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An Introduction to Bayesian Statistics Without Using Equations 
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Recently, Bayesian statistics have become a common analytical tool 
in ecological and biological studies.  In 1996, the journal Ecological 
Applications had a special section on Bayesian Inference (Vol. 6, 
Issue 3).  In the issue, one introductory note and seven articles 
were published, of which one was a technical introduction (Ellison 
1996), four were applications (Ludwig 1996, Taylor et al. 1996, 
Ver Hoef 1996, Wolfson et al. 1996), and two were discussions 
of the Bayesian inferential process (Dennis 1996, Edwards 1996).  
The series of papers clearly describes how Bayesian statistics can 
be used in ecological studies, as well as the opposite viewpoint 
expressed by Dennis (1996).  Others also have contributed materials 
to introduce the Bayesian concept to biologists and ecologists (Clark 
2007, Reckhow 1990, Wade 2000, Wade 2001).  To keep this note 
short and succinct, I refrain from reviewing the differences between 
Bayesian and traditional statistical approaches.  Readers who are 
not familiar with the differences may consult the paper by Ellison 
(1996) or other Bayesian textbooks (e.g., Bernardo & Smith 1993, 
Clark 2007, Gelman et al. 2004, Lee 1997).

The rapid spread of the Bayesian approach among some 
ecological statisticians (or statistical ecologists) in the past few years 
has resulted in a bimodal trend of data analysis as some “traditional” 
ecologists, who are not well versed in mathematics, remain in the 
comfort zone of the traditional approaches, such as hypothesis 
testing, learned in introductory statistics classes.  The mystery 
of Bayesian statistics is exacerbated by the lack of user-friendly 
software, which would facilitate the teaching of the principles to a 
general audience.  Furthermore, publications with Bayesian statistics 
often contain mathematical equations and the terminology, which 
are not thoroughly explained in many instances.  As Mrosovsky 
(2006) pointed out, methods of a scientific study should be explicitly 
stated in a publication so that readers can judge the validity of the 
reported findings.  Simultaneously, in order for the readers to be 
a critical audience, they must learn the language and concepts of 
Bayesian statistics.  

The goals of this paper are (1) to introduce the concepts of 
Bayesian statistics and (2) to point out some critical features of 
Bayesian statistics such that publications with Bayesian statistics 
can be read critically by a wider audience.  Although many papers 
and books have been written to introduce Bayesian statistics in 
the past, all of them contained equations.  In this short note, the 
basic concepts of Bayesian statistics are presented and explained 
in the absence of equations.  This note is neither a comprehensive 
summary of Bayesian statistics in ecological studies nor a how-to 
guide to be used for data analysis.  Rather, it explains the basic 
Bayesian principles in plain English.  For those who seek a more 
comprehensive understanding of Bayesian statistics, consult the 
cited papers and reputable textbooks.  Finally, coursework in 
Bayesian statistics classes ensures an understanding of and comfort 
with the Bayesian analytical approach in ecological studies.   

Concepts of Bayesian statistics.  The basic concepts of Bayesian 
statistics has been explained eloquently by some prominent 
ecologists, e.g., Dixon & Ellison (1996), Reckhow (1990), and 
Wade (2000).  In a nutshell, Bayesian statistical methods are 
used to compute a probability distribution of parameters in a 
statistical model, using data and the previous knowledge about the 
parameters.  Parameters are the unknown quantity of interest in a 
study.  For example, if you are interested in determining the trend 
of a population, the population growth rate is the parameter of 
interest.  For another example, to assess the size of a population, the 
abundance is the parameter of interest.  In a simple linear regression 
analysis, the slope and intercept of the regression line are the two 
parameters of interest.  

In a non-Bayesian statistical analysis, we have learned to treat 
a parameter as a fixed quantity without a distribution.  We also 
have learned not to use prior knowledge about the parameter 
in the analysis.  In Bayesian statistics, we consider a range of 
parameter values, where the possibility of any parameter value 
given the observed data is expressed with a probability, whereas the 
uncertainty about the parameter value is described with a “width” of 
the distribution.  Some values are more likely than others, which is 
depicted by the difference in the height of the distribution (Figure 
1).  If all parameter values are equally likely, the distribution has 
an equal height over all possible parameter values.  The curvature 

Figure 1. Examples of continuous (top) and discrete (bottom) 
probability distributions.  The continuous distribution is a 
normal distribution with mean 0.15 and standard deviation 
0.02.  The discrete distribution was created from 1000 random 
numbers generated from a normal distribution with mean 150 
and standard deviation 20.  The 1000 random numbers were 
grouped into 12 equal-width bins.
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or shape of the distribution is defined by the functional form, i.e., 
a mathematical equation of the probability distribution, which is 
governed by one or more parameters, e.g., mean and variance.    

