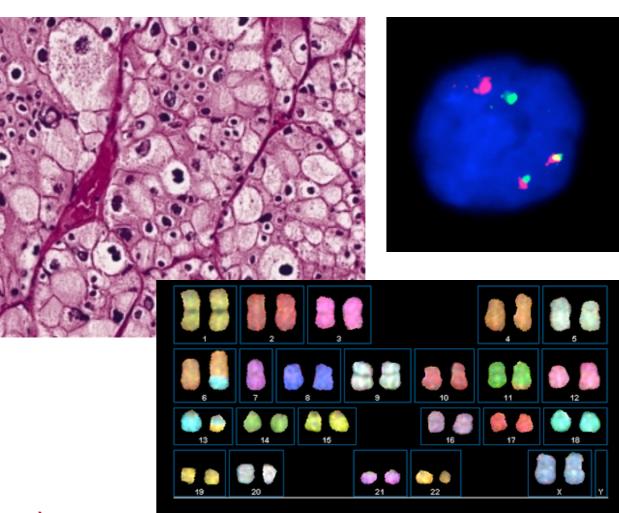
For the researcher:

- Identify recurrent mutations that represent druggable targets
- Identify specific mutations or patterns that predict benefit from specific drugs
 - Study the evolutionary process -- mutation, selection

For the cancer patient:

Identify "actionable" mutations - inform treatment decisions Aid in diagnosis

Characterising a tumour specimen

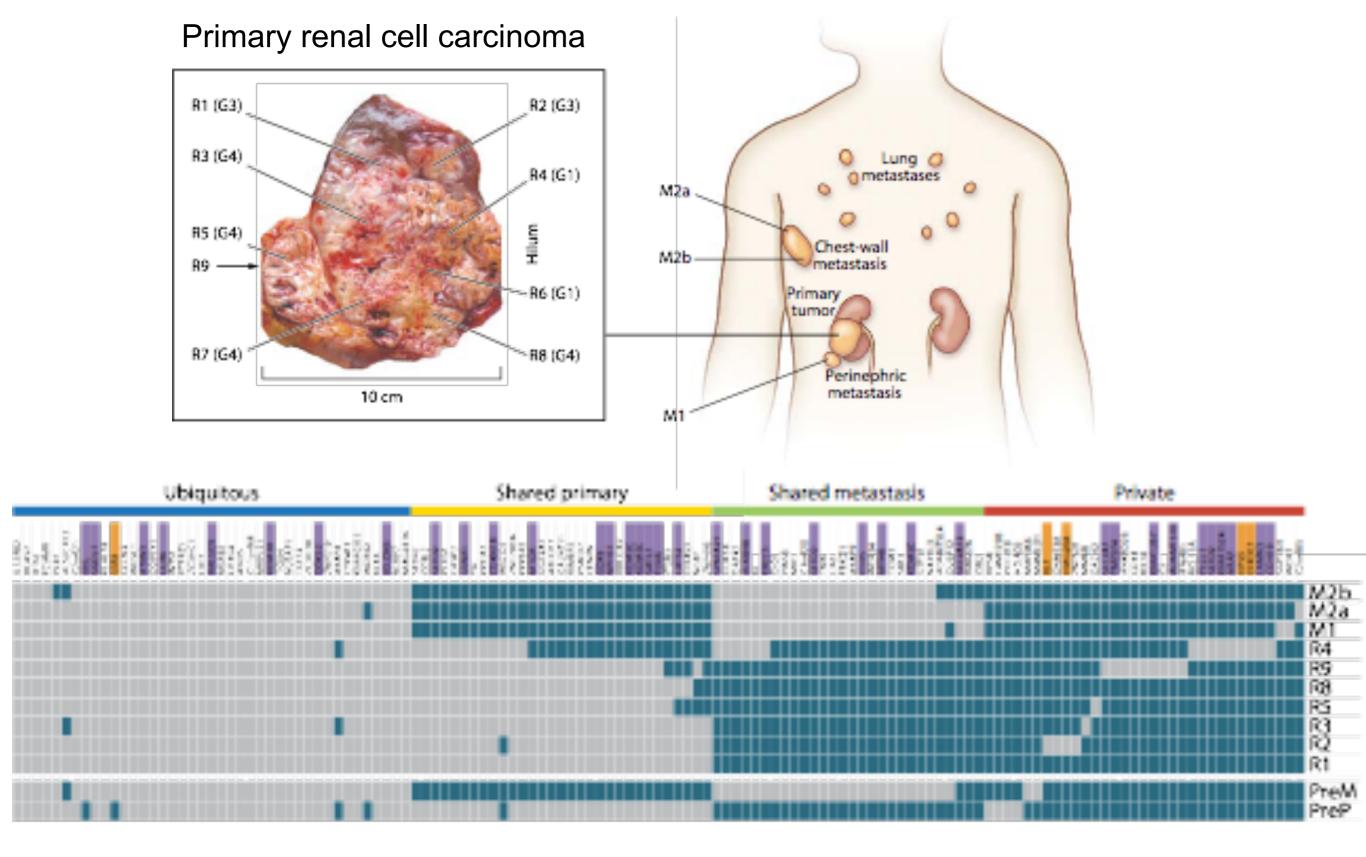

Measured in individual cells:

- Cellular/tissue morphology
- Protein expression
- Gene copy number (FISH)
- Karyotype


- Gene expression (from microarray)
- Copy number profile (from SNP array)
- WES/WGS/RNA-seq

Bulk tissue includes non-tumor cells!

