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THE PROBLEM WITH PAIRWISE 
ALIGNMENTS

Part 1



Reminder: how BLAST works

Use pairwise alignments to search 

databases for similar sequences

Database

Query sequence



BLASTP output

(Example from the BLAST exercise: At the protein level it was quite evident, that 
the unknown sequence was a serine peptidase)

Alignment score (in bits)



BLASTP alignment

(Example from the BLAST exercise: At the protein level it was quite evident, that 
the unknown sequence was a serine peptidase)

>ref|WP_006953704.1| peptidase [Prevotella micans]
Length=922

 Score =   207 bits (526),  Expect = 2e-58, Method: Compositional matrix adjust.
 Identities = 117/211 (55%), Positives = 145/211 (69%), Gaps = 14/211 (7%)

Query  2    GHGTHVAGTVAAVNNNGIGVAGVAGGNGSTNSGARLMSTQIFNSDGDYTNSETLVYRAIV  61
            GHGTHVAGTVAA NNNG+GVAG+AGG+GSTNSG RL+S QIF    +  ++E     AI 
Sbjct  279  GHGTHVAGTVAARNNNGLGVAGIAGGDGSTNSGVRLLSCQIFRKSKEEGSAEA----AIK  334

Query  62   YGADNGAVISQNSWGSQSL-TIKELQKA---AIDYFIDYAGMDETGEIQT-GPMRGGIFI  116
            Y ADNGAVI+Q SWG  S   +KEL K+   AIDYFI +AG D  G  ++  PM+GG+ I
Sbjct  335  YAADNGAVIAQCSWGYASKENVKELPKSLKEAIDYFITFAGCDAHGAQRSDSPMKGGVMI  394

Query  117  AAAGNDNVSTPNMPSAYERVLAVASMGPDFTKASYSTFGTWTDITAPGGDIDKFDLSEYG  176
             AAGN+N++    P+AYE+V++VAS   +F KASYS +  W  I+APGGD D F L + G
Sbjct  395  FAAGNENMNFKEFPAAYEKVISVASTAWNFQKASYSNYADWVSISAPGGDQDAFGL-KAG  453

Query  177  VLSTYADNY----YAYGEGTSMACPHVAGAA  203
            VLST         Y Y +GTSMACPHV+G A
Sbjct  454  VLSTMPKKIASSGYGYMQGTSMACPHVSGIA  484

Alignment score





Not all positions are biological equal
>ref|WP_006953704.1| peptidase [Prevotella micans]
Length=922

 Score =   207 bits (526),  Expect = 2e-58, Method: Compositional matrix adjust.
 Identities = 117/211 (55%), Positives = 145/211 (69%), Gaps = 14/211 (7%)

Query  2    GHGTHVAGTVAAVNNNGIGVAGVAGGNGSTNSGARLMSTQIFNSDGDYTNSETLVYRAIV  61
            GHGTHVAGTVAA NNNG+GVAG+AGG+GSTNSG RL+S QIF    +  ++E     AI 
Sbjct  279  GHGTHVAGTVAARNNNGLGVAGIAGGDGSTNSGVRLLSCQIFRKSKEEGSAEA----AIK  334

Query  62   YGADNGAVISQNSWGSQSL-TIKELQKA---AIDYFIDYAGMDETGEIQT-GPMRGGIFI  116
            Y ADNGAVI+Q SWG  S   +KEL K+   AIDYFI +AG D  G  ++  PM+GG+ I
Sbjct  335  YAADNGAVIAQCSWGYASKENVKELPKSLKEAIDYFITFAGCDAHGAQRSDSPMKGGVMI  394

Query  117  AAAGNDNVSTPNMPSAYERVLAVASMGPDFTKASYSTFGTWTDITAPGGDIDKFDLSEYG  176
             AAGN+N++    P+AYE+V++VAS   +F KASYS +  W  I+APGGD D F L + G
Sbjct  395  FAAGNENMNFKEFPAAYEKVISVASTAWNFQKASYSNYADWVSISAPGGDQDAFGL-KAG  453

Query  177  VLSTYADNY----YAYGEGTSMACPHVAGAA  203
            VLST         Y Y +GTSMACPHV+G A
Sbjct  454  VLSTMPKKIASSGYGYMQGTSMACPHVSGIA  484

Conserved region:
Is likely important for the function of the enzyme

Variable region:
Is likely not that important for the function of the enzyme



Scoring of pairwise alignments

• In a normal pairwise alignment the same 
scores (the same matrix) is used for all 
positions