At the end of a Bayesian analysis, a probability distribution of 
parameters, called the posterior distribution (or simply posterior), 
is obtained.  This distribution is a result of the combination of the 
prior knowledge about the parameters (called the prior distribution 
or prior), newly collected data, and a statistical model.  The statistical 
model describes, in a mathematical form, the relationship between 
the parameters and the data.  When there are multiple parameters in 
an analysis, the posterior distribution of the parameters is called the 
joint posterior distribution (or joint posterior).  This part of the 
analysis also informs about the relationship between the parameters, 
i.e., correlations between parameters.  To make inference on just 
one parameter, we disregard the other parameters from the posterior 
distribution (Figure 2).  This process is completed by the method 
of integration.  Imagine a two-parameter situation as in Figure 2.  
If you tilt and rotate the joint posterior distribution (looks like a 
hill) to such an angle that you can see only one axis, you have just 
integrated the joint posterior along the other axis.  Such distribution 
is called a marginal posterior distribution (or marginal).  For 
a two-parameter model, a marginal posterior distribution can be 
visualized by changing the angle of the posterior distribution (Figure 
2).  For a higher dimension, analytical or numerical integration is 
necessary to obtain a marginal distribution.  

Statistical model: A statistical model describes the relationship 
between the parameters and data.  It summarizes the stochastic 
process which produced the data.  It is also called a likelihood 
function, because it is used to compute which values of the 
parameters of the model are most likely to have produced the data 
we have observed.  For example, you may conduct a capture-mark-
recapture study to estimate the abundance of a population.  The data, 
consequently, are series of capture/non-capture data for identified 
individuals.  Such data need to be linked to your parameters, such 
as abundance, capture probabilities, and survival rates.  Often, 
statistical models already exist for standard sampling protocols, 
such as mark-recapture.  Make sure to follow the required sampling 
protocol so that assumptions in the chosen statistical model are 
met.  With non-standard sampling, especially opportunistically 
collected data, more creativity may be necessary to build your 
own statistical model(s).  The old adage about the importance of 
proper sampling to obtain valid results, “garbage in, garbage out” 
(Krebs 1989, p. 9), applies also to the Bayesian approach.  Bayesian 
statistics, or any other analytical tools, should not be considered as 
a replacement for well-designed studies.  Regardless of the use of 
Bayesian statistics, modeling is not a replacement for well-thought 
sampling and experimental designs and meticulous data collection 
practices.  Statistical modeling does not and cannot save a poorly 
designed and executed study.

Although they may not be explicitly stated, statistical models 
are used in many analyses.  For example, the normal distribution is 
used as its statistical model in a simple linear regression analysis.  
It is assumed that the response (or dependent) variable is distributed 
normally with a mean and variance, given a specific value of the 
predictor (or independent) variable.  The implicit assumption is that 
the mean changes linearly with the independent variable, whereas 
the variance remains constant across all observed values of the 
independent variable (Figure 3).  

Figure 2. An example of numerically obtained joint and 
marginal distributions of a posterior distribution with two 
parameters.  The top left figure (A) is a contour plot of 
random samples from the joint posterior distribution, where 
the height of the distribution is described by the contour 
lines.  The top right figure (B) is the marginal distribution of 
one parameter (Parameter 2).  This can be seen by looking 
at the joint posterior (A) from the y-axis in (A), ignoring the 
x-axis.  The dashed line indicates the prior distribution for the 
parameter (informative prior).  The bottom left figure (C) is 
the marginal distribution of the other parameter (Parameter 
1).  This can be seen by looking at the joint posterior (A) from 
the x-axis, ignoring the y-axis.  The dashed line is the prior 
distribution (flat prior).