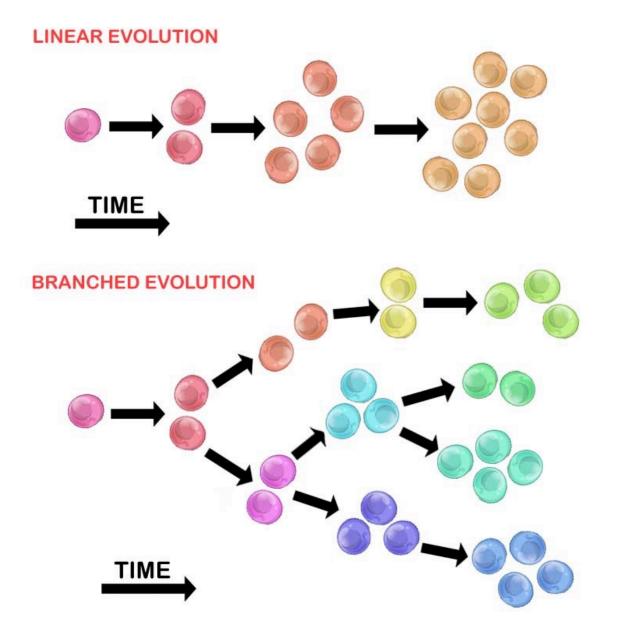
Caution 1: Tumour specimens are not just tumour cells



Histological characterization of a set of tumor specimens

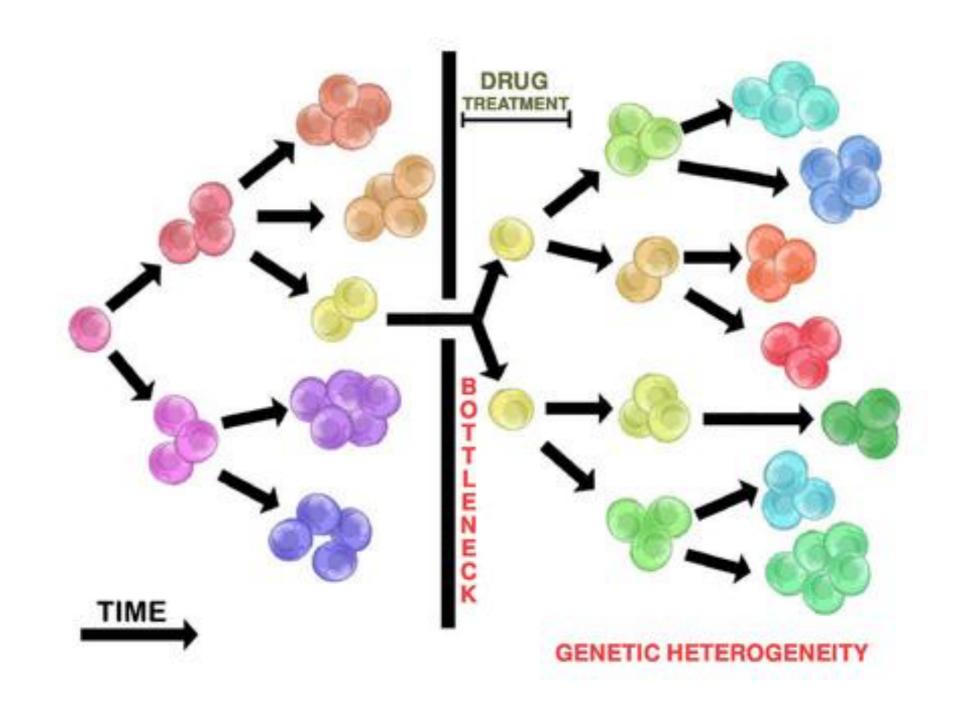
* Other stromal = fibroblasts, endothelials, histocytes, adipocytes