• As we saw before the selection pressure on 
the different parts of the sequence is not 
equal, and ideally we should take this into 
account

• IMPORTANT: if the sequences is of high 
enough similarity, this is usually not a big issue



Reminder: Dot-plot

1. Place two sequences 
along axes of plot

2. Place dot at grid 
points where two 
sequences have 
identical residues

3. Diagonals correspond 
to conserved regions



Dot-plot with BLOSUM colors
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be detected 
using BLASTP



Dot-plot with BLOSUM colors

1P
LC

._
 (P

la
st

oc
ya

ni
n)

1PLB._ (Plastocyanin)

Relationship can 
be detected 
using BLASTP



Color dot-plot of low-similarity sequences
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THOUGHTS ABOUT HOW TO SOLVE 
THE PROBLEM

Part 2



Idea catalog

• We would like to build a scoring model for 
pairwise alignments that more closely resembles 
what happens in real sequence evolution
– Highly conserved sites/regions should have a high 

weight
– Non-conserved regions should have a low weight (be 

allowed to vary without counting too much against 
the alignment score)

• IMPORTANT: Different protein families are under 
different selection pressure, so our model needs 
to account for this



Protein families

• Tools we can use, to identify the selective 
pressure on protein families:
– Data sets of truly related proteins
– Multiple alignment
– Logo plots
– Weight matrices



Protein family data sets

• How we can build such data sets:
– Already known collections (literature, curated data 

sets)
• Limitation: What have other people looked at before

– “Text based” search in protein data bases (e.g. 
UniProt)
• Limitation: Coverage, how well are the sequences described

– BlastP (!)
• Limitation: We only expect to find sequences of moderate to 

high similarity



Signal across multiple sequences

Seq 1 
Seq 2
Seq 3

..
Seq n

Multiple seq alignment (“MSA”)
(e.g. using MAFFT)

LOGO plot
(e.g using WebLogo)



LOGO example

Small section of a LOGO from 1500 aligned bacterial serine proteases



Going back to pairwise alignments

Alignment: Bacterial serine peptidase (“Savinase”) vs. human PCSK9



Going back to pairwise alignments

Goal: combine observations from large data set (1500 sequences) into the scoring 
scheme for the pairwise alignment



Naïve approach

• A naïve approach that would actually work:
• When calculating the alignment score, look at how much 

information is in the LOGO plot (from the large data set) at 
the corresponding position.

• Then scale the score from the BLOSUM62 matrix according 
to this.

• That would mean that highly conserved regions would count 
more and variable regions would count less in the alignment 
score.



But we can actually do better

• Some things the naïve approach do not cover:
– From the LOGO plot, a clear preference for certain 

amino acids at certain positions is seen.
– We would like to build this into the model.



Weight matrices to the rescue

• Weight matrices:
– Built from large data sets of aligned sequences.
– Is essentially log2(observed/expected) AA frequencies (the 

pseudo-frequencies is a trick to cope with small data sets).
– A score for how well new sequences match the pattern in 

the matrix can easily be calculated.



• A weight matrix is given as
       Wij = log2(pij/qj)
– where i is a position in the motif, and j an amino acid. qj is the background 

frequency for amino acid j.
– if pij = 0, we cannot apply the logarithm, so we have to add pseudocounts.

• W is a L x 20 matrix, L is motif length
• Wij > 0, Amino acid is seen more often than expected from random
• Wij < 0, Amino acid is seen less often than expected from random

