Branch and Bound
(Exact Methods II)

Joshua Knowles

School of Computer Science
The University of Manchester

COMP60342 - Week 2 2.15, March 20th 2015

MANCHESTER

Branch-and-Bound is Intelligent Enumeration

Previous lecture: enumeration (exhaustive search)
— a very general but unintelligent method.

Branch-and-bound is turbo-charged enumeration.

It still lists and “ticks off” all solutions. But it employs
“lookahead” to be more intelligent.

Branch and Bound 2

| |
ﬂ e
—] —
| —L]
E|_T| —

A mouse takes a more
global view of the problem!

2.15, March 20th 2015

What is a bound?

vpper bound

valve

/1/ o se+ of valves

— — |ower bound

OPSD

l

Informally,
An upper bound is a value larger than or equal to the largest value in a set.
A lower bound is a value smaller than or equal to the smallest value in a set.

Bounds can be used to express some certainty about uncertain events...

Branch and Bound 3 2.15, March 20th 2015

...e.g. you roll a standard die 5 times without showing me.

| am certain that you won’t have rolled any number greater than 6 or less than 1
(even though | don’t know what you have rolled).

Branch and Bound 4 2.15, March 20th 2015

What is a bound?

vpper bound

valve

O /1/ o se+ of valves

—_— — lower bound

The set of interest may be of cardinality 1 (i.e., may have only one member).

E.g. you roll a die 5 times, and your score is the sum of your rolls. An upper bound
on the score (a set of cardinality 1) is 30. A lower bound is 5.

Branch and Bound 5 2.15, March 20th 2015

What is a bound?

So bounds are estimates (not guesses). To qualify as a bound, it
must be certain that the number is greater than or equal (upper
bound) or lower than or equal (lower bound) than the largest, or
respectively smallest value in the set.

For you to do: What is an upper bound and a lower bound on the
annual salary of the highest-paid professional footballer?

Give reasons.

Branch and Bound 6 2.15, March 20th 2015

What is a bound?

Definition:

An upper bound on a subset S of a partially ordered set (P, <) is an
element of P which is greater than or equal to every element of S.

A lower bound is defined analogously.

Example: S = {3,5,7}, P is the set of natural numbers.

Then an upper bound of S is 22.

Another upper bound of S is 8. We say that 8 is a tighter upper
bound than 22.

The least upper bound (also known as the supremum) of S is 7.

Branch and Bound 7 2.15, March 20th 2015

What is a bound?

Give the least upper bound of this set S = {—1.0,45.2,17.5},
when P is the set of real numbers.

What is the tightest lower bound of the set?

Branch and Bound 8 2.15, March 20th 2015

Why are bounds useful in optimization?

A. If we have a bound on the value of the best possible solution,
and we achieve that bound then we can stop searching.

Or, if we can tolerate an approximate solution, then we can stop
searching when we are merely close to the bound.

Q. Why are tight bounds more useful than loose bounds?

Branch and Bound 9 2.15, March 20th 2015

An example

PARTITION: Given a set X of positive integers, divide the set into two
subsets such that the difference between the sums of their elements
is minimized.

Instance: X = {11,7,6,4,9,14}

How could a lower bound be calculated?

Branch and Bound 10 2.15, March 20th 2015

Is the following solution optimal?

(11,14}, {7,6,4,9}

Branch and Bound 11 2.15, March 20th 2015

The Branching Part

Branch-and-Bound uses a partition of the solution space into subsets
Usually the subsets are arranged in a tree structure
Leaves in the tree are solutions. Internal nodes are partial solutions

The partial solutions allow reasoning about large subspaces of the search space.

Branch and Bound 12 2.15, March 20th 2015

Since a partial solution, and solutions at the leaves of its subtree, are
related, so are their objective function values.
This can be used to great advantage by branch-and-bound.

0o 0l (10) 1)
o [\ 1 D}“"“ o /7| 1 %‘{”

y N /
(é_m:l 001 -’ﬁm {ED Gﬁ'@1f' (1;\](1;\]

0 1 2 3 4 =] E ?

Branch and Bound 13 2.15, March 20th 2015

How Branch-and-Bound Works (Broad View)

Branch-and-bound organizes the search so that nodes in the search
tree are expanded one-by-one.

Branch&Bound: ‘Shall | expand you?”

Internal Node: ‘Yes, you can make a good solution
from me; my bound is good’

It expands a node if and only if that node has the potential to yield a
better solution. This potential can be determined by calculating a
bound on the value of solutions in the subtree rooted at the node.

