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c1 c2 c3 c4 c5

r1 1 1 1 1 1

r2 0 1 0 0 1

r3 0 0 1 0 1

r4 0 0 0 1 1

r5 0 0 0 0 1


Introduction

In this brief note we will examine why matrix exponentials show up in the theory of

continuous time Markov chains, and have a close enough look at the mathematical

definition to get a better understanding of them, without getting bogged down in

technical details.

We will see that we need to think of the exponential function exp(t) = et as a

sort of infinite polynomial, rather than as e raised to the power of t, if we want to

understand the matrix exponential. This is because we can plug a matrix A into

the infinite polynomial and in that way define eA, while “raising e to the power of

A” makes no sense.
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1 Why do matrix exponentials show up in con-

tinous time Markov chain theory?

The exponential function on the real line is the function that takes a number t

and gives you et. You probably know its graph, and some of its most important

properties:

• et+s = etes,

• d
dt
eqt = qeqt.

The last property is the reason that the solution to the differential equation

p′(t) = qp(t) (1)

with initial value p(0) = 1 is

p(t) = eqt.

When working with continuous time Markov chains we usually know an n × n

matrix Q of transition rates and would like to know the matrix function P (t) of

transition probabilities — that is P (t) is the function that, for a given time t, gives

the n×n matrix whose element on row i and coloumn j is the probability of being

in state j of the Markov chain at time t, given that you are in state i at time 0.

The (Kolmogorov) backward differential equation states that P is the solution

to the first order linear system of differential equations

P ′(t) = QP (t) (2)

with initial value

P (0) = I =


1 0 · · · 0

0 1
. . .

...
... 0

. . .
...

0 · · · 0 1

 ,

where I is the diagonal matrix with 1s in the diagonal and 0s everywhere else. The

backward equations (2) looks a lot like a matrix version of the differential equation

(1) and the initial value P (0) = I is even much like the initial value p(0) = 1, since
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I is the matrix version of 1. We know the solution to (1) as begin simply p(t) = eqt

— wouldn’t it be nice if we could somehow give meaning to eQt and hope that

P (t) = eQt solves (2)?

2 So, how to define eQt?

The problem of course is that it is not at all obvious what it means to raise e to

the Qt’th power, since Qt is a matrix. We now move away from thinking of et as “e

raised to the power of t” and toward thinking of it simply as a function exp(t) = et

given by its so-called Taylor series.

All functions f that are infinitely often differentiable (which just means that

you can keep differentiating it as many times as you want to) has a Taylor series.

The Taylor series is the “infinite sum”

f(0) + f ′(0)t +
f ′′(0)t2

2
+

f ′′′(0)t3

3!
+

f (4)(0)t4

4!
+ · · ·

that is
∞∑
k=0

f (k)(0)tk

k!
,

where f (k)(0) means the k’th derivative of f evaluated in 0. You don’t need to

worry too much about what an infinite sum (or so-called series) is — all you need

to know is that they sometime converge to a limit which is then said to be the

sum of the series. As a simple example the series

∞∑
k=0

1

2k
= 1 +

1

2
+

1

4
+

1

8
+ · · ·

turns out to converge to 2. Rigorously speaking, the statement

∞∑
k=0

1

2k
= 2,
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means that you can get the finite sum

N∑
k=0

1

2k
= 1 +

1

2
+ · · ·+ 1

2N

as close to 2 as you want to, by just using a large enough N . So
∑∞

k=0
1
2k

is the

limit of
∑N

k=0
1
2k

when N goes to infinity (N → ∞). You can try adding some of

the terms of the series on your calculator to convince yourself that this is actually

the case.

Sometimes the Taylor series of a function converges to the function itself, so

that for all numbers t we have

f(t) =
∞∑
k=0

f (k)(0)tk

k!
.

This is in fact the case with the exponential function, that is

exp(t) =
∞∑
k=0

exp(k)(0)tk

k!
.

Since exp differentiated is still just exp (that is d
dt
et = et) and exp(0) = 1 we have

exp(k)(0) = 1 for all k (you keep getting exp all the k times as you calculate the

derivatives) the Taylor series is

et =
∞∑
k=0

tn

n!
= 1 + t +

t2

2
+

t3

3!
+ · · ·

In fact this is how the exponential function is usually defined in rigorous mathema-

tics. To visualize the concept of convergence, we can check the above convergence

for t = 1 in R. The statement then is that

e = e1 = 1 + 1 +
12

2
+

13

3!
+ · · ·

= 1 + 1 +
1

2
+

1

3!
+ · · ·
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Figur 1: Convergence of the Taylor series for exp in t = 1. The points show the

sum of the first N terms in the Taylor series, while the line shows e ≈ 2.718.