Figure 3. A schematic diagram of a linear regression analysis, 
where data (n = 30, indicated by *) were generated from the 
linear function with the slope = 2.5, intercept = 25.0, and 
standard deviation = 1.5.  The estimated parameters using 
a linear regression were slope = 2.45, intercept = 25.3, and 
standard deviation = 1.48.  The estimated regression line is 
shown as a straight line, whereas four normal distributions 
indicate the assumed normal distributions of data at four 
values of the explanatory variable (1.4, 2.4, 3.4, and 4.4)
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Previous knowledge about parameters: The Bayesian philosophy 
about the distributions of parameters allows us to use the previous 
knowledge of the parameters to construct a distribution before 
collecting and analyzing data.  The previous knowledge is updated 
with new data and a likelihood function via Bayes’ theorem, which 
is a well-known theorem in mathematical statistics.  Bayes’ theorem 
guarantees that the probability of a specific value of the parameter is 
proportional to the product of the probability of the parameter value 
before seeing and analyzing the data and the probability of obtaining 
the observed data if the parameter value is true.  The probability 
distribution of the parameter prior to analyzing your current data 
is called the prior distribution.  In a Bayesian statistical analysis, 
each parameter requires a prior distribution.  Consequently, you 
will have multiple prior distributions in multi-parameter situations.  
Because a prior distribution can be selected arbitrarily, this term of 
the Bayesian approach is a contentious issue between Bayesians and 
anti-Bayesians.  Anti-Bayesians point out the potential subjectivity 
of prior distributions (e.g., Dennis 1996, Dennis 2004).  In other 
words, prior distributions may be very different among researchers, 
even if the same parameters, likelihood function, and data are used 
in an analysis.  The anti-Bayesians have made a good argument 
that one’s belief should not influence a scientific study.  Many 
Bayesian practitioners would agree with the idea of not incorporating 
someone’s belief in a data analysis.  Avoiding one’s belief in a 
scientific study, however, is not limited to Bayesian statistics.  Any 
scientist should avoid being influenced by his/her belief when data 
are analyzed and results are interpreted. 

How can we build an objective prior distribution?  Some have 
used non-informative prior distributions.  A non-informative 
prior distribution represents the equal probability of all possible 
parameter values (Figure 4).  The phrase ‘non-informative’ is 
not really an appropriate term because a ‘non-informative’ prior 
distribution provides information about the equal probability of all 
parameter values within a certain range.  This terminology, however, 
is conventional.  We must be cautious that a non-informative (or 
flat) prior distribution may be not so non-informative when the 
parameter is transformed.  For example, you may decide to set a 
non-informative prior distribution on the standard deviation.  We 
know that the square of the standard deviation is the variance, which 
should provide the same information about the variability as the 
standard deviation.  However, when you take the square of a non-
informative (flat) distribution, you obtain a “not-so-flat” distribution 
(Figure 4).  The original intention of “non-informativeness” on the 
standard deviation disappears when it was transformed into variance, 
even though these two quantities provide the same information.  
Consequently, the use of a non-informative prior distribution is not 
the cure-all answer to providing equal probability to all possible 
values of a parameter.  

One way to avoid this problem is to build a hierarchical 
model, in which each of the parameters is assumed to come from 
another distribution, called a hyper-distribution.  We then set flat 
prior distributions for the parameters of the hyper-distributions 
(hyper-parameters).  Because these hyper-distributions reside in 
the abstract parameter space, which you do not observe directly, 
the flatness of the distribution may be justified.  The hierarchical 
approach is becoming more common because of its versatility to 
a wide variety of data structures.  The hierarchical approach, for 
example, allows us to easily model mixed effects models, where 

some factors are considered fixed whereas others are considered 
random factors.  For further discussion and examples of these 
models, which are somewhat advanced topics, see Clark (2007) 
and Gelman et al. (2004).   

A prior distribution can be built from the historical data, a pilot 
study, and other sources.  You may also use information from other 
closely related species and systems to construct prior distributions.  
For example, you may be interested in estimating the population 
growth rate of the snapping turtle (Chelydra serpentina).  Even 
though you may not have any information about the population 
growth rate of your study population, a prior distribution can be 
constructed from the knowledge of the species from elsewhere.  
Construction of an informative prior distribution from historical 
and other systems provide an opportunity to search for the relevant 
information about the parameter of interest.  