Caution 2: Tumour heterogeneity



Gerlinger et al. (2012) NEJM

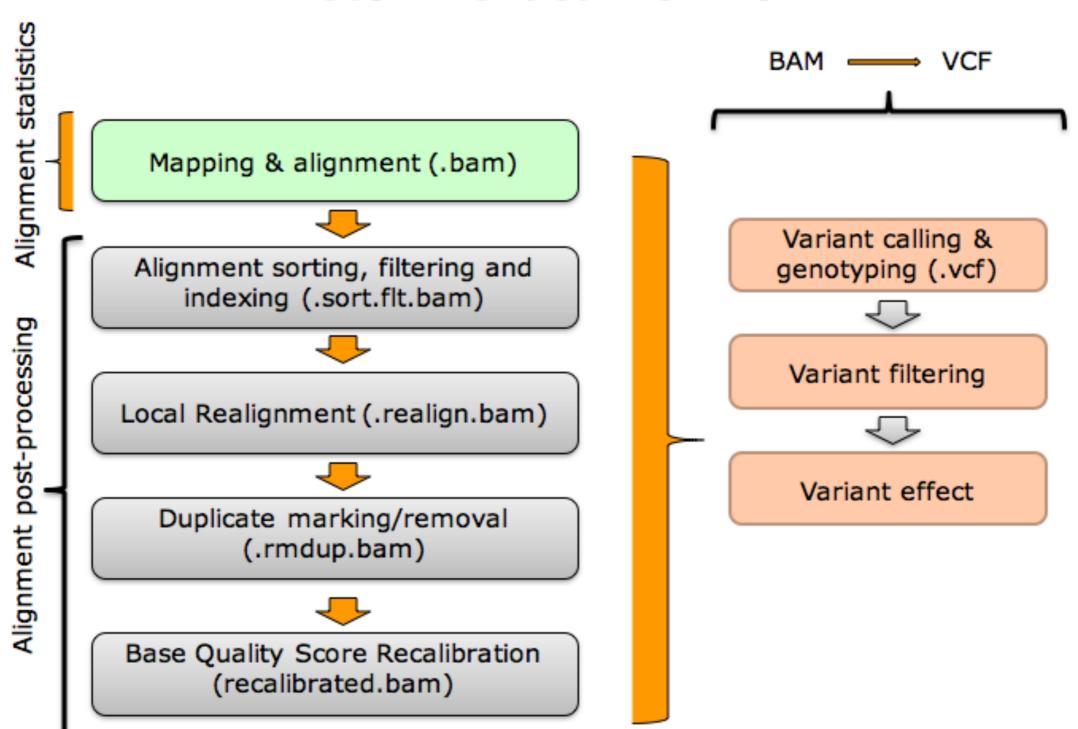
Caution 2: Tumour heterogeneity

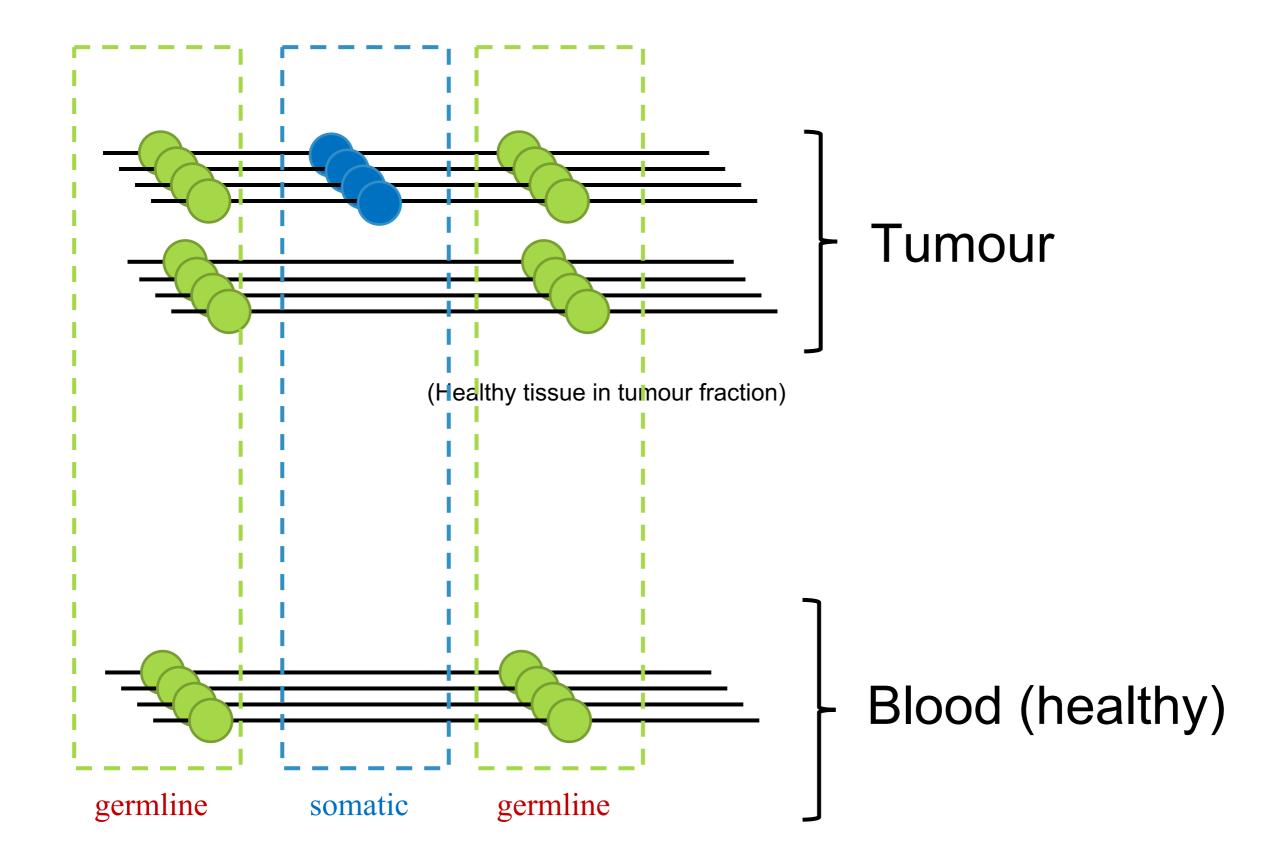


- Tumour heterogeneity → differential
 subclonal evolution
- Clones accumulate different mutations as they diverge.

