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Modeling: An example



Modeling: An example

y = bx + a 

Simple 2-parameter model



Modeling: An example

y = bx + a 

Predictions based on model



Modeling: An example

• Measure of how well the model fits the data: 
sum of squared errors (SSE)

• Best parameter estimates: those that give the 
smallest SSE (least squares model fitting)

y = bx + a



Modeling: An example

y = 0.95x - 0.26

• Measure of how well the model fits the data: 
sum of squared errors (SSE)

• Best parameter estimates: those that give the 
smallest SSE (least squares model fitting)



Maximum likelihood: likelihood is a measure of model fit

• Likelihood (Model) = Probability (Data | Model)

• Maximum likelihood: Best estimate is the set of parameter values which gives the highest possible likelihood.



Probabilistic modeling applied to phylogeny
• Observed data: multiple alignment of sequences 

    H.sapiens globin  A G G G A T T C A 
    M.musculus globin  A C G G T T T - A 
    R.rattus globin  A C G G A T T - A 

• Probabilistic model: 
• A model of (hypothesis about) how one ancestral sequence has 

evolved into the three sequences that are present in the alignment


• Probabilistic model parameters (simplest case): 

• Tree topology and branch lengths


• Nucleotide frequencies: πA, πC,  πG, πT


• Nucleotide-nucleotide substitution rates (or substitution 
probabilities):
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Computing the probability of one column in an alignment given tree 
topology and other parameters

A T G G A T T C A 
A T G G T T T - A 
A C G G A T T - A 
A G G G T T T - A

AA

T

T C

G

• Columns in alignment contain homologous nucleotides

• Assume tree topology, branch lengths, and other parameters 
are given. For now, assume ancestral states were A and A 
(we’ll get to the full computation on next slide). Start 
computation at any internal or external node. Arrows indicate 
“direction” of computations (“flowing” away from the starting 
point).

Pr = πT PTA(t1) PAT(t2) PAA(t3) PAG(t4) PAC(t5)
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Computing the probability of an entire alignment given tree topology 
and other parameters

• Probability must be summed over all possible combinations of ancestral 
nucleotides. 

• Here we have two internal nodes giving 16 possible combinations

• Probability of individual columns are multiplied to give the overall 
probability of the alignment, i.e., the likelihood of the model.

• In phylogeny software these computations are done using summation of 
the logs of the probabilities (“log likelihoods”), because multiplication of the 
large number of probability terms may lead to underflow (computer 
problems caused by very small numbers). 

A T G G A T T C A 
A T G G T T T - A 
A C G G A T T - A 
A G G G T T T - A
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L = L(1) · L(2) · · ·L(N) =
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Maximum likelihood phylogeny
• Data:  

• sequence alignment


• Model parameters:  

• nucleotide frequencies, nucleotide substitution rates, tree 
topology, branch lengths.

• Choose random initial values for all parameters, 
compute likelihood

• Change parameter values slightly in a direction so 
likelihood improves

•  Repeat until maximum found

•  Results:
- ML estimate of  tree topology 
- ML estimate of branch lengths
- ML estimate of other model parameters
- Measure of how well model fits data (likelihood).



Model Selection?

• Measure of fit between 
model and data (e.g., SSE, 
likelihood, etc.) 

• How do we compare 
different types of models? 

y = 0.95x - 0.26



Model Selection: 
How Do We Choose Between Different Types of Models? 

Select model with best fit?



Over-fitting

y = bx + a 

2-parameter model
Good description, poor fit

y = gx6+fx5+ex4+dx3+cx2+bx+a 

7-parameter model
Poor description, good fit

For nested models, more parameters always result in a better 
fit to the data, but not necessarily in a better description



Selecting the best model: the likelihood ratio test

• The fit of two alternative models can be compared using the ratio of their likelihoods:


•	 	 LR =	P(Data⎪M1)   =   L,M1

•	 	 	 P(Data⎪M2)        L,M2


• Note that LR > 1 if model 1 has the highest likelihood


• For nested models it can be shown that if the simplest (“null”) model is true, then


•	 	 Δ = ln(LR2) = 2*ln(LR) = 2* (lnL,M1 - lnL,M2)


•	 follows a Χ2 distribution with degrees of freedom equal to the number of extra 
parameters in the most complicated model.