Branch and Bound 14 2.15, March 20th 2015

Branch-and-Bound is Intelligent Enumeration

The intelligence in Branch-and-Bound comes from

(1) recognising when to stop, i.e. when an optimum has been found

(2) recognising that large parts of the space cannot contain an optimum
(3) recognising that large parts of the space are not even feasible

(4) searching in promising regions of the search space before searching less
promising regions.

NB: For a particular problem, one or more of these features may not apply and/or one
may be much more important than the other.

Branch and Bound 15 2.15, March 20th 2015

How Branch-and-Bound Works (Broad View)

Some nodes in the tree are active.
These are the nodes waiting to be explored.

Branching refers to exploring the subtree of an active node.

Bounding refers to estimating a bound on the solutions in the subtree rooted at the
active node.

Branch and Bound 16 2.15, March 20th 2015

The Branch-and-Bound Algorithm

begin
activeset :={0};
bestval:=NULL;
currentbest:=NULL;
while activeset is not empty do
choose a branching node, node k € activeset;
remove node k from activeset;
generate the children of node k, child i, i=1,... 0y,
and corresponding optimistic bounds ob;;
for i=1 to n; do
if ob; worse than bestval then kill child i;
else if child is a complete solution then
bestval:=ob;, currentbest:=child i;
else add child i to activeset
end for
end while
end

Branch and Bound 17

2.15, March 20th 2015

The above is a very simple basic branch and bound pseudocode.

Here, currentbest stores the best complete solution found so far, also known as the
incumbent.

The value of currentbest is the bestval. This value is used to see if it is worth
expanding (creating children of) nodes.

The bound b is the optimistic estimate of how good a partial solution (or node) may
be once completed; if it is not better than currentbest, there is no need to evaluate
the children of that node (so we don'’t add it to activeset).

This is a general scheme; there are many variants.

Branch and Bound 18 2.15, March 20th 2015

Upper and Lower Bounds in Maximization

In a maximization problem, a lower bound on the optimal solution is provided by any
feasible solution, since if y is the value (or profit) of a feasible solution, the optimal
solution, y* > .

The (current) tightest lower bound is provided by the value of the best solution we
have found. This is also referred to as the incumbent.

An upper bound ob on the value (or profit) obtainable within a given set of solutions
X' C X can sometimes be calculated. If this upper bound is lower (less good) than
the lower bound we already have, then it is not worth enumerating these solutions.
This upper bound is the optimistic bound.

Branch and Bound 19 2.15, March 20th 2015

Upper and Lower Bounds in Minimization

In a minimization problem, an upper bound on the optimal solution is provided by
any feasible solution, since if y is the cost of a feasible solution, then the optimal
solution y* > .

The (current) tightest upper bound is provided by the cost of the best solution we
have found. This is also referred to as the incumbent.

A lower bound ob on the cost obtainable within a given set of solutions X' C X
can sometimes be calculated. If this lower bound is higher (less good) than the upper
bound we already have, then it is not worth enumerating these solutions. This lower
bound is the optimistic bound.

Branch and Bound 20 2.15, March 20th 2015

Seeing How the Bounds Operate

Minimization Problem, Step O

Upper bound > any possible solution

Cost
of

Gap 1s very large
solutions P Y g

Lower bound <= any possible solution, e.g. 0

Branch and Bound 21 2.15, March 20th 2015

Seeing How the Bounds Operate

Minimization Problem - Early Stages

A ;
1%‘//Solutlons generated

Cost %0 .
of —&— Upper bound = best solution cost so far
solutions

Lower bound <= any possible solution, e.g. 0

Any complete solutions we have found serve as upper bounds on the best cost.

Branch and Bound 22 2.15, March 20th 2015

Seeing How the Bounds Operate

Minimization Problem - Search is Progressing

A ;
1%‘//Solutlons generated

Cost %0 .
of —&— Upper bound = best solution cost so far
solutions Lower bounds are generated for nodes in the

search tree (subsets of the problem) to
-+ gauge 1f they are worth expanding

Lower bounds are computed using relaxations or heuristics. They must generate an
underestimate or exact estimate of the best cost that some candidate set can

possibly achieve.

Branch and Bound 23 2.15, March 20th 2015

Seeing How the Bounds Operate

Minimization Problem - Termination

A :
° ‘//Solutlons generated

%
Cost)
of : Lower bounds of all unexplored sets > u.b.

] —=e— Upper bound = best solution cost so far
solutions

When the lower bounds of all unexplored subsets of the problem are greater than the
upper bound (the best solution found so far) the algorithm can terminate. The best
solution found is optimal.

Branch and Bound 24 2.15, March 20th 2015

Where do Optimistic Bounds Come From?

What do you think?

How can we guarantee the best cost of some set of (unseen)
solutions is not lower than some value, without enumerating all these

solutions and checking?