It is a mathematical result that you can differentiate term by term in some series

(including the exponential Taylor series) which gives us the proof that d
dt
et = et:

d

dt
et =

d

dt

(
1 + t +

t2

2
+

t3

3!
+

t4

4!
+ · · ·

)
=

d

dt
1 +

d

dt
t +

d

dt

t2

2
+

d

dt

t3

3!
+

d

dt

t4

4!
+ · · ·

= 0 + 1 +
2t

2
+

3t2

3!
+

4t3

4!
+ · · ·

= 1 + t +
t2

2
+

t3

3!
+ · · ·

= et.

We are finally ready to define the exponential of a matrix. For an n × n matrix

A, the matrix exponential exp(A) or eA is defined as plugging in A in the Taylor
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series for the usual exponential function of real numbers:

eA =
∞∑
k=0

Ak

k!
= I + A +

A2

2!
+

A3

3!
+ · · · .

See the next section of this note for examples of the definition in use — this will

help with the understanding. If this was to be done properly we would have to

prove that this always converges, but we will contend ourselves with mentioning

that this can be proven. This definition means that our guess for a solution of the

backwards differential equations is

P (t) = eQt = I + Qt +
(Qt)2

2
+

(Qt)3

3!
· · · = I + Qt +

Q2t2

2
+

Q3t3

3!
+ · · ·

We can differentiate this term by term (this would technically also require further

justification) to get that

P ′(t) =
d

dt
I +

d

dt
Qt +

d

dt

Q2t2

2
+

d

dt

Q3t3

3!
+ · · ·

= 0 + Q +
2Q2t

2
+

3Q3t2

3!
+ · · ·

= QI + QQt + Q
Q2t2

2
+ · · ·

= Q(I + Qt +
Q2t2

2
+ · · · )

= QetQ.

We even see that (here 0 denotes the 0 matrix with all zero entries):

P (0) = eQ0 = e0 = I + 0 +
02

2
+ · · · = I,

so P (t) = eQt is in fact a solution to the backwards differential equation. A mathe-

matical result on uniqueness of solutions to certain types of differential equations

gives us that P (t) = eQt is in fact the solution to the backwards differential equa-

tion.
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3 Three examples of calculating matrix expo-

nentials by hand

Matrix exponentials will usually be found using software such as R, but in simple

cases they can be calculated using pencil and paper. We will examine two examples

to illustrate the definition.

Example 1. Consider the 2× 2 matrix

A =

(
3 0

0 2

)
.

The reader can convince herself that

Ak =

(
3k 0

0 2k

)
.

Hence, using the definition of a matrix exponential, we get that

eA = I + A +
A2

2
+

A3

3!
+ · · ·

=

(
1 0

0 1

)
+

(
3 0

0 2

)
+

(
32

2
0

0 22

2

)
+

(
33

3!
0

0 23

3!

)
+ · · ·

=

(
1 + 3 + 32

2
+ 33

3!
+ · · · 0

0 1 + 2 + 22

2
+ 23

3!
+ · · ·

)

=

(
e3 0

0 e2

)
.

In general, the matrix exponential of a diagonal matrix is just the diagonal matrix

with the usual exponential function applied on the diagonal elements. As a small

exercise, the reader can try finding the matrix exponential of7 0 0

0 −3 0

0 0
√

2

 .
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Example 2. Consider the matrix

A =

(
0 1

0 0

)
.

Since A2 = 0 (the zero matrix), and thus Ak = 0 for k ≥ 2, we have

eA = I + A +
A2

2
+

A3

3!
+ · · · = I + A =

(
1 1

0 1

)
.

Example 3. Consider the matrix

Q =

(
−1 1

1 −1

)
,

which is the transition matrix of the two state Markov chain with states i1 and i2

with transition rate 1 from i1 to i2 and also rate 1 from i2 to i1. To find P (t) we

wish to calculate eQt. It can be checked that with

B =

(
−1 1

1 1

)

we have

Qt = B−1

(
−2 0

0 0

)
tB

and hence

(Qt)k =

(
B−1

(
−2 0

0 0

)
tB

)k

= B−1

(
−2 0

0 0

)
tBB−1

(
−2 0

0 0

)
tB · · ·B−1

(
−2 0

0 0

)
tB

= B−1

(
(−2)k 0

0 0

)
tkB

since the Bs and B−1s in the middle cancel out.
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Using the definition of matrix exponentials we now get

eQt = I + Qt +
(Qt)2

2
+ · · ·

= I + B−1

(
−2 0

0 0

)
tB + B−1

1

2

(
4 0

0 0

)
t2B + · · ·

= B−1

I +

(
−2 0

0 0

)
t +

1

2

(
−2 0

0 0

)2

t2 + · · ·

B

= B−1

(
e−2t 0

0 1

)
B

=

(
1
2

+ 1
2
e−2t 1

2
− 1

2
e−2t

1
2
− 1

2
e−2t 1

2
+ 1

2
e−2t

)
.

Therefore

P (t) = eQt =

(
1
2

+ 1
2
e−2t 1

2
− 1

2
e−2t

1
2
− 1

2
e−2t 1

2
+ 1

2
e−2t

)
.
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