A    R    N    D    C    Q    E    G    H    I    L    K    M    F    P    S    T    W    Y    V 
1  0.6  0.4 -3.5 -2.4 -0.4 -1.9 -2.7  0.3 -1.1  1.0  0.3  0.0  1.4  1.2 -2.7  1.4 -1.2 -2.0  1.1  0.7 
2 -1.6 -6.6 -6.5 -5.4 -2.5 -4.0 -4.7 -3.7 -6.3  1.0  5.1 -3.7  3.1 -4.2 -4.3 -4.2 -0.2 -5.9 -3.8  0.4 
3  0.2 -1.3  0.1  1.5  0.0 -1.8 -3.3  0.4  0.5 -1.0  0.3 -2.5  1.2  1.0 -0.1 -0.3 -0.5  3.4  1.6  0.0 
4 -0.1 -0.1 -2.0  2.0 -1.6  0.5  0.8  2.0 -3.3  0.1 -1.7 -1.0 -2.2 -1.6  1.7 -0.6 -0.2  1.3 -6.8 -0.7 
5 -1.6 -0.1  0.1 -2.2 -1.2  0.4 -0.5  1.9  1.2 -2.2 -0.5 -1.3 -2.2  1.7  1.2 -2.5 -0.1  1.7  1.5  1.0 
6 -0.7 -1.4 -1.0 -2.3  1.1 -1.3 -1.4 -0.2 -1.0  1.8  0.8 -1.9  0.2  1.0 -0.4 -0.6  0.4 -0.5 -0.0  2.1 
7  1.1 -3.8 -0.2 -1.3  1.3 -0.3 -1.3 -1.4  2.1  0.6  0.7 -5.0  1.1  0.9  1.3 -0.5 -0.9  2.9 -0.4  0.5 
8 -2.2  1.0 -0.8 -2.9 -1.4  0.4  0.1 -0.4  0.2 -0.0  1.1 -0.5 -0.5  0.7 -0.3  0.8  0.8 -0.7  1.3 -1.1 
9 -0.2 -3.5 -6.1 -4.5  0.7 -0.8 -2.5 -4.0 -2.6  0.9  2.8 -3.0 -1.8 -1.4 -6.2 -1.9 -1.6 -4.9 -1.6  4.5

Notice the LOG transform

How to construct a WM



• Score sequences to weight matrix by looking up and 
adding L values from the matrix

A    R    N    D    C    Q    E    G    H    I    L    K    M    F    P    S    T    W    Y    V 
1  0.6  0.4 -3.5 -2.4 -0.4 -1.9 -2.7  0.3 -1.1  1.0  0.3  0.0  1.4  1.2 -2.7  1.4 -1.2 -2.0  1.1  0.7 
2 -1.6 -6.6 -6.5 -5.4 -2.5 -4.0 -4.7 -3.7 -6.3  1.0  5.1 -3.7  3.1 -4.2 -4.3 -4.2 -0.2 -5.9 -3.8  0.4 
3  0.2 -1.3  0.1  1.5  0.0 -1.8 -3.3  0.4  0.5 -1.0  0.3 -2.5  1.2  1.0 -0.1 -0.3 -0.5  3.4  1.6  0.0 
4 -0.1 -0.1 -2.0  2.0 -1.6  0.5  0.8  2.0 -3.3  0.1 -1.7 -1.0 -2.2 -1.6  1.7 -0.6 -0.2  1.3 -6.8 -0.7 
5 -1.6 -0.1  0.1 -2.2 -1.2  0.4 -0.5  1.9  1.2 -2.2 -0.5 -1.3 -2.2  1.7  1.2 -2.5 -0.1  1.7  1.5  1.0 
6 -0.7 -1.4 -1.0 -2.3  1.1 -1.3 -1.4 -0.2 -1.0  1.8  0.8 -1.9  0.2  1.0 -0.4 -0.6  0.4 -0.5 -0.0  2.1 
7  1.1 -3.8 -0.2 -1.3  1.3 -0.3 -1.3 -1.4  2.1  0.6  0.7 -5.0  1.1  0.9  1.3 -0.5 -0.9  2.9 -0.4  0.5 
8 -2.2  1.0 -0.8 -2.9 -1.4  0.4  0.1 -0.4  0.2 -0.0  1.1 -0.5 -0.5  0.7 -0.3  0.8  0.8 -0.7  1.3 -1.1 
9 -0.2 -3.5 -6.1 -4.5  0.7 -0.8 -2.5 -4.0 -2.6  0.9  2.8 -3.0 -1.8 -1.4 -6.2 -1.9 -1.6 -4.9 -1.6  4.5

RLLDDTPEV
GLLGNVSTV
ALAKAAAAL

Which peptide is most likely to 
bind?
Which peptide second?

