Pymol Reference Card

Modes

Pymol supports two modes of input: point and click mode, and command line mode. The point and click allows you to quickly rotate the molecule(s) zoom in and out and change the clipping planes. The command line mode where commands are entered into the external GUI window supports all of the commands in the point and click mode, but is more flexible and possibly useful for complex selection and command issuing. Commands entered on the command line are executed when you press the return key. command help help keyword

Loading Files

0	
file loading	load data/test/pept.pdb
loading from terminal	<pre>pymol data/test/pept.pdb</pre>
toggle between text and graph	hics Esc
toggle Y axis rocking	rock
stereo view	stereo on/off
stereo type stereo crossey	re / walleye / quadbuffer
undo action	undo
reset view	reset
reinitialize Pymol	reinitialize
quit (force, even if unsaved)	quit

Mouse Control

	L	Μ	\mathbf{R}	Wheel	
	Rota	Move	MovZ	Slab	
Shift	+Box	-Box	Clip	MovS	
Ctrl	+/-	PkAt	Pk1		
CtSh	Sele	Cent	Menu		
DblClk	Menu	Cent	PkAt	_	
set the cer	nter of ro	otation		origin	selection

Atom Selection

object-name/segi-id/chain-id/resi-id/name-id

molecular system selection	/pept
molecule selection	/pept/lig
chain selection	/pept/lig/a
residue selection	/pept/11g/a
residue selection	/pept/lig/a/10
atom	/pept/lig/a/10/ca
ranges	lig/a/10-12/ca
ranges	a/6+8/c+o
missing selections	/pept//a
naming a selection selec	ct bb, name c+o+n+ca
count atoms in a selection	count_atoms bb
remove atoms from a selection	remove resi 5
general all, none, hydro, hetat	m, visible, present
atoms not in a selection selec	ct sidechains, ! bb
atoms with a vdW gap < 3 Å	resi 6 around 3
atom centers with a gap < 1.0 Å at	all near 1 of resi 6
atom centers within < 4.0 Å all	L within 4 of resi 6

Basic Commands

Some commands used with atoms selections. If you are unsure about the selection, click on the molecule part that you want in the viewing window and then look at the output line to see the selection.

fill viewer with selection center a selection	zoom /pept//a center /pept//a
colour a selection	colour pink, /pept//a
force Pymol to reapply colours	recolor
set background colour	bg_color white
vdW representation of selection	show spheres, 156/ca
stick representation of selection	show sticks, a//
line representation of selection	show lines, /pept
ribbon representation of selection	n show ribbon, /pept
dot representation of selection	show dots, /pept
mesh representation of selection	show mesh, /pept
surface representation of selectio	n show surface, /pept
nonbonded representation of sele	ction show nonbonded,
/pept	
nonbonded sphere representation	of selection show
nb_spheres. /pept	
cartoon representation of selection	on show cartoon. a//
clear all	hide all
rotate a selection rotate a	axis. anale. selection
translate a selection transla	te [x.v.z]. selection
	_ ,,,=_, ==============================

Cartoon Settings

Setting the value at the end to 0 forces the secondary structure to go though the CA position. cylindrical helices set cartoon_cylindrical_helices,1 fancy helices [tubular edge] set cartoon_fancy_helices,1 flat sheets set cartoon_flat_sheets.1 smooth loops set cartoon_smooth_loops,1 find rings for cartoon set cartoon_ring_finder, [1,2,3,4] ring mode set cartoon_ring_mode,[1,2,3] nucleic acid mode set nucleic_acid_mode, [0,1,2,3,4] cartoon sidechains set cartoon_side_chain_helper; rebuild primary colour set cartoon_color,blue secondary colour set cartoon_highlight_color,grey limit colour to ss set cartoon_discrete_colors,on cartoon transparency set cartoon_transparency,0.5 cartoon loop cartoon loop, a// cartoon loop cartoon loop, a// cartoon rectangular cartoon rect. a// cartoon oval, a// cartoon oval cartoon tubular cartoon tube, a// cartoon arrow cartoon arrow, a// cartoon dumbell cartoon dumbell, a// b-factor sausage cartoon putty, a//