Branch and Bound 25 2.15, March 20th 2015

What is a Relaxation?

Consider the following constrained shortest path problem.

A B,

A, 15 B,

You must find the shortest route from .S to D that also has at least 10
as the sum of node values.

How can we efficiently obtain a lower bound on this?

Branch and Bound 26 2.15, March 20th 2015

What is a Relaxation?

Consider the following constrained shortest path problem.

A B,

A, 15 B,

You must find the shortest route from .S to D that also has at least 10
as the sum of node values.

How can we efficiently obtain a lower bound on this?

Branch and Bound 27 2.15, March 20th 2015

Dijkstra’s algorithm will give us a lower bound.

Why?

The unconstrained version of a constrained problem is known as a
relaxation (since we relax the constraints).

The solution to a relaxation is always an optimistic bound on the
solution to the corresponding constrained problem.

Often, it is a good (i.e., tight) bound.

The next trick is to compute bounds for subsets of the solution
space, to get even tighter bounds...

Branch and Bound 28 2.15, March 20th 2015

Computing Optimistic Bounds from a Partial Solution

Assume we are solving a minimization problem.

e Assume X' is defined as the set of (valid) solutions that complete a partial
solution z, = {z,, = S

P+
e Assume cost is calculated as some simple sum over the defined elements in x,,

e Then a simple lower bound for X" is just this cost. (Why ?)

e A tighter bound is this cost plus some extra costs from adding minimal elements
in each position without worrying about constraints.

e The latter can be calculated using greedy methods.

e Tighter bounds take more computation time to obtain, but may prune the search
tree much more effectively. There is a trade-off.

Branch and Bound 29 2.15, March 20th 2015

Varieties of Branch-and-Bound

The search tree can be explored using

e Depth-first search; this will construct feasible solutions sooner
e Breadth-first-search; this may prune more of the search tree sooner
e Best-first-search; sets with better bounds are explored first

e Other heuristics.

NB: the most suitable/efficient one may depend on problem, bounding function, or
problem instance.

Branch and Bound 30 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

To compute bounds, we relax the constraint about taking 0 or 1 of an
item. We allow taking a fraction.

Here’s how we do that.

B
l mlwl e

L J/Z— Khopsack

Now let’s see how that is used in solving knapsack with branch and
bound.

Branch and Bound 31 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

To compute bounds, we relax the constraint about taking 0 or 1 of an
item. We allow taking a fraction.

Here’s how we do that.

= arga

Now let's see how that is used in solving knapsack with branch and
bound.

Branch and Bound 32 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

To compute bounds, we relax the constraint about taking 0 or 1 of an
item. We allow taking a fraction.

Here’s how we do that.

= arga

Now let's see how that is used in solving knapsack with branch and
bound.

Branch and Bound 33 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

Branch and Bound 34 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

L3 1 2
V|12 10 2z C=lo
wl|lé6 5 4

L‘éefn_s}soréed in J&Scem‘ly v/k/

Branch and Bound 35 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acive sek L |3 1 2
stpO: £ 3 vz 10 2z Cslo
w
Ob =20 /_j > L}-
v=° items sorted in a/&scemlly v/k/

¥ XK

Branch and Bound 36 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acbve set L3 1 2
stpO: £ 3 vz 10 2z Cslo
1o Exexd ob =20 W/_j 5 %
V=2 items sorted in a/&scem‘ly v/k/
X ¥ X

Branch and Bound 37 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acive sek L |3 1 2
stpO: £ % V|12 10 2 C=lo
T: fwxxd ob=20 W/_j 5 4%
2: {1** , ox*} v=9o items sorted in J&SCM"'»\J v/w
* XX
Ob:QO
0}:(7)7 / \ vorn
O¥X T¥%
38 2.15, March 20th 2015

Branch and Bound

0/1 Knapsack — Today’s Lab

acbve sek L3 1 2
stpO: £ % vV |12 10 2 C=lo
1: E***g ob=20 O
2 {1** , ox*} v= Léafn_s}wréed n alascenlly v/w
Ob:QO
V=12
1%%
sy N
11%

Branch and Bound 39 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acbve sek L3 1 2
stpO: £ % vV |12 10 2 C=lo
11§ b0 wle 5 4
2: {1** , ox*} v=9o ééa{n_s}wréed m J&SCM"'»\J v/w
3: §70% ,0%x¢ KRK
b=20
OJD:A.; / \ OV=‘|2
O¥X 1%%
O\éﬂz / \ than}U&X
10¥% 11%
v=72/ \ v=19
100 101

Branch and Bound 40 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acbve sek L3 1 2
stpO: £ % V|12 10 2 C=lo