Treatment can re-shape tumour heterogeneity

DTU

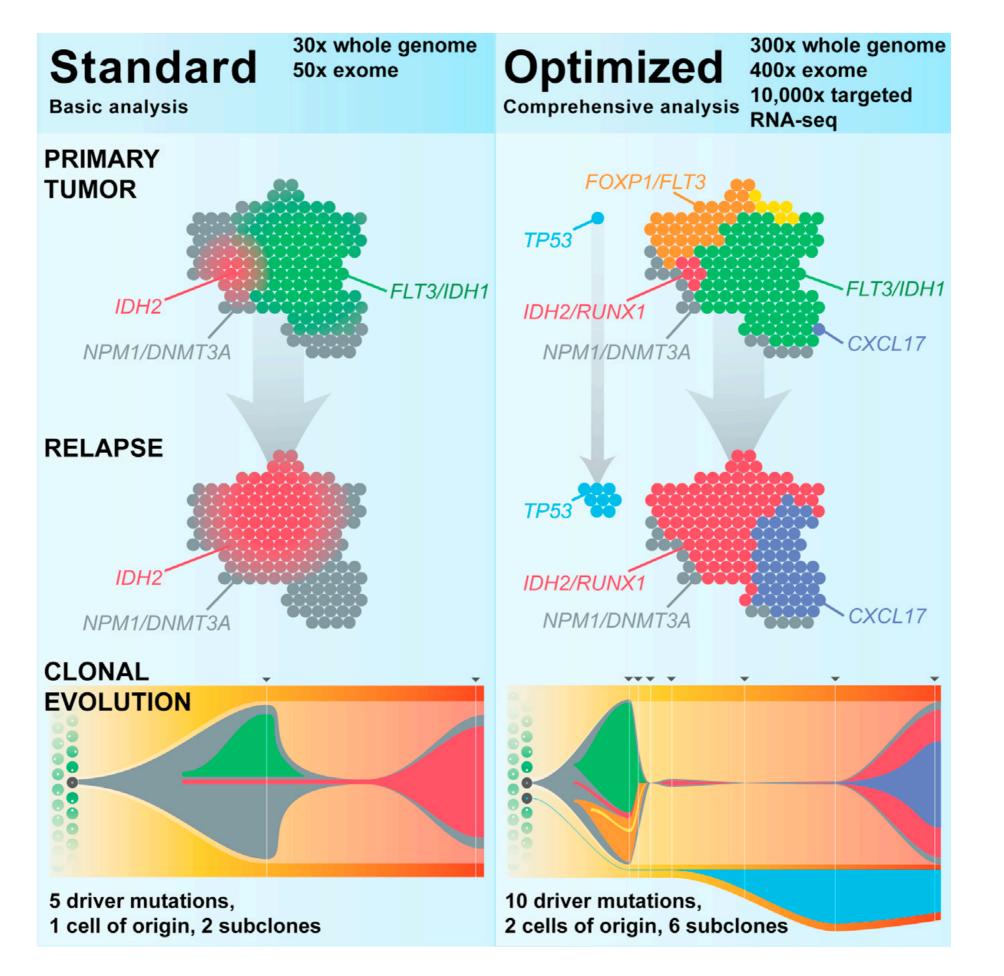

Ħ


How to identify somatic mutations in a tumor

Variant calling pipeline

Recommended workflow¹

Matched samples for variant calling


Somatic mutation calling vs. "regular" variant calling

1. We are interested in somatic mutations: differences between the **tumor genome and the normal genome** (NOT the reference genome).

2. The tumor data represents a **mixture** of reads from tumor cells and from normal cells, so we need **deeper sequencing** and **more sensitive analysis** to detect variants.

3. Tumors are often heterogeneous, and relevant mutations may be present at low allelic frequency. So we need **even deeper** sequencing.

Also: we are often interested in copy number changes, translocations, and clonal architecture

M. Griffith et al., Cell Systems (2015)

Cancer gene panel amplicon sequencing

TruSeq Amplicon - Cancer Panel Gene List

ABL1	EGFR	GNAS	MLH1	RET
AKT1	ERBB2	HNF1A	MPL	SMAD4
ALK	ERBB4	HRAS	NOTCH1	SMARCB1
APC	FBXW7	IDH1	NPM1	SMO
ATM	FGFR1	JAK2	NRAS	SRC
BRAF	FGFR2	JAK3	PDGFRA	STK11
CDH1	FGFR3	KDR	PIK3CA	TP53
CDKN2A	FLT3	KIT	PTEN	VHL
CSF1R	GNA11	KRAS	PTPN11	
CTNNB1	GNAQ	MET	RB1	

Understanding variation in -omics times

Lots of hard work

Now (High Throughput Sequencing, NGS)

http://www.ensembl.org/Homo_sapiens/Info/Index

CENSEMBI BLAST/BLAT BioMart Tools Downloads	Help & Documentatio	on Blog Mirrors Search Human	Login · Registe Q
Search Human Go e.g. BRCA2 or 6:133017695-133161157 or osteoarthritis		 What's New in Human release 70 Update to Ensembl-Havana GENCODE gene set (release 15) Update to the Human BodyMap - RNASeq database with associated B Human: assembly updated to GRCh37.p10 	AM files More news
 Genome assembly: GRCh37 (GCA 000001405.11) More information and statistics Download DNA sequence (FASTA) Convert your data to GRCh37 coordinates Display your data in Ensembl Other assemblies NCBI36 (Ensembl release 54) 	View karyotype	 Gene annotation What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs. More about this genebuild Download genes, cDNAs, ncRNA, proteins (FASTA) Update your old Ensembl IDs Vega* Additional manual annotation can be found in Vega 	Pax6 INS BRCA2 DMD sshExample geneImage: transcript
 Comparative genomics What can I find? Homologues, gene trees, and whole genome alignments across multiple species. More about comparative analysis Download alignments (EMF) 	Example gene tree	Variation What can I find? Short sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants and longer structural variants; disease and other phenotypes. Image: Comparison of the sequence variants; disease and other phenotypes. Image: Comparison of the sequence variants; disease and other phenotypes. Image: Comparison of the sequence variants; disease and other phenotypes. Image: Comparison of the sequence variants; disease and other phenotypes. Image: Compa	ATCGAGCT ATCCAGCT ATCGAGAT Example variant
Regulation What can I find? DNA methylation, transcription factor binding sites, histone modifications, and regulatory features such as enhancers and repressors, and microarray annotations. Image: Comparison of the end o	Example regulatory feature		Example phenotype

Ensembl Variant Effect Predictor (I)

() Variant Effect Predictor:

This tool takes a list of variant positions and alleles, and predicts the effects of each of these on overlapping transcripts and regulatory regions annotated in Ensembl. The tool accepts substitutions, insertions and deletions as input, see <u>data formats</u>.