•	 This makes it possible to perform stringent statistical tests to determine  which model 
(hypothesis) best describes the data



Asking biological questions in a likelihood ratio testing framework

• Fit two alternative, nested models to the data.


• Record optimized likelihood and number of free parameters for each 
fitted model.


• Test if alternative (parameter-rich) model is significantly better than 
nullmodel (i.e., the simplest model), given number of additional 
parameters (nextra):


• Compute Δ = 2 x (lnLAlternative - lnLNull) 


• Compare Δ  to Χ2 distribution with nextra degrees of freedom


• Depending on models compared, different biological questions can be 
addressed (presence of molecular clock, presence of positive 
selection, difference in mutation rates among sites or branches, etc.)



AIC: Akaike Information Criterion

• A probabilistic model of a system defines a probability 
distribution over the possible outcomes (data sets)  

• For instance: Probability of getting 0-10 heads when 
tossing a coin 10 times. Probability of getting a specific 
alignment for the JC model on a given phylogeny 

• Kullback-Leibler (K-L) divergence is a measure of the 
distance between two probability distributions: 

• We are interested in finding the model (probability 
distribution), that most closely approximates reality, 
i.e., the model Q that has the smallest K-L divergence 
from the “true probability distribution” P. 

• AIC is essentially an estimate of the expected, relative 
Kullback-Leibler distance between the true model and 
the approximating model:

D(P ||Q) =
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Kullback-Leibler divergence is a measure of the distance between probability distributions 
(models). Here, Q2 is the candidate model that has the smallest K-L distance from reality, and it is 
therefore the best approximation. AIC chooses the model with the smallest expected K-L distance



Model Selection Using the Akaike Information Criterion (AIC)

• Fit a set of alternative models to the data.


• Record maximized log likelihood, ln(L), and number of free 
parameters, K, for each fitted model.


• For each model compute AIC according to this formula:


AIC = -2 x ln(L) + 2 x K    


• Models can now be ranked according to AIC: Lower AIC is better.

Model ln(L) K AIC
TVM+I+G   -3553.5002 9 7125.0004

GTR+I+G   -3553.1787 10 7126.3574

TVM+G     -3555.3269 8 7126.6538

GTR+G     -3555.011 9 7128.022

K81uf+I+G -3560.2527 7 7134.5054

TIM+I+G   -3559.5247 8 7135.0494

K81uf+G   -3562.0266 6 7136.0532



Model Selection Using the AIC: computation of model probabilities
• From the relative AIC values it is furthermore possible to compute so-

called Akaike weights:


• Akaike weight can be interpreted as the conditional probability that a 
model is the K-L best one, given the data and the initial set of models. 

wi =
exp(� 1

2�AICi)
PR

r=1 exp(�
1
2�AICi)

�AICi = AICi �minAIC

Model ln(L) K AIC weight (w)
TVM+I+G   -3553.5002 9 7125.0004 0.45709258

GTR+I+G   -3553.1787 10 7126.3574 0.23191849

TVM+G     -3555.3269 8 7126.6538 0.19997372

GTR+G     -3555.011 9 7128.022 0.10089556

K81uf+I+G -3560.2527 7 7134.5054 0.00394475

TIM+I+G   -3559.5247 8 7135.0494 0.00300533

K81uf+G   -3562.0266 6 7136.0532 0.00181936



Probabilities as extended logic

• Polya, Cox, Jeffreys, Jaynes: probabilities are the only consistent basis 
for plausible reasoning (reasoning when there is insufficient information 
for deductive reasoning).


• Probabilities should form basis of all scientific inference


• Difference between probability interpretations:


- “Frequentist”: probability is long-run frequency of event in 
repeatable experiment


- “Bayesian”: probability is way of quantifying uncertainty


• Attaching probabilities to models allow us to perform multimodel 
inference and model averaging



Model selection as a general strategy for answering scientific questions

• Construct comprehensive set of plausible alternative hypotheses for 
how the system under investigation works (but not too many)


• Phrase the hypotheses as mathematical models


• Assess evidence for all hypotheses by computing model probabilities


• Make conclusions, predictions, etc based on model probabilities


• Very different from null hypothesis testing approach (where you assess 
fit of single, implausible model that you don’t believe is true...)