1o Exexd ob=20 W/_j 5 %
2: {1** , ox*} v= items sorted in alascenlly v/w
3: §70% ,0%x¢

05:20

v=12

1%%

ob=19 Kde \ thanl

V= 12 KﬁlHnorre _I,Hé

v-72/ \ v=19

100 101

Branch and Bound 41 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acbve sek L3 1 2
stpO: £ % V|12 10 2 C=lo
wlé6 5 4

T fxxx{ ob =20

2 {1xx, o%x}

3: f10% ,0x%%
4 - 1017 o\om'ma;;? / \ ob=20
V=12

1%%

Ob 19 Kde \ quasl

V= 12 KﬁlHnorre _I,Hé

v-72/ \ v=19

100 101

Léafn_s)wréed in alascenhy v/w

<o~
ON

Branch and Bound 42 2.15, March 20th 2015

0/1 Knapsack — Today’s Lab

acbive sek L3 1 2
skpO: £ 3 v |12 10 2 C=lo
1o Exexd ob=2o W/_j 5 %
(tems sorbecl in J&SCM‘A&J V/W

2 {1xx, o%x}

3: f10% ,0x%%
4 - 1017 o\om'mq;;? / \ ob=20
V=12
%%
Ob 19 Kde \ quaSl

V= 1‘7‘ Kﬁlqurre _I,Hé

v-72/ \ v=19

100 101

<o~
ON

Socutio: Pack items 52, 3§ for value =19 oy&‘maf,>

Branch and Bound 43 2.15, March 20th 2015

Other Types of Pruning: Fathoming a Node

Sometimes, in computing an optimistic bound, we notice that we have constructed a
feasible complete solution.

Since it is also an optimistic bound (by definition), this complete solution must be the
best possible feasible expansion of the current node.

This means we have ‘fathomed’ the node. Really, there is no need to continue
expanding the node’s children one at a time. We already have the best possible
feasible solution from this node’s children, and can move on.

We have successfully pruned off more of the search tree.

Branch and Bound 44 2.15, March 20th 2015

Other Types of Pruning 2: Dominance Relations

If we can show at any point that the best descendant of a node y is at least
as good as the best descendant of node x, then we say y dominates x and
y can kill x

Papadimitriou and Steiglitz (Section 18.3).

An example using a Shortest Path Problem is given.

Branch and Bound 45 2.15, March 20th 2015

Other Heuristics in Branch-and-Bound

An idea: Use additional computations to estimate which branches of the active
set to explore first. (These need not be computations of bounds).

May allow earlier computation of a good pessimistic bound and so more of the
search tree can be pruned before it is explored.

Example: In a knapsack problem, we may use a heuristic like preferring to pack
larger items first (leaving smaller items until later).

Heuristic rules may improve performance and they may not, depending on
characteristics of the problem instances. One has to try them out.

Branch and Bound 46 2.15, March 20th 2015

Branch and Bound: Sometimes a Heuristic

Branch and bound is an enumeration algorithm, and hence an exact technique (i.e.,
gives guaranteed exact optima).

However, the search tree can become very large and can take a long time to search,
even when pruning is working correctly.

In this case, branch and bound could be stopped early, in which case it becomes
only a heuristic.

One way to terminate the search early, but to get at least a guaranteed level of
approximation, is to stop it iff the incumbent solution has

value < (1 + «a).current_lower bound (for a minimization problem), where « sets the
desired level of approximation.

Branch and Bound 47 2.15, March 20th 2015

Summary

e Branch and bound enumerates intelligently

e Branch and bound is an exact method, meaning it terminates with a globally
optimal solution

e It prunes infeasible and unpromising regions of the search space. Bounds are
used to prove certain regions need not be explored

e The best solution found so far — the incumbent — acts as one type of bound

e The other type of bound, the optimistic bound, provides an estimate of whether
to expand a node

e Optimistic bounds are usually found by relaxation of the problem constraints

e Tighter bounds take more computation but can prune more of the search tree.

Branch and Bound 48 2.15, March 20th 2015

Glossary

upper bound: value greater than or equal to largest value in a set

optimistic bound: value better than or equal to best possible solution

incumbent: value of current best solution (lower bound in a maximization problem)
relaxation: a problem with one or more constraints removed

partial solution: a candidate solution only partially specified

pruning: removing part of the search tree because it contains no optimal solution

fathoming: when a solution’s value equals the bound of a node, the node needs no
further exploration

dominating: when a solution found by expanding one node is better than the bound
of another node, the second node is dominated

heuristic: a method for finding good but not necessarily optimal solutions

Branch and Bound 49 2.15, March 20th 2015