Upload is limited to 750 variants; lines after the limit will be ignored. Users with more than 750 variations can split files into smaller chunks, use the standalone perl script or the variation API. See also full documentation

NB: Ensembl now by default uses Sequence Ontology terms to describe variation consequences. See this page for details

Input file

Species:	Human (Homo sapiens): GRCh: 🗘
Name for this data (optional):	
Paste data:	1 881907 881906 -/C + 5 140532 140532 T/C +
Upload file:	Choose File No file chosen
or provide file URL:	
Input file format:	VCF 🗘

Ensembl Variant Effect Predictor (II)

Options

Transcript database to use:

Get regulatory region consequences (human and mouse only):

Type of consequences to display:

Check for existing co-located variants:

Get 1000 Genomes global allele frequency for existing variants:

Return results for variants in coding regions only:

Show HGNC identifier for genes where available:

Show Ensembl protein identifiers where available:

Show HGVS identifiers for variants where available:

Missense SNP predictions (human only)

SIFT predictions:

PolyPhen predictions:

Frequency filtering of existing variants (human only)

requency intering of existing variants (numarionly)	
Filter variants by frequency:	
	NB: Enabling frequency filtering may be slow for large datasets. The default options will filter out common variants found by the 1000 Genomes project.
Filter: Exclude \$ variants with MAF greater than \$ 0.01 (in	1000 genomes (1KG) combined population 💲

Ensembl transcripts

Sequence Ontology terms

Prediction and score

Prediction and score

RefSeq and other transcripts

\$

\$

\$

ŧ

\$

\checkmark

Yes

✓

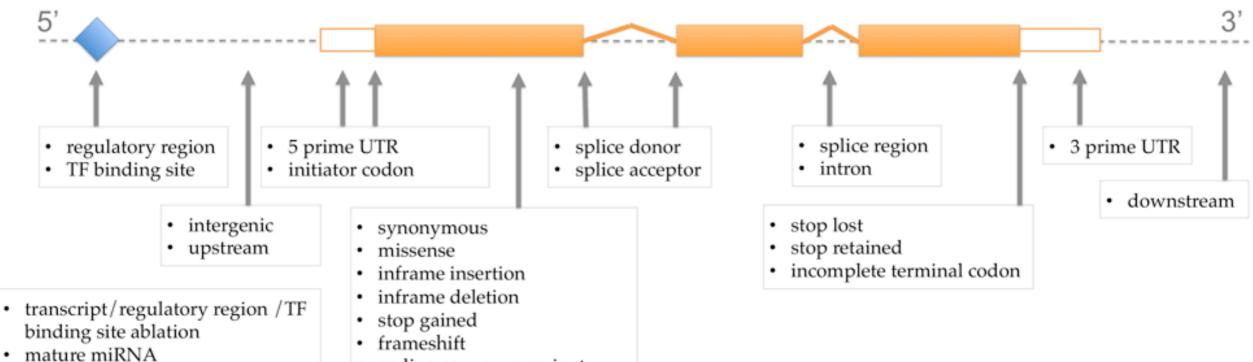
No

Ensembl Variant Effect Predictor (Results)

Variant Effect Predictor Results:

Download text version

٠


٠

٠

NMD transcript

non-coding exon / transcript

Show 10 💠 en	ntries					Show/hide colum	nns					Filter	
Uploaded Variation	Location	Allele	Gene 🕴	Feature	Feature type	Consequence	Position in cDNA	Position in CDS	Position in protein	Amino acid change	Codon change	Co-located Variation	Extra 🔶
1_881907/C	<u>1:881906-</u> <u>881907</u>	С	ENSG00000187634	ENST00000466827	Transcript	downstream_gene_variant	-	-	-	-	-	-	DISTANCE=3724
5_140532_T/C	<u>5:140532</u>	С	ENSG00000249430	ENST00000512035	Transcript	downstream_gene_variant	-	-	-	-	-	<u>rs12516846</u>	DISTANCE=554; GMAF=C:0.1534
5_140532_T/C	<u>5:140532</u>	С	ENSG00000199540	ENST0000362670	Transcript	downstream_gene_variant	-	-	-	-	-	<u>rs12516846</u>	DISTANCE=3670; GMAF=C:0.1534
5_140532_T/C	<u>5:140532</u>	С	ENSG00000153404	ENST0000283426	Transcript	missense_variant	160	110	37	V/A	gTa/gCa	<u>rs12516846</u>	PolyPhen=benign(0); SIFT=tolerated(1); GMAF=C:0.1534
5_140532_T/C	<u>5:140532</u>	С	ENSG00000153404	ENST0000502646	Transcript	upstream_gene_variant	-	-	-	-	-	<u>rs12516846</u>	DISTANCE=149; GMAF=C:0.1534
Showing 11 to 15	5 of 15 entries											~	< < 1 2 > >>