Multimodel Inference:  
Basing Conclusions on More Than Just the Best Model

• Prediction: More robust predictions can be made by taking a weighted 
average of the predictions made by all models. (Weight = model 
probability)


• Model-averaging: More reliable estimates of parameter values can be 
obtained by taking a weighted average over the sub-set of fitted 
models that contain the parameter. 


• Relative importance of parameters:  the importance of a parameter can 
be estimated by summing the probabilities of those models that 
contain it. 



AIC example:  Which model fits best: JC or K2P? 
A C G T

A   - α α α
C α - α α
G α α - α
T α α α -

Jukes and Cantor model (JC):

   All nucleotides have same frequency
   All substitutions have same rate
   K = 1 parameter

Kimura 2 parameter model (K2P):

   All nucleotides have same frequency
   Transitions and transversions have different rate
   K = 2 parameters

  A C G T

A   - β α β

C β - β α

G α β - β

T β α β -

Note: in principle each branch length in the tree also has an associated free parameter, but 
we ignore these here since they cancel out (the tree is the same in the two cases)

Note 2: depending on how you phrase the problem, JC and K2P can be said to have K=0 and K=1



Starting point: set of DNA sequences, fit JC and K2P models to data, record likelihoods

JC: lnL = -2034.3,  K = 1
K2P: lnL = -2026.2,  K = 2

Assess evidence by computing model probabilities:

(1) Compute AIC = -2 lnL + 2K:

JC:     AIC = -2 x -2034.3 + 2 x 1 = 4070.6
K2P:  AIC = -2 x -2026.2 + 2 x 2 =  4056.4  <= Best model (smallest AIC)

(2) Compute 

JC: 4070.6 - 4056.4 = 14.2
K2P: 4056.4 - 4056.4 = 0

AIC example:  Which model fits best: JC or K2P? 

�AICi = AICi �minAIC



(3) Compute model probabilities: 

JC:    numerator = exp(-0.5 x 14.2) = 0.000825
K2P: numerator = exp(-0.5 x 0) = 1

Sum (denominator) = 1 + 0.000825 = 1.000825

=>

P(JC) = 0.000825 / 1.000825 = 0.0008  (0.08 %)

P(K2P) = 1 / 1.000825 = 0.9992  (99.92 %)  <= Strongly supported  (about 1250 x stronger)

wi =
exp(� 1

2�AICi)
PR

r=1 exp(�
1
2�AICi)

AIC example:  Which model fits best: JC or K2P? 



Exercise: Detection of Selection



Positive selection I: synonymous and non-synonymous mutations

• 20 amino acids, 61 codons 


• Most amino acids encoded by more than one codon


• Not all mutations lead to a change of the encoded amino acid


• ”Synonymous mutations” are rarely selected against

... GGT AGG CCA CTA AAT CGA TTA ... 
  (Leu)

CTC 
(Leu)

CTG 
(Leu)

CTT 
(Leu)

CAA 
(Gln)

CCA 
(Pro)

CGA 
(Arg)

ATA 
(Ile)

GTA 
(Val)

TTA 
(Leu)

1 non-synonymous 

nucleotide site

1 synonymous 

nucleotide site

1/3 synonymous

2/3 nonsynymous

nucleotide site



Positive selection II: non-synonymous and synonymous mutation rates 
contain information about selective pressure
• dN: rate of non-synonymous mutations per non-synonymous site


• dS: rate of synonymous mutations per synonymous site


• Recall: Evolution is a two-step process:


	 (1) Mutation (random)


	 (2) Selection (non-random)


• Randomly occurring mutations will lead to dN/dS=1.


• Deviations from this most likely caused by subsequent selection.


• dN/dS < 1: Higher rate of synonymous mutations: negative (purifying) selection


• dN/dS > 1: Higher rate of non-synonymous mutations: positive selection



Today’s exercise: positive selection in HIV?

• Fit two alternative models to HIV data:


• M1: two classes of codons with different dN/dS 
ratios: dN/dS<1        dN/dS=1


• M2: three distinct classes with different dN/dS 
ratios: dN/dS<1        dN/dS=1         dN/dS>1


• Compute model probabilities to assess the evidence for 
M2 versus M1


• If M2 much better than M1 then you have statistical 
evidence for positive selection. 


• Most likely reason: immune escape (i.e., sites must be in 
epitopes)

: Codons showing dN/dS > 1: likely epitopes