Presenting Bayesian data analysis: In this section, I will discuss 
how you may present your results when you use a Bayesian analysis.  
I will highlight the key features of Bayesian statistics which should 
not be overlooked when presenting results.  The same features should 
be looked for when reading a research paper that contains Bayesian 
statistical analysis.  First, prior distributions for all parameters 
should be stated clearly.  The justifications for using particular 
prior distributions should also be included.  It is not adequate to say 
‘non-informative prior distributions were used for all parameters.’  
Similarly, reasons for selecting certain prior distributions should be 
provided even if flat priors are used.  The effects of prior distributions 
on the posterior should also be determined.  In other words, several 
prior distributions may be used to compare how they affect the 
shape of posterior distributions and how sensitive the results of 
the analysis are to the choice of prior distributions.  If the shape 
of the marginal posterior distribution for a parameter is affected 
by the prior distribution, the data provide little information on the 

Figure 4. An example of a uniform distribution and its 
transformation.  The top figure presents the continuous 
uniform distribution between 2 and 4.  The middle figure is a 
histogram of 5000 random samples drawn from the uniform 
distribution.  The bottom figure is the histogram of the squared 
transformation of the 5000 random samples from the uniform 
distribution.
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parameter.  In other words, the knowledge about the parameter is 
not updated without new information.  The important point is that 
no new inference should be made on the parameters whose posterior 
distributions are very similar to the prior distributions.  Perhaps, 
those parameters should not be in the model to begin with.

Some things to consider about the prior distributions are: (1) Are 
the limits of each parameter appropriate? For example, the lower 
bounds of prior distribution for abundance should be zero or greater. 
(2) Is the shape of each prior distribution defendable? In other words, 
does the prior distribution adequately describe the uncertainty about 
the parameter? (3) Are there enough references given to defend the 
form of each prior distribution? (4) How does the prior distribution 
affect the posterior distribution?  Do the priors affect posteriors?  
(5) Are the correlations between parameters considered, especially 
when the priors affect the posterior? 

The second component of Bayesian analysis, the likelihood 
function, should be scrutinized as well.  This is the connection 
between the data and the parameters of interest.  Because statistical 
models are simplifications of the real ecological processes, multiple 
models are often applicable to the data.  Consequently, the fit of each 
model to the data should be examined and the best model should 
be used for the inference.  Gelman et al. (2004) recommend using 
a simulation approach.  Using the posterior distribution(s) and 
the likelihood function, one can simulate “data” that could have 
been observed, given estimated parameters.  By simulating a large 
number of possible “datasets,” one can determine whether or not the 
observed real data are within the plausible range of simulated data 
based on the assumed underlying model.  If there is a discrepancy 
between the real and simulated data, the model probably was not 
appropriate for the real data.  

In a theoretical approach, Spiegelhalter et al. (2002) introduced 
a measure (deviance information criterion or DIC) that can be used 
to compare multiple models, similar to AIC (Akaike’s Information 
Criterion; Akaike 1974).  DIC can be used to select the best model 
among candidate models.  Alternatively, the uncertainty among 
possible models can be incorporated into an analysis instead of 
selecting a simple model.  Green (1995) introduced a method called 
the reversible jump Markov chain Monte Carlo (RJMCMC; Green 
1995), which can be used to compute posterior probabilities for 
multiple models.  The posterior probabilities of models, then, are 
included into the inference process of parameters.  This, however, 
is an advanced feature of Bayesian analysis and beyond the scope 
of this short note.  Although not all in the Bayesian framework, 
very good discussion about model selections in ecological studies 
can be found in Burnham & Anderson (2002), Clark (2007), and 
Hilborn & Mangel (1997).

Some issues to consider about likelihood functions are: (1) Are the 
likelihood functions defendable? As I mentioned previously, more 
than one statistical model may be appropriate for the data.  In this 
situation, the selection of a particular model should be explained.  
(2) Did the model fit to the data?  (3) Is it necessary to compare 
multiple models or is a single model sufficient? 

The last component of a Bayesian analysis is the posterior 
distribution.  Conclusions of the study depend on the posteriors.  
The main feature to look for is the difference between the prior 
and posterior.  If they are very similar, the data did not have much 
information about the parameter.  The conclusions drawn in these 
cases should be treated as such: the data did not provide new 

information about the parameters.  Correlations among parameters 
should also be examined.  Summary statistics should be scrutinized.  
For example, when a posterior distribution is skewed, the mean is 
not a good statistic of the central tendency.  The median or mode 
may be a better choice.  Also, a point estimate, let it be mean, 
median, or mode, should not be presented without some measure 
of uncertainty, such as a standard deviation or posterior interval, 
the Bayesian analogue to a confidence interval.  The practice of 
providing an error measurement in a scientific analysis is not unique 
to Bayesian statistics.  It has been pointed out in many textbooks that 
no ecological estimate should be presented without some measure 
of errors (e.g., Krebs 1989).  When providing the error of a point 
estimate in a Bayesian analysis, a posterior interval is preferred over 
standard deviation because it provides an understandable measure 
of uncertainty in a probability statement.  For example, you may 
provide a 95% posterior interval from a posterior distribution.  The 
limits of this interval can be interpreted with a simple probability 
statement; the true parameter is between the limits with probability 
0.95, given the data, the statistical model, and the prior.