coding sequence variant ٠

Predictors: SIFT

Predicting Deleterious Amino Acid Substitutions

Pauline C. Ng and Steven Henikoff

http://sift.jcvi.org/

J. Craig Venter [®]	SIFT			
JCVI Home SIFT Home	Help Team Contact us			
 → SIFT Home → Help → Contact us 	conservation of amino acid resid	acid substitution affects protein function. SI ues in sequence alignments derived from closely to naturally occurring nonsynonymous polymor	related sequences, collected through	
Code release	SIFT Human Genome DB	Tool Description (GRCh37 assembly Ensem	bl 63)	Referencing SIFT
License Source Code JCVI-SIFT v. 1.03 Code & exe (Sun, Linux)	SIFT Human SNPs	Get SIFT predictions for nonsynonymous SI	NPs (Sample format)	Kumar P, Henikoff S, Ng PC. Predicting the effects of coding
FTP download SIFT Human DB (release 63) SIFT dbSNP DB (build 132) Related links		Other human genome tools: • Restrict to Coding Variants (Sample for • Classify Human indels (Sample format	Q5E940_BOVINMPREDRATWKSNYFLKIQLI RLA0_HUMANMPREDRATWKSNYFLKIQLI	non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. DDTPKCFIVGADWYGEKCHOOTEMSLEGK-AVYLMCKHTMMEKAIRGHLENHPALE DDTPKCFIVGADWYGEKCHOOTEMSLEGK-AVYLMCKHTMMEKAIRGHLENHPALE 76
Human genome assembly GRCh37	SIFT Human Protein DB	Tool Description (Ensembl 63)	RLAO MOUSE	DDYPKCFIYGADNYGEKOMOQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE 76 DDYPKCFIYGADNYGEKOMOQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE 76 DDYPKCFYYGADNYGEKOMOQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE 76
Ensembl annotation release 63 NCBI dbSNP Build 132 NCBI BLink	SIFT Human Protein NEW	Get SIFT predictions for nonsynonymous A	RLAO RANSY	DUPPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE DDVPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE DDVPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOQIEMSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOTIELSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOTIELSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOTIELSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DDVPECFIVGADWYGEKOMOTIELSLEGE AVVIMGENTMMEKAIEGHLENNPALE TG DFPECFIVGADWYGEKOMOTIELSLEGE AVVIMGENTMMEKAIEGHLENNPOLE TG TTPOEMIYAEADYGESOMYGEKOMOTIESEGG AVVIMGENTMMEKAIEGHLENNPOLE TG TTPOEMIYAEADYGESOLOKIEKSIEGI-GAVIMGENTMEKAIEGHLENNPOLE TG TTPOEMIYAEADYGESOLOKIEKSIEGI-GAVIMGENTMEKAIEGHLENNPOLE TG TTPOEMIYAEADYGESOLOKIEKSIEGI-GAVIMGENTMERKIENGEN
Updates	SIFT dbSNP DB	Tool Description (dbSNP Build 132)	RLAO DICDIMSGAG-SKREKLFIKATKI Q54LPO_DICDIMSGAG-SKRENFFIKATKI RLAO PLAF8MAKLSKQCKYQMYIKKISI	TTTOKHIVAEADIVGSEGLOKIEKSIRGI-GAVLMOKKIMIRKVIRDLADSKPELD 75 TTYDKHIVAEADIVGSEGLOKIEKSIRGI-GAVLMOKKIMIRKVIRDLADSKPELD 75 Qoyskilivevoordemomasyeksirgs.atilmokkimirkalave-poit 76
Aug 2011: SIFT Human DB updated to support GRCh37	SIFT dbSNP rs IDs	Get SIFT predictions for dbSNP SNPs includ		
Ensembl release 63 <i>Apr 2011</i> : SIFT dbSNP DB updated to support NCBI dbSNP	SIFT dbSNP Protein	Get SIFT predictions for dbSNP proteins in or GI number)	RLAO AERPE HSWYSIV GOMYKREK <mark>PIPENKTIMLELELEIT</mark> RLAO PYRAE - MMLAIGKRRYWRTROYPAREVKINSEATELI RLAO METAC MAEERHHTEHTPOWKKDEIENIKELI RLAO METAC MAEERHHTEHTPOWKKDEIENIKELI RLAO ARCFU MAYRGS DEVYVENEVEIKKELI	SKHRYVLFADLT GIPT FVV ORVEKELWKK - VPHMVAKKRIILHAMRAAGLE LDDN 86 OKYVFLFDLHGLS BRILHE VRYRLERY-GVIKIIKPILFKIAFTKVYGG IPAE 85 OSHKVFGHVGIEGILATKMKKIRRDLKOV - AVLKVBRNTLDE RALNOLG ETIP 70 OSHKVFGHVRIEGILATKIKKIRDLKOV - AVLKVBRNTLDE RALNOLG ESIP 70 SSKPV4AIVSFRNVPAGOMOKIRREFRGK. AFIKVVKNTLLE RALDALG GOVL 75
build 132	SIFT Single Protein Tools	Tool Description	RLAO METKA HAYKAKOOPPSOYEPKYAEMKRREVKELKELM RLAO METTH	IDE VEN VOL VOLEGIPAPOLOEIRAKLERED TIBMERTLMRIALEEKLDERPELE 08 KGTEVVGIANLADIPARDLOKHROTEKDS-ALIRMEKKILISLALEKAREEL-ENVD 74 KNGIVALVOMMEVPARDLOEIREKIL-GENER 74
	SIFT BLink	Run SIFT analysis on single protein using p (RefSeq ID or GI number)	RLAO METVA MIDAKSEHKIAPWKIEEVNALKELI RLAO METJA METKVKAHVAPWKIEEVKTLKGLI RLAO PYRAB MAHVAEWKKKEVEELANLI RLAO PYRHO	KSÄNYIALIDAMEYPÄYÖLÖEIRÖKIR-ÖÖMTLEMERNTLIKRAVEEVALETÖNPEFÄ 82 KSERYVALVOMOYPÄPÖLÖEIRÖKIR-ÖVMTLEMERNTLIIRALKEAALELNNPKLA 81 KSYPYIALVÖYSSMPÄYPLSÖMERLIRENGOLLEVERNTLIELAIKKAAKELGKPELE 77 KSYPYIALVÖYSSMPÄYPLSÖMERLIRENGLLEVERNTLIELAIKKAAKELGKPELE 77 KSYPYALVÖYSSMPÄYPLSÖMERLIRENGLLEVERNTLIELAIKKAAKELGKPELE 77
	SIFT Sequence	Run SIFT analysis on single protein throug	RLAO [®] PYRKOMARVAEWKKKEVEELANII RLAO [®] HALMAMSAESERKIEII <mark>P</mark> EWKQEEVDAIVEMI RLAO [®] HALVOMSESEVRQIEVI <mark>P</mark> QMEREEVDELVDFI	KSY <mark>PYIALVDVAGVP</mark> AYPLSKMEDKLE-GKALLEVERNTLIELAIKRAADELGOPELE 76 ESYESYGVVNIAGIPEROLODMERDLHGT-AELEVERNTLLEKALDDVDDGLE 79 ESYESYGVVGVAGIPEROLOSMERELEGS-AAVEMEENTLVNEALDEVNDGFE 79
	SIFT Related Sequences	Run SIFT analysis on protein query and a g	RLAO ⁻ HALSAMSAEEQRTTEEV <mark>P</mark> ENKRQEVAELVDLI RLAO ⁻ THEACMKEVSQQKKELVNEITÖRI RLAO ₋ THEVOMRKIN <mark>PKK</mark> KEIVSELAO	ET YDS YG Y YN YT GIPSKOLODHRROLH GO-AALRMERHTLLYRALEEAGDULD 79 KASRSYAIYDTAG IRT ROIDDIRGKHRGK-INLKYIKKTLLFKALENLGDEKLS 72 TKSKAYAIYDIKGYRT R <mark>HO</mark> DIRAKHRDK-YKIKYYKKTLLFKALDSINDEKLT 72
	SIFT Aligned Sequences	Run SIFT analysis on protein query already	RLAG PICTOMTEPAQMEIDFVKNLENE ruler 110	NSRKVAAIVSIKGLENNEFORIENSINDE ARIKVERARLELAIENEGENNIV 72 40