11.9
  

Scoring a sequence



• Score sequences to weight matrix by looking up and 
adding L values from the matrix

A    R    N    D    C    Q    E    G    H    I    L    K    M    F    P    S    T    W    Y    V 
1  0.6  0.4 -3.5 -2.4 -0.4 -1.9 -2.7  0.3 -1.1  1.0  0.3  0.0  1.4  1.2 -2.7  1.4 -1.2 -2.0  1.1  0.7 
2 -1.6 -6.6 -6.5 -5.4 -2.5 -4.0 -4.7 -3.7 -6.3  1.0  5.1 -3.7  3.1 -4.2 -4.3 -4.2 -0.2 -5.9 -3.8  0.4 
3  0.2 -1.3  0.1  1.5  0.0 -1.8 -3.3  0.4  0.5 -1.0  0.3 -2.5  1.2  1.0 -0.1 -0.3 -0.5  3.4  1.6  0.0 
4 -0.1 -0.1 -2.0  2.0 -1.6  0.5  0.8  2.0 -3.3  0.1 -1.7 -1.0 -2.2 -1.6  1.7 -0.6 -0.2  1.3 -6.8 -0.7 
5 -1.6 -0.1  0.1 -2.2 -1.2  0.4 -0.5  1.9  1.2 -2.2 -0.5 -1.3 -2.2  1.7  1.2 -2.5 -0.1  1.7  1.5  1.0 
6 -0.7 -1.4 -1.0 -2.3  1.1 -1.3 -1.4 -0.2 -1.0  1.8  0.8 -1.9  0.2  1.0 -0.4 -0.6  0.4 -0.5 -0.0  2.1 
7  1.1 -3.8 -0.2 -1.3  1.3 -0.3 -1.3 -1.4  2.1  0.6  0.7 -5.0  1.1  0.9  1.3 -0.5 -0.9  2.9 -0.4  0.5 
8 -2.2  1.0 -0.8 -2.9 -1.4  0.4  0.1 -0.4  0.2 -0.0  1.1 -0.5 -0.5  0.7 -0.3  0.8  0.8 -0.7  1.3 -1.1 
9 -0.2 -3.5 -6.1 -4.5  0.7 -0.8 -2.5 -4.0 -2.6  0.9  2.8 -3.0 -1.8 -1.4 -6.2 -1.9 -1.6 -4.9 -1.6  4.5

RLLDDTPEV
GLLGNVSTV
ALAKAAAAL

Which peptide is most likely to 
bind?
Which peptide second?  14.7

   4.3

84nM
  23nM
  309nM

11.9
  

Scoring a sequence



Where have we seen this before?



Estimation of the BLOSUM 62 matrix
• Use the BLOCKS database (ungapped 

alignments of especially conserved 
regions of multiple alignments)

• For each alignment in the BLOCKS 
database the sequences are grouped 
into clusters with at least 62% identical 
residues (for BLOSUM 62)

• All pairs of sequences are compared 
between clusters, and the observed 
pair frequencies are noted

ID   FIBRONECTIN_2; BLOCK
COG9_CANFA  GNSAGEPCVFPFIFLGKQYSTCTREGRGDGHLWCATT
COG9_RABIT  GNADGAPCHFPFTFEGRSYTACTTDGRSDGMAWCSTT
FA12_HUMAN  LTVTGEPCHFPFQYHRQLYHKCTHKGRPGPQPWCATT
HGFA_HUMAN  LTEDGRPCRFPFRYGGRMLHACTSEGSAHRKWCATTH
MANR_HUMAN  GNANGATCAFPFKFENKWYADCTSAGRSDGWLWCGTT
MPRI_MOUSE  ETDDGEPCVFPFIYKGKSYDECVLEGRAKLWCSKTAN
PB1_PIG     AITSDDKCVFPFIYKGNLYFDCTLHDSTYYWCSVTTY
SFP1_BOVIN  ELPEDEECVFPFVYRNRKHFDCTVHGSLFPWCSLDAD
SFP3_BOVIN  AETKDNKCVFPFIYGNKKYFDCTLHGSLFLWCSLDAD
SFP4_BOVIN  AVFEGPACAFPFTYKGKKYYMCTRKNSVLLWCSLDTE
SP1_HORSE   AATDYAKCAFPFVYRGQTYDRCTTDGSLFRISWCSVT
COG2_CHICK  GNSEGAPCVFPFIFLGNKYDSCTSAGRNDGKLWCAST
COG2_HUMAN  GNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATT
COG2_MOUSE  GNSEGAPCVFPFTFLGNKYESCTSAGRNDGKVWCATT
COG2_RABIT  GNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATS
COG2_RAT    GNSEGAPCVFPFTFLGNKYESCTSAGRNDGKVWCATT
COG9_BOVIN  GNADGKPCVFPFTFQGRTYSACTSDGRSDGYRWCATT
COG9_HUMAN  GNADGKPCQFPFIFQGQSYSACTTDGRSDGYRWCATT
COG9_MOUSE  GNGEGKPCVFPFIFEGRSYSACTTKGRSDGYRWCATT
COG9_RAT    GNGDGKPCVFPFIFEGHSYSACTTKGRSDGYRWCATT
FINC_BOVIN  GNSNGALCHFPFLYNNHNYTDCTSEGRRDNMKWCGTT
FINC_HUMAN  GNSNGALCHFPFLYNNHNYTDCTSEGRRDNMKWCGTT
FINC_RAT    GNSNGALCHFPFLYSNRNYSDCTSEGRRDNMKWCGTT
MPRI_BOVIN  ETEDGEPCVFPFVFNGKSYEECVVESRARLWCATTAN
MPRI_HUMAN  ETDDGVPCVFPFIFNGKSYEECIIESRAKLWCSTTAD
PA2R_BOVIN  GNAHGTPCMFPFQYNQQWHHECTREGREDNLLWCATT
PA2R_RABIT  GNAHGTPCMFPFQYNHQWHHECTREGRQDDSLWCATT

