
Bayesian Inference



Conditional probability
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The law of total probability
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Bayes’ Theorem
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Reverend Thomas Bayes 
(1702-1761) 
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Bayes’ Theorem
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Bayesians vs. Frequentists: Meaning of Probability

• Frequentist: long-run frequency of event in repeatable experiment


• Bayesian: degree of belief, way of quantifying uncertainty



Probabilities as extended logic

• Polya, Cox, Jeffreys, Jaynes: probabilities are the only consistent basis 
for plausible reasoning (reasoning when there is insufficient information 
for deductive reasoning).


• Probabilities should form basis of all scientific inference


• Evidence from different sources integrated by using simple laws of 
probability (multiplication and summation...)



Bayes’ Theorem: Probability distributions over possible parameter values 
as a way of expressing uncertainty

Pierre-Simon, marquis de Laplace  
(1745-1827) 

Image Source: Wikimedia
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• Extracting information about reality from empirical data:


– Frequentist: parameters in model are fixed constants whose true values we are 

                           trying to find good (point) estimates for.


– Bayesian: uncertainty concerning model parameters expressed by means

                       of probability distribution over possible parameter values

http://commons.wikimedia.org/wiki/Pierre_Simon_Marquis_de_Laplace
http://commons.wikimedia.org/wiki/File:Pierre-Simon,_marquis_de_Laplace_(1745-1827)_-_Gurin.jpg


Among people working at DTU: 

P(Swedish) = 0.16 
P(plays accordion) = 0.1269 
P(plays accordion | Swedish) = 0.5 

Knowledge about reality updated by data via Bayes theorem:


Before data: P(Swedish) = 0.16

After data: P(Swedish | Data) = 0.63

P (Swedish|plays the accordion) =

P (plays the accordion|Swedish)P (Swedish)

P (plays the accordion)

=

0.5� 0.16

0.1269
= 0.6304

Danish

Swedish

Plays the accordion

Bayes’ Theorem: Updating degree of belief after seeing data



P (H|D) =
P (D|H)P (H)

P (D)

Bayes’ Theorem

• P(H): Prior probability of hypothesis 

• P(D|H): Probability of data given hypothesis = likelihood 

• P(H|D): Posterior probability of hypothesis 

• P(D): “Marginal probability” of observing data. Essentially a normalizing 
constant so posterior will sum to one (but useful for model comparison)



P (H|D) =
P (D|H)P (H)

P (D)

Bayes’ Theorem

Focus is on learning about w, 
the parameters within some 
model

H1: We sometimes want to make 
it explicit that parameters w 
belong to (are conditioned upon) 
this particular model/hypothesis

P(D) can be found by summing 
over P(D|wj)P(wj) for all the mutually 
exclusive, possible parameter 
values wj (law of total probability)

Update knowledge about 
hypothesis H based on data D

P (wi|D) =
P (D|wi)P (wi)

P (D)

P (wi|D,H1) =
P (D|wi, H1)P (wi|H1)

P (D|H1)

P (wi|D) =
P (D|wi)P (wi)PN

j=1 P (D|wj)P (wj)



Bayesian model comparison

• It is possible to compute posterior probabilities for alternative 
hypotheses just like we can compute the posterior probabilities of 
different possible parameter values within a single hypothesis

• In this expression, P(D|H) is the denominator from the previous 
expression:

P (D|H1)

P (H1|D) =
P (D|H1)P (H1)

P (D|H1)P (H1) + P (D|H2)P (H2)

P (D|H1) =
NX

j=1

P (D|wj)P (wj)



Markov chain Monte Carlo



MCMC: Markov chain Monte Carlo

• Can be difficult or impossible to compute (either analytically or numerically)


• Solution: Markov chain Monte Carlo (MCMC)

P (wi|D) =
P (D|wi)P (wi)PN

j=1 P (D|wj)P (wj)



MCMC: Markov chain Monte Carlo

Starting point:


• Parameter space (covering all possible parameter values for all parameters in model)


• For each possible parameter value we can compute the likelihood = P(D | parameter values)


• For each parameter value we know the prior probability = P(parameter values)


• We can therefore compute prior x likelihood for any given point in parameter space



• Start in random position on probability landscape (X). 
Compute prior x likelihood here. Let’s call that PX. 

• Based on current position: attempt move to new position (Y) 
by randomly drawing from “proposal distribution”: q(Y| X) 

• (For example, the proposal distribution can be a normal 
distribution with mean X and standard deviation 1) 

• Compute prior x likelihood at new position. We’ll call that PY 

- (a) If move ends higher up, i.e. PY > PX: accept move 

- (b) If move ends below: accept move with probability 

• If q(X|Y) = q(Y|X), i.e., q is symmetric, this becomes: 

• Write parameter values for accepted moves in file (if 
proposed move is not accepted: write previous values 
again). 

• After many, many repetitions points will be sampled in 
proportion to the height of the probability landscape: We 
therefore have an empirical approximation of the distribution

P (accept) =
PY � q(X|Y )

PX � q(Y |X)

P (accept) =
PY

PX

MCMC: Markov chain Monte Carlo



MCMCMC: Metropolis-coupled Markov Chain Monte Carlo

• Problem: 


- If there are multiple peaks in the probability landscape, then MCMC 
may get stuck on one of them


• Solution: 


- Metropolis-coupled Markov Chain Monte Carlo = MCMCMC = MC3


• MC3 essential features: 

- Run several Markov chains simultaneously


- One chain “cold”: this chain performs MCMC sampling


- Rest of chains are “heated”: move faster across valleys


- Each turn the cold and warm chains may swap position (swap 
probability is proportional to ratio between heights)


➡ More peaks will be visited


• More chains means better chance of visiting all important peaks, but 
each additional chain increases run-time (unless you use 
parallelization)



MCMCMC for inference of phylogeny

• Result of run: 

- Substitution parameters, nucleotide frequencies 

- Tree topologies



Posterior probability distributions of substitution parameters



Posterior Probability Distribution over Trees

• MAP (maximum a posteriori) estimate of phylogeny: tree topology 
occurring most often in MCMCMC output


• Clade support: posterior probability of group = frequency of clade in 
sampled trees.


• 95% credible set of trees: order trees from highest to lowest posterior 
probability, then add trees with highest probability until the cumulative 
posterior probability is 0.95