- Based on the degree of conservation in a multiple sequence alignment (MSA)
 - MSA generated from PSI-BLAST results (closely related sequences)

Deleterious if SIFT ≤ 0.05

DTI

Predictors: Polyphen-2

DTU

http://genetics.bwh.harvard.edu/pph2/

MACHINE LEARNING

Naïve Bayes Classifier

A method and server for predicting damaging missense mutations

Ivan A. Adzhubei,^{1,7} Steffen Schmidt,^{2,7} Leonid Peshkin,^{3,7} Vasily E. Ramensky,⁴ Anna Gerasimova,⁵ Peer Bork,⁶ Alexey S. Kondrashov,⁵ and Shamil R. Sunyaev¹

SEQUENCE BASED FEATURES

- Importance of site: DISULFID, CROSSLNK, BINDING, ACT_SITE, LIPID, METAL, SITE, MOD_RES, CARBOHYD, NON_STD...
 - Importance of region: TRANSMEM, INTRAMEM, COMPBIAS, REPEAT, COILED, SIGNAL, PROPEP...
 - PSIC conservation score

STRUCTURE BASED FEATURES

- Likeness to destroy hydrophobic core, electrostatic interactions, interactions with ligands, or other important features of proteins

Predictors: Polyphen-2

		-	Home	A	bout	Help	D	ownloads	Batch	query WHE	SS.db	
	_		_									
PolyPhen-	2 report f	or P1	5056	V600E								
Query												
Protein Acc	Position	AA ₁	AA ₂	Descriptio	on							
				Canonical:	RecName: I	- ull=Serine/th	reonine-	orotein ki	ase B-raf: E	C=2.7.11.1: AltN	ame: Full=Proto-on	cogene B-Raf:
P15056	600	V	E							ogene homolog B		5
Results										0 0		
	n/Confidenc	0									PolyPha	en-2 v2.2.2r398
HumDiv	Connuenc	6									PolyPhe	511-2 V2.2.21390
Humbry										sensitivity: 0.77;		
				0.00	0,20	0,40		.60	0.80	1,00		
	ır			0.00	0.20	0,40).60	0,80	1,00		
Details		ianme	of	0.00	0.20	0,40		0.60	0.80		iRof100 Roloaso	2011 12 (14-D
Details	equence al	ignme	nt							UniProtKB/Un	iRef100 Release 2	
Details	equence al	-	nt							UniProtKB/Un		
Details	equence al QUERY sp G1P9F	1#1	nt	KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI	G <mark>DFGL</mark> AI GDFGLAI GDFGLAI	V KSRWS V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ	LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL	WMAPEV WMAPEV WMAPEV
Details	equence al	(1#1 19#1	nt	KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI	G <mark>DFGL</mark> AI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ	LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL	WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9F sp B7ZR1 sp Q0D2F sp G1NKF	(1#1 19#1 14#1 (9#1	nt	KSII KSII KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI	G <mark>DFGL</mark> AI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ	LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9K sp B7ZR1 sp Q0D2E sp G1NKK sp Q68F1	(1#1 29#1 24#1 (9#1 28#1	nt	KSII KSII KSII KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI	G <mark>DFGL</mark> AI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ	LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL LS <mark>G</mark> SIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9F sp B7ZR1 sp Q0D2F sp G1NKF sp Q68F1 sp Q4F9F	<pre>(1#1) (29#1) (29#1) (29#1) (28#1) (28#1) (6#1)</pre>	nt	KSII KSII KSII KSII KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS V KSRWS	UniProtKB/Un	LS <mark>G</mark> SIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9F sp B7ZR1 sp Q0D2F sp G1NKF sp Q68F1 sp Q4F9F sp Q4F9F sp Q6432	(1#1 29#1 24#1 29#1 28#1 28#1 26#1 28#1	nt	KSII KSII KSII KSII KSII KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9F sp B7ZRI sp Q0D2F sp G1NKF sp Q68FI sp Q4F9F sp Q6432 sp Q767F	(1#1 29#1 24#1 (9#1 28#1 28#1 28#1 28#1 28#1 28#1 28#1	nt	KSII KSII KSII KSII KSII KSII KSII KSII KSII	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9F sp B7ZR1 sp Q0D2F sp G1NKF sp Q68F1 sp Q4F9F