Image Output

h

u

low resolution	ray
high resolution	ray 2000,2000
ultra-high resolution	ray 5000,5000
change the default size [pts]	viewport 640,480
image shadow control	set ray_shadow,0
image fog control	set ray_trace_fog,0
image depth cue control	set depth_cue,0
image antialiasing control	set antialias,1
export image as .png	png <i>image</i> .png

Hydrogen Bonding

Draw bonds between atoms and label the residues that are involved.

draw a line between atoms	distance 542/oe1,538/ne
set the line dash gap	set dash_gap,0.09
set the line dash width	set dash_width,3.0
set the line dash radius	set dash_radius,0.0
set the line dash length	set dash_length,0.15
set round dash ends	set dash_round_ends,on
hide a label	hide labels, dist01
label a reside label	(542/oe1), "%s" %("E542")
set label font	set label_font_id,4
set label colour	<pre>set label_color,white</pre>

Electrostatics

There are a number of ways to apply electrostatics in Pymol. The user can use GRASP to generate a map and then import it. Alternatively the user can use the APBS Pymol plugin. Pymol also has a built in function that is quick and dirty.

generate electrostatic surface action > generate>vacuum electrostatics > protein contact potential

Pymol Movies (mac)

move the camera	$move \times 10$
	move x, 10
turn the camera	turn x,90
play the movie	mplay
stop the movie	mstop
writeout png files mpng prefix [, fiz	rst [, last]]
show a particular frame	frame number
move forward on frame	forward
move back one frame	backwards
go to the start of the movie	rewind
go to the middle of the movie	middle
go to the movie end	ending
determine the current frame	get_frame
clear the movie cache	mclear
execute a command in a frame mdo 1, tr	urn x,5; turn
y,5;	
dump current movie commands	mdump
reset the number of frames per second	meter_reset

Miscellaneous

add hydrogens in to a molecu alias a set of commands separ 1hpv.pdb; zoom 200/; show structurally align a object=alignment	le selection h_add rated by ";" alias go,load sticks, 200/ around 8 llign prot1////CA, prot2,
fit one molecule to another	fit selection target
copy at selection	copy target source
copy at selection	copy turget, source
create a new selection	create target, selection
delete a selection	delete selection
save file	save filename, selection
protect or deprotect a selection	on [de]protect selection
mask or demask to allow/stop	o selection [un]mask
selection	
align coordinates with axis	orient selection
get the current rotation matri	ix get_view
input a rotation matrix	set_view
safely refresh the scene	refresh
store a scene view	name, store, description
restore a view	view name. [recall]
set a new colour	set_color name, rgb

Secondary Structures

called dss, however it is better to use the DSSP algorithm and then define the limits manually.

to run dss		dss <i>se</i>	lection
to define helical structure	alter	11-40/,	ss='H'
to define loop regions	alter	40-50/,	ss='L'
to define strand structure	alter	50-60/,	ss='S'
rebuild the cartoon after alterati	on	:	rebuild
get dihedral angle get_dihed	iral 4/1	n,4/c,4/	ca,4/cb

Files

change the working directory	t cd < t path >
list contents of current directory	ls
print current working directory	pwd

Crystal Structures

To recreate crystal packing of molelcules within 5 Å of pept in the pept.pdb (which must contain CRYST date), use the symexp command. symexp

sym,pept,(pept),5.0

NMR Structures

Pymol has a secondary structure determination algorithm NMR models should be loaded into the same object, but should have different states. load a model into an object load file.pdb, object show all models in an object set all_states,1 show only one object model set all_states,0 show a particular model frame model_number determine which model get_model fit two structures to one another fit selection fit and calculate the rms rms selection rms without fitting rms_cur selection fit ensemble structures intra_fit selection,1 calculate rms intra_rms selection, state ensemble rms without fitting intra_rms_cur

Changing Structures

selection, state

add a bond	bond atom1. atom2
remove bonds	unbond atom1,atom2
join to molecules together	fuse [atom1, atom2]

Old School Images

Load a .pdb and make a cartoon view. Then change the background colour to white and change the ray mode to 2. ant more trans mode of

	Set Tay_trace_mode,2
make the lines thinner	set antialias,2
raytrace the image	ray