BLOSUM score = log2(observed pair freq/expected pair freq)

IMPORTANT: This means that BLOSUM is not position specific – it is a kind of an 
averaged across all alignment positions.



Idea: merge BLOSUM and WMs

• Pairwise alignment:
– Alignment score = sum(BLOSUM(for each AA pair))
– + penalty for gaps
– IMPORTANT: 2 sequences

• Weight matrix:
– WM score = sum(WM_score(for each AA, for each 

position))
– IMPORTANT: single sequence



Idea: merge BLOSUM and WMs

• “New BLOSUM”:
– Use protein family data set to estimate AA pair 

frequencies per position.
– We need to apply the pseudo-count approach to 

account for AAs we do not observe.



Idea: merge BLOSUM and WMs

• “New alignment”:
– Look up alignment score per position
– Sum up score + penalize for gaps the usual way



HOW PSI-BLAST ACTUALLY WORKS
Part 3



PSI-BLAST

• Position-Specific Iterative BLAST

• Start with one sequence (as with BLASTP)

• Build protein family model on the fly:
Ø Step 0: Start with an alignment model build 

purely on BLOSUM 62*

Ø Step 1: Find set of related sequences
Ø Step 2: Build refined position specific alignment 

model based on the identified related 
sequences

Ø Step 3: Re-iterate step 1-2 until model does not 
improve anymore (in practice 3-4 iterations)

*The NCBI server actually “cheats” a bit here and just run BLASTP in step 0 for speed reasons



PSSM

• PSSM (pronounced “PoSSoM”):
– Position-Specific Scoring Matrix

• Start by creating a n*20 matrix
– n = length of input sequence

• For each AA in the input 
sequence look up the 
corresponding row in the 
BLOSUM62 matrix and copy in 
the values 



PSSM visualization

• Trick: 
– The PSSM can be visualized as a LOGO plot
– Here’s what it can look like initially (after the 

trivial seeding with BLOSUM62):



PSSM adjusted after each iteration

After iteration 2

Seed: Savinase (p29600) – database: NR



PSSM adjusted after each iteration

After iteration 3

Seed: Savinase (p29600) – database: NR



PSSM adjusted after each iteration

After iteration 4

Seed: Savinase (p29600) – database: NR



Example (SGNH active site)
Blosum62

PSSM



Saving a PSSM for later use

• Very important:
– The PSSM you have arrived at after all your iterations can be 

saved for later use
• Uses:

– Scenario 1: Visualize your PSSM to assess the patterns picked up.
– Scenario 2: Run your search again (perhaps ½ year later) without 

having to go through all the iterations.
– Scenario 3: Search a different database using your PSSM

• For example: train a rock solid PSSM for detecting prokaryotic serine 
peptidases on the big “NR” database, then save it and use it to hunt for 
human/mouse remote homologs.

• You’ll HAVE TO do it this way, as it’s highly unlikely to find sufficiently good 
homologs to build the model in the restricted data set.



PSI-BLAST summary

• Is much better at finding remote homologs 
compared to BLASTP
– If used correctly!
– Remember to build your PSSM on the best 

possible data set, and potentially re-apply it in the 
actual data set you want to search

• Great for building data sets of related 
sequences
– In the NCBI interface you can save all found 

sequences as a single pre-aligned multi FASTA file