sp Q4F9F sp Q6432	(1#1 29#1 24#1 (9#1 28#1 (6#1 28#1 15#1 24#1	nt	KS I I KS I I	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ 	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY SP G1P9K SP G1P9K SP 00D2F SP G1NKK SP 068F1 SP 04F9K SP 04F9K SP 04F9K SP 0468F1 SP 048F1 SP 048F1 SP	<pre>(1#1) (9#1) (9#1) (8#1) (6#1) (6#1) (8#1) (5#1) (5#1) (27#1) 0016E3</pre>		KS I KS I K KS I K KS I K KS I K KS I K KS I K K K K K K K K K K K K K K K K K K K	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY SP G1P9K SP G1P9K SP 00D2E SP G1NKK SP 068F1 SP 04F9K SP 04432 SP 04432 SP 04432 SP 0468F1 SP 0468F1 SP 0306E SP G306E SP 0306E	(1#1 29#1 24#1 28#1 28#1 28#1 25#1 24#1 27#1 0016E3 25#1	5C7#1	KS I I KS I I	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/UnGSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P98 sp B7ZR1 sp Q0D28 sp G1NK8 sp Q68F1 sp Q4F98 sp Q4F98 sp Q4F98 sp G3Q68 sp G3Q68 sp UPI00 sp G3Q68 sp UPI00	(1#1 29#1 24#1 (9#1 28#1 (6#1 28#1 25#1 2016E3 25#1 0017B4	5C7#1 7FE#1	KS I I KS I I	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	<mark>TVK</mark> I TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS- V KSRWS-	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P9K sp G1P9K sp B7ZRI sp Q0D2E sp G1NKK sp Q68F1 sp Q4F9K sp Q6432 sp Q767E sp G3Q6E sp G3Q6E sp UPI00 sp G3Q6E sp UPI00	(1#1 29#1 24#1 28#1 28#1 28#1 25#1 2016E3 25#1 0017B4 0017B4	5C7#1 7FE#1	KS I I KS I I	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L	TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI TVKI	GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ 	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV
Details	QUERY sp G1P98 sp B7ZR1 sp Q0D28 sp G1NK8 sp Q68F1 sp Q4F98 sp Q4F98 sp Q4F98 sp G3Q68 sp G3Q68 sp UPI00 sp G3Q68 sp UPI00	(1#1 29#1 24#1 (9#1 28#1 28#1 25#1 27#1 0016E3 25#1 0017B4 0017B4 (5#1	5C7#1 7FE#1	KS I I KS I I	RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI RDLKSNNI	FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L FLHED-L		GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI GDFGLAI	V KSRWS V KSRWS	UniProtKB/Un GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ GSHQFEQ	LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL LSGSIL	WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV WMAPEV

Shown are 75 amino acids surrounding the mutation position (marked with a black box). An interactive version of the complete alignment is also available.

Automatic methods to predict the pathogenicity of mutations

SNAP				SIFT				
SNAP: predict effect of non- polymorphisms on function	-synor	21	edicting Delete line C. Ng and Steven H	rious Amino Acid Substitutions				
Yana Bromberg ^{1,2,4,*} and Burkhard Rost ^{1,2,3}			SNPs&GO					
Polyphen-2			Functional Annotations Improve the Predictive Score of Human Disease-Related Mutations in Proteins					
A method and server for predicting damagin mutations	ng misse	Remo	Remo Calabrese, Emidio Capriotti, Piero Fariselli, Pier Luigi Martelli, and Rita Casadio*					
Ivan A. Adzhubei, ^{1,7} Steffen Schmidt, ^{2,7} Leonid Pesh Ramensky, ⁴ Anna Gerasimova, ⁵ Peer Bork, ⁶ Alexey and Shamil R. Sunyaev ¹			PMUT					
		T: a web-based tool for the annotation of pathological						
MutationAssessor	Carles F Xavier c	Ferrer- de la C	ruz ^{1,4} and Modesto	Gelpí ^{1,2,*} , Leire Zamakola ^{1,3} , Ivan Parraga ^{1,3} , Orozco ^{1,2,3,*}				
Predicting the functional mutations: application t Boris Reva*, Yevgeniv Antipin* and Chr	o ca	nce		Torkamani				
	dictio	n of		orotein kinase polymorphisms				

Some of the (many) methods implemented during the last decade