The difference between the definitions of confidence (CI) and 
posterior intervals (PI) needs an attention.  The true definition 
of a confidence interval is often overlooked.  An x% CI should 
be interpreted as the following: “we are x% confident that the 
true value will be between the two limits.” Note that this is not a 
probabilistic statement.  On the other hand, an x% PI of a parameter 
may be interpreted as “the true parameter value is in the interval 
with probability x/100.”  The practical difference between the two 
intervals, however, may be trivial.  Either interval would provide 
a measure of uncertainty about the estimate of the parameter.  
You, as a critical reader or analyst, need to know if the result is 
interpreted correctly, especially when a manuscript is reviewed for 
publication.  

A few last words: I hope I have successfully introduced the concepts 
of Bayesian statistics without using equations.  I also hope this brief 
note has successfully explained the Bayesian analytical method in 
such a way that you, the reader, are better equipped to approach your 
own and other’s research more critically.  I have left out many topics 
of Bayesian statistics that cannot be covered in this introductory 
note.  The intention of this paper was to provide insight on the 
basics of Bayesian statistics and encourage a pursuit of deeper 
understanding such as how to use and manipulate mathematical 
equations.  Even though we, as biologists, tend to avoid equations, 
they should be considered as a tool or language that serves to 
improve our research methods and analyses.  One line of an equation 
can provide as much information as a paragraph in English.  You 
will gain clarity by first understanding some of the nuts and bolts 
of the mathematical statistics that lend themselves to analyses using 
either Bayesian statistics or other statistical modeling.

The basic concepts of Bayesian statistics are simple.  Bayesian 
statistics take into account your prior knowledge or experience.  
Bayesian statistics are not magic.  If something does not fit well in 
your mind, it is likely some things are askew.  Also, never hesitate 
to ask questions about the terminology.  If you do not understand 
something in a paper, it may be that methods are not fully thought 
out or that you require more information to fully comprehend the 
analytical technique to critically evaluate the findings.  To enhance 
our knowledge in science, we should strive to use the best tools 
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available for analyzing data.  Although some may argue against it 
(e.g., Dennis 1996), I think the Bayesian approach should be another 
set of tools in a biologist’s analytical toolbox.  
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Sea turtles are frequently colonized by epibiotic organisms. This type 
of association involves all sea turtle species in several developmental 
life stages. Gathering knowledge on the species composition, 
distribution patterns and abundance of epibiotic species represents 
the first stage in understanding the nature of epibiotic relationships 
(Frazier et al. 1991, Miranda & Moreno  2002). It is also possible to 
obtain information about pre-reproductive migratory routes (Eckert 
& Eckert 1988) and population distribution and movements through 
more detailed studies about epibionts (Casale et al. 2004). 

The majority of the studies on sea turtle epibionts refer to the 
epibiotic assemblages of adult sea turtles. However, recent studies 
involving juvenile loggerheads (Caretta caretta) (Frick et al. 2003a) 
present new associations that demonstrate the need for further 

investigation and research projects concerning sea turtle epibiosis in 
feeding and development grounds. As a result, we initiated a study 
of the epibionts associated with a foraging population of juvenile 
green turtles (Chelonia mydas) in southeast Brazil.

Epibionts of fifty juvenile green turtles (curved carapace length 
= 39.6 cm ± 5.69 SD and curved carapace width =  36.4 cm ± 5.57 
SD) from Cananéia, southeast Brazil, were collected during the 
activities carried out by Projeto Tartarugas – IPeC (Bondioli et al. 
2005)  in 2007, between January and September. Forty were captured 
by local fishermen that use artisanal fish traps, the “cercos-fixos”, 
where turtles remain alive and unharmed (Nagaoka et al. 2005). Ten 
of them were found dead on local beaches during beach monitoring 
activities. The biometric data of turtles were collected (Bolten 1999), 


